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Tolerance Design and 

Kinematic Calibration of 

a 4-DOF Pick-and-place 

Parallel Robot 
 

This paper presents a comprehensive methodology for ensuring the geometric pose 

accuracy of a 4-DOF high-speed pick-and-place parallel robot having an articulated 

travelling plate. The process is implemented by four steps: (1) formulation of the error 

model containing all possible geometric source errors; (2) tolerance design of the 

source errors affecting the uncompensatable pose accuracy via sensitivity analysis; (3) 

identification of the source errors affecting the compensatable pose accuracy via a 

simplified model and distance measurements; and (4) development of a linearized 

error compensator for real-time implementation. Experimental results show that a tilt 

angular accuracy of 0.1/100, and a volumetric/rotational accuracy of 0.5 mm/±0.8 

deg of the end-effector can be achieved over the cylindrical task workspace.  

 

1. Introduction  
Four-DOF high-speed pick-and-place parallel robots using 

four identical R-(SS)2 limbs linked to an articulated traveling 

plate have recently attracted great interest in academia and 

industry [1,2]. Here, R denotes an actuated revolute joint and 

(SS)2 two spherical joints at either extremity of a spatial 

parallelogram.  

As with other lower mobility robotic systems, the geometric 

pose accuracy of these devices is an important performance 

specification. It can be improved by kinematic calibration [3-11] 

provided that the uncompensatable pose error (the tilt angular 

error) of the end-effector can be effectively restrained via 

tolerance design, manufacturing and assembly. For example, the 

uncompensatable tilt angular error is mainly caused by 

imperfectness of spatial parallelograms, the relevant source 

errors must be strictly controlled prior to kinematic calibration 

[9-13].Generally, this requires that: (1) the error model be 

formulated in such a way that the source errors affecting the 

compensatable and uncompensatable pose accuracy can be 

separated in an explicit manner; (2) the uncompensatable pose 

error be held below an acceptable level over the workspace with 

feasible manufacturing cost such that it can reasonably be treated 

as the ‘measurement noise’ of a simplified error model for 

kinematic calibration; and (3) the source errors affecting the 

compensatable pose accuracy (three translations and one rotation 

about the vertical axis) be accurately and effectively estimated 

such that the inverse kinematic model residing in the controller 

more closely matches the real system. The both measures 

constitute the framework to ensure geometric pose accuracy of 

the end-effector. Figure 1 depicts a general roadmap helpful to 

understanding the problem to be investigated.  

In the past decades, intensive studies have been carried out 

towards geometric pose accuracy improvement for robotic 

mechanisms in general and for lower mobility parallel robots in 

particular by tolerance design and kinematic calibration. The 

most commonly used methods to deal with tolerance allocation 

usually involves solving an optimization problem by minimizing  
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manufacturing cost subject to the constraints represented by the 

specified allowable pose accuracy, the manufacturing 

feasibilities, etc. Building upon statistical or worst case error 

models, various cost-tolerance functions have been proposed for 

minimization, and several algorithms have been developed for 

improving computational efficiency [14-19]. The kernel step in 

kinematic calibration is to identify all the source errors affecting 

the compensatable pose accuracy using a full/partial set of error 

data which can be easily measured in a time and cost effective 

manner without compromising the accuracy of the end results. 

For the Delta-type parallel robots containing parallelograms, the 

external calibration is appropriate due to their topological 

structures in nature, and both coordinate and distance/1- 

dimensional based approaches can be adopted [7-9,11]. 

Compared with the coordinate based approach, the distance 

based approach is invariant with the reference frame chosen and 

needlessness to identify the rigid body motion with respect to the 

world frame since robot localization can be made afterwards 

according to the environment context. In addition, the conditions 

of identifiability has been proposed, and various observability 

indices have been developed for minimizing the number of 

Fig.1 Roadmap for ensuring the geometric pose accuracy of the lower 

mobility robotic systems 
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measurements without affecting identification accuracy [20-23].  

Although a number of efforts have been made towards 

various aspects in error modeling, tolerance design and 

kinematic calibration of the Delta-type parallel robots [3, 

7-9,11-14], a comprehensive methodology is still required to 

merge all threads into a framework. Therefore, addressing Fig.1 

and taking such a 4-DOF parallel robot as an example, this paper 

proposes a systematic approach to improve the geometrical pose 

accuracy of the robot by integrating tolerance design with 

kinematic calibration. The remainder of this paper is organized 

as follows. In Section 2, a linearized error model containing all 

possible geometric source errors is formulated using the first 

order approximation, allowing the source errors affecting the 

compensatable and uncompensatable pose accuracy to be 

separated in an explicit manner.  In Section 3, a statistical error 

model of the robot is formulated, leading to an optimal tolerance 

allocation by a very simple algorithm built upon sensitivity 

analysis. In Section 4, parameter identification is carried out 

using a simplified error model and distance measurements. The 

criterion to minimize the measurements is discussed and a linear 

compensator is designed for the real-time error compensation. In 

Section 5, experiments on a prototype machine are carried out to 

verify the effectiveness of the entire processes proposed before 

conclusions are drawn in Section 6. 

 

2. Error Modelling 
Figure 2(a) shows a 3D view of the proposed 4-DOF parallel 

robot [2]. It has two identical closed-loop sub-chains, each 

comprising two identical R-(SS)2 limbs connected between the 

base at one end and either subpart 1 or 2 of the travelling plate at 

the other. Subparts 1 and 2 are articulated by ball-bearing 

guideways to subpart 3 as shown in Fig.2(b). The required 

rotation about the z axis is then generated from relative 

translation between subparts 1 and 2 via a rack-and-pinion 

assembly centred on subpart 3.  

In order to formulate the error model containing all possible 

geometric source errors, the following points and frames are 

defined as shown in Fig.2(c) where the nominal dimensions of 

the links and the unit vectors of the frames are also depicted. 

,j iC (
,j iA ): The central point of the jth (j=1,2) S-joint on the 

proximal link(or on subpart 1 or 2) with
iC (

iA )being the middle 

point of 1, 2,i i
C C  ( 1, 2,i i

A A );  

iB : The projection of 
iC  onto the rotatory axis of the R-joint;  

 O ( O ): The global reference (body fixed) frame attached to 

the base (or subpart 3);  

 0

iB ( 1

0 iB ): The local reference (body fixed) frame attached 

to the base (or the proximal link);  

 2

1 iC ( 3

0 iA ): The body fixed frame of the S-joints attached to 

the proximal link (or subpart 1 or 2). 

   As shown in Fig.2(c), the jth loop closure equation within the 

ith limb can be expressed as 
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where 

0,iR : The rotation matrix of  0

iB with respect to   O  

1,iR : The rotation matrix of  1

0 iB with respect to  0

iB  

2,iR : The rotation matrix of  2

1 iC with respect to  1

0 iB  

3,iR : The rotation matrix of  3

0 iA with respect to  O  

R :  The rotation matrix of  O with respect to  O  

i iL L L   , , ,j i j il l l   , , ,c i c ic c c   ( , ,a i a ic c c   ) : The 

actual and nominal lengths of i iB C , i iC A  , 1, 2.i iC C  ( 1, 2.i iA A ) and 

their errors  

 

0  r r r : The actual, nominal and error vectors of O  

evaluated in  O  

, ,
ˆ ˆ ˆ

j i i j i  l l l : The unit actual, nominal and error vectors 

of , ,j i j iC A  evaluated in  O  

0i i i  a a a : The actual, nominal and error vectors of iA  

evaluated in  O  

0i i i  b b b  : The actual, nominal and error vectors of iB  

evaluated in  O  

0
ˆ ˆ ˆ  s s s : The unit actual, nominal and error vectors of sliding 

direction of part 3 relative to part 1(2) evaluated in  O  

0s s s   : The actual, nominal and error sliding distance of 

part 3 relative to part 1(2) 

i , i :  The nominal angular and encoder offset of i iB C  
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Fig.2 A CAD model and kinematic diagram of the parallel robot 

with articulated traveling plate 
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0, 0,,i i   ; 2, 2,,i i   ; 3, 3,,i i   : The structural angular 

errors of  0

iB relative to  O ;  2

1 iC relative to  1

0 iB ; and 

 3

0 iA  relative to  O  

,  ,       : The angular errors of  O  relative to  O  

    Adding and subtracting two loop closure equations associated 

with the ith limb, leads to  

 1, 1, 2, 2,

0, 1, 1

ˆ ˆ
ˆ

2

i i i i

i i i i i i

l l
L s


    

l l
r b R R e R a s         (2a) 

, 0, 1, 2, 3 , 3, 3 1, 1, 2, 2,
ˆ ˆ 0c i i i i a i i i i i ic c l l   R R R e RR e l l           (2b) 

Since the source errors normally are very small compared to their 

nominal values, it is reasonable to use a linearized error model 

for tolerance design of geometric source errors. Then, rough 

kinematic calibration is required to reduce the encoder offsets 

in an iterative manner until the linearized error model is valid 

for fine kinematic calibration. This issue will be discussed in 

Section 5. Thus, the first order approximation of Eqs.(2a) and 

(2b) can be made such that   

 

, 0
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ε ε

ε  

1, 2,i i il l l    , , ,i c i a ic c c     

03, 0, 3,i i i      , 03, 0, 3,i i i       

i i i  e = b a , , 0 0 0
ˆ

s i i is a a s  

where 

ε , ,j iε : The angular error vectors of part 3 and , ,j i j iC A   

0,iu , 0,iv , 0,iw ( 1,iu , 1,iv , 1,iw ): The nominal unit vectors of 

 0

iB ( 1

0 iB ) 

Taking the dot products on both sides of Eqs.(3a) and (3b) 

with  ˆ
il , and rewriting in matrix form, yields  

   

  

     
      

     

A A B pδ

A B pε

0

0 0
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T T T T T
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B l v l l u l w l w  

T T T T T
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B l w l v l u l v l u  

TT T

,1 ,4( )     p p p , T T T

,1 ,4( )     p p p  

TT

, 0, 0,( )i i i i i i iL L L L l          p e  

T

, 03, 03, 2, 2,( )i i i i i i il c c c           p  

Assuming that A and T

 A A are non-singular finally results in   

      δ G p G p                                  (5) 

  ε G p                                            (6) 

1 1,   ,            

      G A B G A A A B G A B  

Here, 



A denotes the pseudo-inverse of 

A due to the over- 

constraint imposed by the limbs onto the travelling plate.  

   Eqs. (5) and (6) show that the source errors of the robot can be 

divided into two groups, p and p .The first contains 32 

source errors affecting the positioning accuracy of O and the 

rotational accuracy about the z axis of the end-effector relative to 

subpart 3 if it is assumed to undergo pure translation. The second 

contains 24 source errors affecting the angular accuracy of 

subpart 3. 

     It is easy to see that δ is compensatable because a linear error 

compensator  
T

,1 ,4m m mL     q  can be designed that 

enables the nominal angular displacements of the actuated joints 

to be modified such that  

1

m m    

      δ G p G p A B q 0 , 
T

1,
ˆdiagm i i
 
 

B l v  (7a) 

or 
 

m m     

      0B p A A B p B q                   (7b) 

It can be seen from Eq.(7b) that mq can be determined by  

 1

m m      

      q B B p A A B p                     (8) 

as long as p  and p  are estimated via parameter 

identification. However, examining Eq.(6) shows that ε is free 

of reference frame chosen, uncompensatable and has significant 

bearing on δ  due to the existence of p as shown in Eq.(5). 

Thus, ε must be restrained below a specified level by 

mechanical measures such that the kinematic calibration can be 

carried out using a simplified kinematic model valid only when 

the angular error caused by p  is sufficiently small. This goal 

can be achieved by tolerance design of p as addressed in what 

follows. 

 

3. Tolerance Design 
3.1 Probability model 

 There are two main strategies in error analysis and tolerance 

design of robotic systems, i.e. the worst case method and the 

statistical method. For the sake of using group technology in 

assembly processes of four identical limbs, the statistic method is 

used here. In order to facilitate tolerance design, a probability 

model is required since p  is random in nature. So, rewrite 

Eq.(6) as 

4

, ,

1

i i

i

 


 ε G p , T( )x y z  ε                  (9) 

Here, only the tilt angular error 2 2

x y     is considered 
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because it heavily affects the positioning accuracy of subpart 3. 

Assume that the source errors are independent and zero mean, 

and that components of the same type have equal variances as the 

robot has four identical limbs, i.e.  

, , ,( ) ( )k i kp p     , i=1,2,3,4                      (10) 

where 
, ,i kp  denotes the thk  component in 

,ip . Then,  

,1 ,2 ,3 03

,4 03 ,5 2 ,6 2

,  ,   

,  ,     

p l c p c c p

p p p

        

        

  

  



  
 

Thus, the probability model of   vs. all ,kp   can be formu- 

lated as 

6
2 2 2

, ,

1

( ) ( )k k

k

p     


  , 
4

2 2

, ,1, ,2,

1

( )k i k i k

i

g g


      (11) 

where ,k  is defined as the local sensitivity of ( )   with 

regard to ,kp   and 
, ,i j kg  is the element of the thj  row and the 

thk  column of 
,iG .Furthermore, the mean value of 

,k , 

i.e.  , ,k k
V

dV V    , over the entire task workspace, is 

defined as the global sensitivity [10], which can then be used as 

an index to evaluate the impact of ,kp  on   in a global sense. 

 

3.2 Optimal tolerance allocation 

     Generally, manufacturing cost and tilt angular accuracy are 

two conflicting criteria for optimal tolerance design of the source 

errors and several cost-tolerance functions have been proposed 

[24]. The simplest way to formulate the function is to assume 

that the cost is inversely proportional to the relevant tolerance. 

Therefore, the problem of optimal tolerance allocation can be 

stated as: Minimize the total cost while satisfying the constraints 

imposed upon: (i) the maximum allowable tilt angular error over 

the task workspace, and (ii) the lower bounds of the source errors 

due to manufacturing feasibility. Meanwhile, if the global 

sensitivities are considered as the indices reflecting the degrees 

of importance such that  , constk kp    ,the constrained 

nonlinear programming problem can be formulated as 
6

1

,

1

( ) mink k

k

f w p 



                              (12) 
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x
 

where U

  is the upper bound of the standard deviation of  ; 

    ,ref ,min kp p      is defined as the reference level of 

all standard deviations;
,ref

L

  is the lower bound of  ,refp  ; 

kw is the normalized weight of manufacturing cost associated 

with the kth standard deviation. This formulation has the merit 

that it involves only one design variable, ,ref( )p  , allowing the 

problem to be efficiently solved by a 1-D root searching 

  
algorithm. Then, the tolerance of ,kp can be calculated 

according to 3  criterion.   

, ,3 ( )k kT p                                       (13) 

4. Identification and Compensation 
Once a combination of tolerance design, manufacturing and  

assembly processes ensures that   is held below an acceptable 

level such that  G p  in Eq.(5) becomes much smaller than 

 G p  over the task workspace, a simplified model can be 

created as shown in Fig.3(a). In this sense, p  can be treated as 

the unmodeled error and thus  G p  as the ‘measurement 

noise’. So, Eq.(5) simplifies to  

  δ G p                                    (14) 

 
4.1 Identification model using distance measurement 

Building upon the simplified error model represented by 

Eq.(14), namely subparts 1 and 2 undergo pure translation, the 

distance based approach is employed for the identification of 

p by using a set of distance measurements either directly 

achieved by a metrology device, a DBB system [6] for example, 

or extracted from other measurements, such as a laser tracker [7] 

or dedicated artefacts [8]. The advantages of the distance based 

approach lies in that it is invariant with the reference frame 

choice and it is unnecessary to identify the source errors 

describing the rigid body motion of robot frame relative to the 

world frame since robot localization can be made afterwards 

according to the environment context.  

As shown in Fig.3(b), the position vector of P on subpart 3 

with regard to a metrology frame  mO  decomposes into two 

components, i.e. the position vector of P relative to  O  and that 

of O  relative to  mO . Because the distance between two 

positions of P is invariant with the frame chosen, p  can be 

identified using distance measurements as long as  O is 

specified by eliminating the rigid body motion of  O  relative 

to. 

For this reason, assume that (amongst many other possible 

choices) the following source errors in p vanish:  

Fig.3 A simplified model for kinematic calibration 
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,2 ,2 ,3 ,4 ,4 ,4 0x z z x y ze e e e e e                       (15) 

This treatment turns Eq.(14) into a model containing 26 source 

errors but it is convenient to keep it in the current form. 

 Drawing upon the argument that the source errors of parallel 

mechanisms can be identified using a partial set of measure- 

ment data as long as the source errors being identified are 

irreducible and the end-effector experiences its full degrees of 

freedom [25], two position vectors of P , 
iP and 

jP  ( i j ) are 

used to form a measurement pair numbered by k as shown in 

Fig.3(b), resulting in 2 ( 1)NK C N N   distance measurements 

that can be generated by the combinations of all the possible 

pairs of N poses. Thus, the corresponding loop closure equation 

can be expressed as 

( ) ( )ˆ k k

k k j i  n r r , 1,2, ,k K                    (16) 

where
k  and ˆ

kn  denote the distance and unit vector of i jPP .  

Taking the first order approximation and the dot product on 

both sides of Eq.(16) with ˆ
kn , yields 

  ρ H p ,
T T

1 K
   H H H ,  T

, ,
ˆ

k k r j r i H n G G  (17) 

where 
T

1(   )K   ρ   ,
k  is the distance error of i jPP ;  

,r iG  and 
,r jG  are the partitioned matrices formed by the first 

three rows of G .  

 

4.2 Optimal pose selection 

In the implementation of kinematic calibration, choosing a set 

of optimal poses is an important issue to ensure the measurement 

efficiency and the identification accuracy.  

 

4.2.1 Pose selection for fine identification  

The straightforward and reasonable way to identify the full set 

of source errors is to take the central point 0P of the cylindrical 

task workspace as the home position, and to choose n  evenly 

spaced points on top (bottom) layer of the workspace boundary 

shown in Fig. 3(b). Meanwhile, let the nominal rotational angle 

0 0 gs r  of subpart 3 take the extreme value π ( π ) when it 

travels on top (bottom) layer. This is because: (1) the necessary 

and sufficient condition for the full set of source errors to be 

identifiable requires the subpart 3 to experience all controllable 

degrees of freedom [25], i.e. three translations and one rotation in 

this case, and (2) the optimal poses tend to converge to the 

workspace boundary [26] where the highest signal/noise ratio 

can be achieved.  

Five observability indices have been proposed for the 

optimal selection of calibration poses [27-29]. A comparison 

study shows that reciprocal of the condition number of the 

identification Jacobian, represented by
2O , is the most 

appropriate criterion. Thus, the pose selection problem can be 

stated as: To minimize n  subject to the given threshold 0  

defined as the relative change of  ( )

2 2 ( )nO O n H vs. n , i.e. 

( ) ( 1)

2 2

0( )

2

2

2 1

min  

s.t.  100%    

26

n n

n

n

n

O O

O

K C

 






  

 

               (18) 

Based upon the distance error model given by Eq.(17), full 

source errors,
p , can be estimated by the linear least square 

algorithm 

ˆ


  p H ρ                                   (19) 

where  
1

T T


 H H H H is the pseudo inverse of H . 

 

4.2.2 Pose selection for rough identification 

Since the pose error caused by the encoder offsets is usually 

much larger than that caused by the others source errors, it is 

necessary to implement rough calibration first by only taking 

into account the encoder offsets such that these source errors are 

reduced below the level at which the linearized model is valid for 

full parameter identification and error compensation. Thus, the 

optimal pose selection problem for the rough calibration can be 

modified as  

( ) ( 1)

2 2

0( )

2

2

1

min  

s.t.  100%    

4

n n

n

n

n

O O

O

K C

 






  

 

            (20) 

where 3n   denotes the number of evenly spaced points in a 

single layer, e.g. the middle layer shown in Fig.3 (b). Note that 

the nominal rotational angle  can be kept unchanged, e.g. 

0  in the rough calibration. Hence, the encoder offsets p  in 

the rough calibration can be estimated by  

ˆ
 

  p H ρ ,  
T

1 2 3 4
ˆ ˆ ˆ ˆˆ L         p      (21) 

where H denotes the sub-matrix of H , generated by the 

columns associated with p  

 

4.3 Linear error compensator 

By assuming that the tilt angular error arising from p has 

been restrained below an acceptable level such that it can be 

treated as ‘measurement noise’, the linear error compensator in 

Eq.(8) simplifies to 

For rough calibration:  

  

ˆ
m   q p                                     (22) 

For fine calibration:  
1 ˆ

m m  

   q B B p                               (23) 

Obviously, 
mq is a function of the estimated source errors, the 

nominal dimensions and the configuration of the system. It is 

important to note that the encoder offsets have non-negligible 

bearings on the linearization of error modelling, therefore the 

rough calibration should be carried out in an iterative manner 

until the estimated parameters converge to a specified threshold 

such that linearized error model is valid for fine calibration.  

 

5. Experiment Verifications 
Tolerance design and kinematic calibration on a prototype of 

the 4-DOF parallel robot shown in Fig.4 are carried out to verify 

the effectiveness of the proposed methodology. Tested by ISO 

9283-1998 [30], the positioning repeatability of subpart 3 is 

±0.05mm and its rotational repeatability is 0.3  over the 

cylindrical task workspace. The nominal dimensions of the links 

and the workspace are given in Table 1.  
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5.1 Verification of tolerance design 

     Figure 5 shows the global sensitivities of the sources errors 

affecting the uncompensatable pose accuracy of part 3. It is easy 

 
 

   

to see that l c has the most significant bearing on the tilt 

angular error  . This is followed by 
2  and

03 . They 

thereby should strictly be restrained via manufacturing and 

assembly processes. Hence, assign l c as the reference level 

,refp , set 
,ref 0.02 /100L

   and 3 0.1 100U

   by consi- 

dering the ratio of  G p to  G p as well as the 

manufacturing feasibilities. Meanwhile, assume that all 

tolerances have equal manufacturing cost, i.e. 1 6kw  . Solving 

Eq.(12) results in a set of optimized tolerances as shown in Table 

2, which are in turn employed as the quality check points over the 

manufacturing and assembly processes. In order to consolidate 

the effectiveness of the tolerance design, a LEICA AT901-LR 

laser tracker with the maximum observed deviation of 0.005mm 

is used (also see Fig. 4) to measure the coordinates of two points 

(
1P and 

2P , the center of sphere reflector) on the end-effector. 

allowing the tilt angular error   to be evaluated at a given 

position. In the experiment, the metrology frame  mO is set at 

the home position, i.e. the workspace centre
0P  as shown in 

Fig.3(b), where  is assumed to be zero. Let point P on subpart 

3 undergo eight evenly spaced positions on each circle of radii 

from 100 mm to 500 mm with an increment of 100 mm while 

keeping 0  . It is observed that   takes the maximum value 

of 0.086/100 at the workspace boundary the bottom layer, 

satisfying the prescribed pose accuracy. Figure 6  shows  the 

distribution  of   across  the  bottom  layer  of  the  workspace,  

which  is  obtained  by  curve  fitting  to  the  tilt  angles  at  points 

evenly spaced in a polar coordinate system. It is easy to see that 

in the layer   increases with the increase in radius, and takes the 

maximum value at workspace boundary. 

 

 
 

5.2 Verification of kinematic calibration 

Kinematic calibration of the robot is then implemented by 

two steps. Having built the experiment set-up shown in Fig. 4, 

the procedures for the rough (encoder offset) and fine 

calibrations are addressed in what follows. 

 

5.2.1 Rough (encoder offset) calibration  

In the rough calibration, let point P on subpart 3 undergo n  

evenly spaced positions along the boundary of middle layer of 

the workspace apart from the home position while keeping 

0  unchanged at all positions. Given a threshold 
0 1% , it 

is easy to see from Fig.7 that the optimal number of the 

measurement poses is 6n  . Therefore, evaluated in 

 mO already established in Section 5.1, the realistic coordinates 

of P  at the above positions are measured, resulting in 
2

6+1 21K C   distance errors generated by the coordinate 

measurements. Consequently, the encoder offsets p can 

roughly be identified by using Eq.(21) and the pose error caused 

by the estimated ˆ
p  can roughly be compensated using 

Eq.(22).  

In the experiment, the calibration procedure are run twice due 

to the relatively large encoder offsets until they converge 

to 1
ˆ 0.189  , 2

ˆ 0.862  , 3
ˆ 0.912   and 4

ˆ 0.344  . 

It can be seen from Table 3 that the maximum distance, 

volumetric and rotational error denoted by  , v  and   of 

3(10 rad)



 (m)y  (m)x

Fig.6 Distributions of   in the bottom layer of the workspace. 

-0.5

0

0.5

-0.5

0

0.5
0

0.6

1.2

Table 1 Nominal dimensions and the task workspace  (mm) 

b  a  L  l  c  R  H  h  gr  s  

200 75 375 950 100 500 763 250 12 [ π, π]g gr r  

,  b a --Radii of circumcircles of the base and traveling plate; 

,  R h --Radius and height of the workspace; 
gr --Radius of the pinion.  

 

Table 2 The optimized tolerance allocations  (
310

rad) 

( )T l c  ( )T c c  03( )T   
03( )T   

2( )T   
2( )T   

0.22  0.90  0.26  0.52  0.25  0.84  

 

1 2 3 4 5 6
0

0.5

1

1.5

Fig.5 The global sensitivities of ( )  vs. ,( )kp  . 

1.26

0.31

1.08

0.54

0.34

1.15

l c c c 03 03
2

2

,k

Fig.4 The experiment set-up 

Laser Tracker  

Encoder 

Reflector 

P1  

P2  
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the
kP  ( 1,2, ,6k  ) relative to 

0P can dramatically be reduced 

from 2.332mm, 3.816mm and 8.5  to 0.068mm, 0.213 mm and 

1.2 , respectively, via the rough calibration. Consequently, the 

encoder offsets become sufficiently small for the use of Eq.(23) 

that is valid under the first order approximation. 

 

5.2.2 Fine calibration  

In the fine calibration, the pose error δ is to be compensated 

using full set of source errors being identified. By keeping the 

home position unchanged, let point P undergo n  evenly spaced 

poses along the boundary of top and bottom layers of the 

workspace. Meanwhile, let the nominal rotational angle 0 of 

subpart 3 keeps a constant value of π in the top layer and π in 

the bottom layer. It is worthwhile pointing out that this 

arrangement allows the reflector to be adjusted only twice during 

the entire process for the avoidance of laser beam interference, 

thereby ensuring the measurement efficiency. Given 
0 1%  

again, it can be seen from Fig.8 that the optimal number of the 

measurement poses is 9n  for fine calibration. Therefore, nine 

evenly spaced positions of P  apart from 
0P  are arranged along 

a circle of 500 mmmR   within each of two layers at 

/ 2 125 mmmh   as shown in Fig.3(b). Evaluated in the 

metrology frame  mO  established by the laser tracker, the 

realistic coordinates of P at the above positions are measured 

while keeping subpart 3 a constant rotational angle of 
0 π   , 

equivalently in each layer, resulting in 2

19 171K C   distance 

errors generated by the coordinate measurements.  

 

 

 

 

 

In the experiment, the calibration procedure needs to be run 

only once for identifying p because sufficient pose accuracy 

has been achieved thanks to the encoder offset calibration ahead. 

Each measurement is repeated three times and the mean value is 

retained. As a result, p are identified as represented in Table 4. 

It should be noted that the estimated values in p are not the 

strictly real source errors because of the existence of the 

‘measurement errors’ arising from p . Nevertheless, δ can still 

be compensated by Eq.(23) using the estimated ˆ
p by Eq.(19).  

 

 
 

To evaluate robot accuracy after calibration, eight coordinate 

measurements on each circle of radii from 100mm to 500 mm 

with an increment of 100 mm in the top, middle and bottom 

layers are taken. This makes a total of 120 poses besides the 

home position. Each validation measurement is repeated three 

times, and the mean values are retained with the maximum 

distance standard deviation of 0.006 mm. Acquired using the 

laser tracker and a rotary encoder mounted on the top of subpart 

3, Table 5 shows the maximum distance, volumetric and 

rotational errors of the end-effector before and after fine 

calibration. Figure 9 shows the error distributions across the 

corresponding layer of the workspace as a result of fine 

calibration. Here,  the  layer  is  the  one  in  which  the  maximum 

value  of  the  relevant  error  occurs.  It  can  be  seen  that  the 

4 8 12 16
0

2

4

6

n

3

2
9,  4.7 10 , =0.7%n O   

Fig.8 The variations of 
2O  vs. n in the fine calibration 

 

3

2( 10 )O 

Table 3 Distance, volumetric and rotational errors  

before and after encoder offset compensation 

Points 1P  2P  3P  4P  5P
 6P

 

Before 

  -1.251 -1.361 -1.516 -2.332 -2.082 -1.098 

v  3.816 2.994 1.771 3.256 2.568 2.440 

  -0.6 8.5 1.9 -0.2 -2.8 -8.1 

After 

  -0.017 0.021 0.068 0.025 0.047 0.022 

v  0.106 0.096 0.213 0.048 0.086 0.170 

  -0.3 -0.6 -0.4 1.2 0.7 -0.5 

Unit:  (mm) ,  (mm)v  and  (deg) . 

2 6 10 14
0

0.02

0.04

0.06

0.08

n

2
6,  0.066, =0.93%n O  

Fig.7 The variations of 
2O  vs. n in the rough calibration 

 

2O

Table 4 Results of source error identification   (unit：mm) 

 ˆΔ iL θ  ,
ˆΔ x ie  ,

ˆΔ y ie  
,

ˆΔ z ie  ˆΔ iL  0,
ˆΔ iL α  

0,
ˆΔ iL β  ˆ

Δ il  

Limb 1 -0.347 -0.375 -0.128 -0.707 0.148 0.370 -0.218 -0.577 

Limb 2 0.662 -- 0.292 --- 0.144 0.436 0.049 0.171 

Limb 3 0.169 -0.290 -0.258 --- -0.039 -0.372 -0.136 -0.094 

Limb 4 -0.187 --- --- --- 0.177 -0.433 -0.415 0.511 
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distribution of the  absolute  distance error  is plane symmetric,  it 

takes quite small values cross the x axis, but eventually increases 

with the increase of the absolute coordinate of the y axis with the 

maximum value occurring at the  boundary  of  the bottom  layer. 

The volumetric error  eventually  increases  with  the  increase  of 

radius  and  takes  the  maximum  value  at  the  boundary  of  the 

bottom layer . Similar to the distribution of the absolute distance 

error,  the  distribution  of  the  rotational error  of the end-effector 

relative  to  subpart  3  is  plane  symmetric,  it  takes  quite  small 

values cross the y axis, but eventually increases with the increase 

of the absolute coordinate of the x axis with the maximum value 

occurring at the boundary of the top layer. The absolute values of 

these errors are reduced from 0.386 mm to 0.126 mm, from 1.512 

mm to 0.472 mm, and from 3.8° to 0.8° over the workspace after 

the fine calibration. 

 

 
 

6. Conclusions 
A comprehensive methodology is proposed that incorporates 

tolerance design with kinematic calibration to ensure the 

positioning and rotational accuracy of the end-effector of a 

4-DOF high-speed parallel robot with articulated travelling plate. 

The conclusions are drawn as follows: 

(1) As an illustration, the uncompensatable tilt angular error 

of subpart 3 can be restrained below 0.086/100 via tolerance 

design and assembly. This enables kinematic calibration to be 

carried out using a simplified model and distance measurements, 

leading to the maximum distance error, volumetric error and 

rotational error about the z axis of the end-effector relative to 

subpart 3 are reduced from 0.386mm to 0.126mm, from 1.512 

mm to 0.472 mm and from 3.8° to 0.8° over the workspace 

before and after fine calibration. 

(2) Some  assumptions  have  been  made  on  statistic 

characteristics  of  the  source  errors  and  the  cost-tolerance 

relationship.  Therefore,  numerous experiments and replications 

on a  batch  of  machines  are  expected  for  further  consolidation 

though  the  proposed  methodology  has  been  tested  on  a 

well-engineered prototype. 
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