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Abstract 

This paper deals with kinematic calibration of the Delta robot using distance measurements. The work is mainly 

placed upon: (1) the error modeling with a goal to classify the source errors affecting both the compensatable and 

uncompensatable pose accuracy; (2) the full/partial source error identification using a set of distance 

measurements acquired by a laser tracker; and (3) design of a linearized compensator for real-time error 

compensation.  Experimental results on a prototype show that positioning accuracy of the robot can significantly 

be improved by the proposed approach. 
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1. Introduction 

Geometric accuracy is an important performance index of parallel mechanisms. It has been well 

recognized that the kinematic calibration is a practical and economical way for enhancing the pose 

accuracy of parallel mechanisms provided that adequate fundamental precision can be achieved at 

manufacturing and assembly level. The calibration process can be implemented by four sequential 

steps, i.e. modelling, measurement, identification and implementation [1-4] such that the kinematic 

model residing in the controller more closely matches the real system. 

Since the measurement is time and cost consuming, laborious and prone to human errors, the kernel 

step in the calibration is to identify the geometric parameters in such a way that measurements can 

easily be made in a time and cost effective manner without compromising the accuracy of the end 

results. In the past few decades, intensive studies have been carried out for kinematic calibration of 

parallel mechanisms and the approaches available to hand can be classified into two categories. One 

category is regarded as the external calibration [5-9] as the geometric parameters are identified by 



minimizing the residuals between the measured and computed values of the external pose sensors. 

Another category is referred to as the self or autonomous calibration [10-13] since the parameter 

identification is implemented by minimizing the discrepancies between the measured and computed 

values of the active, passive and/or redundant joint sensors. As for the external calibration the further 

classification can be made into the coordinate base approach [5, 7] and the distance based approach [9, 

10], heavily dependent upon the metrology devices being used. The coordinate based approach deals 

with the identification problem using the full/partial set of position/orientation coordinate 

measurements. The distance or 1-dimensional based approach deals with the same problem using a set 

of distance measurements either directly achieved by a metrology device, a double ball bar for example, 

or extracted from the absolute coordinates of one or more reference points on the end-effector.  

Compared with the coordinate based approach, the advantages of the distance based approach lies in 

that it is invariant with the reference frame chosen and it is unnecessary to identify the source errors 

describing the rigid body motion of robot frame relative to the world frame because robot localization 

can be carried out late on according to the environment context.  

Building mainly upon the first order approximation, this paper deals with kinematic calibration of the 

Delta robot [14] using distance-based approach. Although this problem were intensively studied using 

the autonomous or coordinate-based approach [6-8, 15-17] in the past, we will focus upon: (1) 

geometric error modeling by classifying the source errors affecting the compensatable and 

uncompensatable pose accuracy; (2) identifiability analysis of the source errors affecting the 

uncompensatable pose accuracy; and (3) development of a linear error compensator for the real-time 

implementation. Experiments will be carried out on a prototype to validate the effectiveness of this 

approach. 

2. Error Modelling 

 Fig.1 shows a 3-D view of a Delta robot which is composed of a base, a traveling plate, and three 

identical R-(SS)2 limbs.  Here, R represents a actuated revolute joint connected with the base, (SS)2 

denotes two spherical joints at either extremity of a spatial parallelogram. In order to formulate the 

error model containing all possible geometric source errors, the following points and frames are 

defined as shown in Fig. 2.   

,j iC  ( ,j iA ): Centre point of the thj  S-joint attached to the proximal link (traveling plate) in the thi  

limb. 



 

iC  (
iA ): Middle point of 1, 2.i iC C  ( 1, 2.i iA A ): 

iB : Projection of 
iC onto the rotational axis of the R-joint in the thi limb  

 O : Reference frame attached to the base  

 O : Body fixed frame attached to the travelling plate 

 0

iB : Reference frame of the thi limb with 
0,iz

 
being the rotational axis of the R-joint  

 1

0 iB : Body fixed frame of the thi proximal link achieved by rotating  0

iB an angle about the 0,iz axis 

 2

1 iC : Body fixed frame of the thi proximal link with the direction of 1, 2.i iC C being the 2,iz axis 

 3

0 iA : Body fixed frame of the travelling plate with the direction of 1, 2.i iA A being the 3,iz axis 

Considering that the source errors are much smaller than their normal values, the first order 

approximation of the thj loop closure vector equation within the thi  limb can be formulated by  
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Fig.1 A 3-D view of the Delta robot 
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Fig. 2 Schematic diagram of a limb in the Delta robot 
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with descriptions of the following scalars, vectors and matrices: 

,  ,  L l c ： the nominal lengths of the proximal link, distal link and 1, 2.i iC C  ( 1, 2.i iA A ), and 
iL , 

,j il , 

, ,( )c i a ic c  are their  errors;  

ˆ
il : the nominal unit vector of the distal links in the thi limb 

T

, , ,( )i x i y i z ia a aa : the nominal position vector of 
iA evaluated in  O  

T

, , ,( )i x i y i z ib b bb : the nominal position vector of 
iB evaluated in  O  

 0, 3, 0, 0, 0, 0,

π
Rot , π 2 2π( -1) 3 Rot ,

2
i i i i i iz i x

 
        

 
R R u v w : the nominal orientation matrix 

of  0

iB  ( 3

0 iA ) with respect to  O  ( O ) with  
0,iw being the unit vector of the 

0,iz axis 

 1, 0,=Rot ,i i iz R : the nominal orientation matrix of  1

0 iB with respect to  0

iB  with 
i  being the 

nominal angle of the R-joint, and 0, 1, 1, 1, 1,i i i i i
   R R u v w with 1,iu being the nominal unit vector of 

the proximal link in the thi limb 

ib (
ia ): the position error vector of 

iB  (
iA ) evaluated in  O  ( O ) , and 

T

, , ,( )i i x i y i z ie e e       e b a  

 
T

0, 0, 0, 0i i i   θ : the orientation error vector of  0

iB relative to its own nominal frame  

 
T

1, 0 0i i θ ,
i :  the encoder offset (the home error ) of the R-joint in the thi limb 

 
T

2, 2, 2, 0i i i   θ : the orientation error vector of  2

1 iC relative to  1

0 iB   

 
T

3, 3, 3, 0i i i   θ : the orientation error vector of  3

0 iA relative to its own nominal frame 

,j iε : the orientation error vector of the thj distal link in the thi limb 

T( )x y z      ε : the orientation error vector of  O  relative to  O  

Also, it is easy to prove that the following relationships hold 

0, 1, 0,sini i i i u u w , 0, 1, 0,cosi i i i  v u w , 0, 1, 1,i i i w u v                                        (2) 

Note that  2

1 iC  ( 3

0 iA ) is placed in such a way that the length error, , ,( )c i a ic c  , between centres of 

two S-joints are equally shared by each side. This arrangement allows addition and subtraction to be 

made between two loop closure vector equations associated with the ith limb in Eq.(1). Thus  
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          ε w = w v u v u l ε l                 (4) 
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03, 0, 3,i i i       

Then, taking dot product with ˆ
il on the both sides of Eq.(3) and (4), yields   
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    (5) 

Rewriting Eq.(5) in matrix form finally results in the linearized geometric error model of the Delta 

robot  

rr r r r    A r A ε B p                                                                (6) 

    A ε B p                                                                       (7) 

where 
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Note that rrA and A are non-singular, Eq.(6) and (7) can be rewritten as  

 1 1 1 r r

rr r rr r rr r r   

 

  
    

               

p p
r A B A A A B C C C p

p p                               (8) 

1

    

    ε A B p C p                                                          (9) 



Examination of Eqs.(8) and (9) shows that there are 18 geometric source errors, p , in total affecting 

the angular accuracy of the traveling plate, so this model is named the model 18; and there are 42 

geometric source errors,  rp  and p , affecting the positioning accuracy of the reference point, so the 

corresponding model is called the model 42. Obviously, p  should be eliminated or at least 

minimized in manufacturing and assembly process as ε  caused by p  is uncompensatable in nature. 

By assuming the traveling plate perfectly parallel to the base frame, the number of world coordinates 

can then be reduced to 3 Cartesian coordinates in terms of position of any point on the traveling plate. 

This simplification requires not only that the 0,iz , 2,iz  and 3,iz axes remain perfectly parallel to each 

other as remarked in [7] but also that the length discrepancies 
il and ic  vanish.  Consequently, Eq.(8) 

can be reduced to the model containing 24 source errors (known as the model 24) as follows  

1

rr r r

  r A B p                                                                   (10) 

3. Source Error Identification 

In this section we will develop two models for source error identification using the distance-based 

approach. The first model is developed using Eq.(10) and the second model is developed using Eq.(8). 

We will make an in-depth discussion on the source error identifiability of the second model.  

3.1   Identification model using distance measurements 

As shown in Fig. 3, the position vector of the reference point P  on the traveling plate with regard to 

the world frame   wO can be decomposed into two components, i.e. the position vector of the point 

relative to the base frame  O  and that of O  relative to  wO . Note that the distance between two  
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Fig. 3 The principle of the distance measurement 



positions of a same point is invariant with the frame chosen. This property allows the source errors to 

be identified using distance measurements as long as  O is specified by eliminating the rigid body 

motion of  O relative to  wO . Then, robot localization needs to be made according to the 

environment context. For this reason, we may assume that the following source errors vanish though 

there are many other possible choices.  

,1 0xe  , ,2 ,3 0y ye e    , ,1 ,2 ,3 0z z ze e e                                          (11) 

This treatment results in the model containing 18 source errors (known as the model 18) in the form 

of Eq.(10), and the model containing 36 source errors (known as the model 36) in the form of Eq.(8).  

Building upon the above assumption, we use two different positions iP  to jP  ( i j ) of the reference 

point P to form a measuring pair numbered by k as shown Fig. 3. Thus, the corresponding loop closure 

equation can be expressed as  

ˆ
k k j i  n r r                                                                      (12) 

where k and ˆkn  denote the magnitude and unit vector of i jPP , ( )i jr  denotes the position vector of iP  

( jP ). Taking the first-order approximation of Eq.(12), yields 

0 0 , ,

, , , , , ,

ˆ ˆ
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rr k rr j rr i r k r j r i
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
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 
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p
n n r r C C

p

C C C C C C

                                         (13) 

where 0k and 0
ˆ

kn  denote the nominal magnitude and unit vector of i jPP .  Then, taking dot product 

with 0
ˆ

kn on both sides of Eq.(13), gives  

T

0 , , , ,
ˆ r r

k k rr k r k r k k 

 


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p p
n C C h h

p p
, 1,2, ,k K                      (14) 

Hence, the matrix form of Eq.(14) for the model 18 and the model 36 can be expressed respectively as  

r r  ρ H p                                                                     (15) 

  r
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p
ρ H H H p
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3.2   Identifiability analysis 

Having two error models given in Eq.(15) and (16) to hand,  the source error identifiability will be 

investigated. For the model 18, it is easy to prove that rp is identifiable if rank( ) 18r H . This 

condition can be fulfilled by letting the traveling plate undergo all controllable poses and the number of 

distance measurements of a single point on the traveling plate satisfies 18K  . Thus, the linear least 

square estimation gives 

r r

  p H ρ                                                              (17) 

Particularly, assume the positioning errors of the reference point P is merely caused by the encoder 

offsets, rp is identifiable if 3K   provided that the selected poses, e.g. 1r , 2r  and 3r .are not co-linear.  

   For the model 36, however, the row-echelon form of H  shows that rank( ) 32H , even if the 

travelling plate undergoes all controllable configurations and the number of distance measurements of 

three non-coplanar points on the travelling plate satisfies 36K  . This means that there are four source 

errors in p  that cannot be identified by the distance-based approach. In order to gain a deep insight 

into this interesting phenomenon, examine any row vector  r h h h   of  H  by omitting its 

subscript k for the time being 

,1 ,2 ,3 r r r r
   h h h h , ,1 ,2 ,3       h h h h                                    (18) 

where the entries , ,2 , ,6, ,r i r ih h in ,r ih correspond to 1, 0, 0,,  ,  , ,i i i i iL L L L l       in
,r ip  ( 1,2,3i  ), 

the entries , ,1 , ,6, ,i ih h  in ,r ih correspond to 03, 03, 2, 2,,  ,  ,  ,  , i i i i i il c c c          in ,ip  

( 1,2,3i  ), and the entries ,1,1 ,2,1 ,3,1,  ,  r r rh h h  correspond to ,1ye , ,2xe , ,3xe , respectively. Again, the 

row-echelon form of H  shows that four out of nine entries , ,3 , ,4 , ,5, ,i i ih h h    ( 1,2,3i  ), i.e.,  two out of 

three 
, ,3ih , one out of three 

, ,4ih , and one out of three 
, ,5ih  ( 1,2,3i  ), are linearly dependent of 

, ,2r ih , 

, ,4r ih and 
, ,5r ih . For the specified base frame, these linear relationships can be formulated by 
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where e b a  with b and a  being radii of the nominal equilateral triangles 
1 2 3B B B and 

1 2 3A A A . In 

this sense,  h should be degenerated by removing the entries corresponding to
03,2 , 

03,3 , 
03,3 , 

2,3  for instance, reducing the model 36 to the model 32. Hence, by assuming again that the traveling 

plate undergoes all controllable configurations and the number of distance measurements of at least 

two points on the traveling plate satisfies 32K  , the remaining source errors can be identified using 

the linear last square method  

  p H ρ                                                                 (20) 

It should be pointed out that although the source errors affecting the angular pose accuracy cannot fully 

be identified by the distance-based method, the positioning errors induced by the realistic 

unidentifiable source errors can partially be compensated because these errors are shared amongst the 

identifiable ones via the least square algorithm. 

3.3 Optimal pose selection  

In the implementation of kinematic calibration of the Delta robot, choosing a set of optimal poses is 

an important issue to ensure the measurement efficiency and the identification accuracy. The 

straightforward and reasonable way to do so is to choose n  evenly spaced poses on each of two layers 

of the cylindrical workspace boundary as shown in Fig.4.  

 

 

This is because: (1) the necessary condition for the full set of source errors to be identifiable requires 

the travelling plate to experience all controllable degrees of freedom of the system (i.e. three 

translations in the case) [19], and (2) the optimal poses tend to converge to the workspace boundary [20] 

where the highest signal/noise ratio can be achieved. Together with the reference pose
0P  at the centre 

of the cylindrical workspace, these considerations result in 2 1n poses, leading to 

2

2 1 (2 1)nK C n n    distance measurements generated by the combinations of all the possible pairs of 

these poses. Since the condition number  of the identification matrix H  monotonously decreases 

Fig.4 Measurement pose selection 
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with the increase of the number of measurement poses n [21], the problem of the pose optimization can 

then be resolved by minimizing n subject to a given threshold 
0 defined as the relative differentiation 

of  ( )n n  H vs. n , i.e.  

1

0

min

s.t.  100%
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n n
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                                               (21) 

4. Error Compensation  

4.1 Linear compensator design     

     Once the source errors have been estimated by the method given in Section 3, a linear error 

compensator can be designed. For the model 32, this can be done by adding an additional term m mB q  

to the right hand of Eq.(8) such that  

1

rr r r r m m   

      A r B p A A B p B q                                           (22) 
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where ,m i is regarded as the encoder offset compensator of the actuated R-joint in the thi limb.  It is 

easy to see that the necessary condition to force the term 
1

r r r m m   

    B p A A B p B q to be a zero 

vector is that  r 0  since rrA is non-singular. This consideration leads to the development of a linear 

error compensator that can be represented by  

 1 1

m m r r r   

      q B B p A A B p                                              (23) 

It can also be seen from Eq.(22) that mq is a function of the source errors, nominal dimensions and 

configuration of the robot, and it can be generated with ease for real-time error compensation since the 

explicit expression of 
1




A can be achieved by  

 
 

T1

2 3 3 1 1 2T

1 2 3

1


    


A n n n n n n
n n n

, 0,
ˆ

i i i n w l                             (24) 

For the model 18, mq can simply be formulated by  

1

m m r r

   q B B p                                                              (25) 

 



 

4.2 Error compensation strategy    

   Considering that the positioning errors caused by the encoder offsets (at 1-5 millimetre level) are 

much larger than those  caused by the other source errors (at 1/5 millimetre level or less), the parameter 

identification and error compensation can be implemented by two steps to reduce the cut-off errors 

arising from the linearization.   

Step 1: Encoder offset compensation 

  Assume that the positioning errors of the reference point P is merely caused by the encoder offsets.  

Then, Eq.(8) can be degenerated into the form  

1

rr m 

  r A B p , L  p θ ,  
T

1 2 3      θ                             (26) 

Hence, equipped with at least three distance measurements to hand, the encoder offsets can roughly be 

identified using Eq.(17) and thereby the positioning error of P can roughly be compensated in an 

iterative manner until the estimated source errors converge to a specified threshold.      

Step 2: Fine (full) error compensation . 

  On the basis of Step 1, fine identification and error compensation can be carried out by taking into 

account full/partial source errors using either the model 32 or the model 18, depending upon the 

orientation accuracy of the traveling plate. 

5.  Experimental Verification 

   In order to verify the effectiveness of the calibration method proposed in this article, experiments are 

carried out on a prototype Delta robot having the repeatability of 0.05 mm over its cylindrical task 

workspace.  The nominal geometric parameters of the Delta robot and the dimensions of its cylindrical 

task workspace are given in Table 1, where H denotes the distance from the x-y plane to the top layer 

of the workspace, and R  and h  denote the radius and height of the workspace as shown in Fig. 2. 

   Since the distance errors before encoder offset calibration may be beyond the measuring range of a 

double ball bar, a LEICA AT901-LR laser tracker with the maximum observed deviation of 0.005 mm 

is employed to measure the coordinates of the reference point P (i.e. the centre of sphere reflector) at 

different configurations, and each measurement is repeated three times, and only the mean values are 

retained. Having built the experiment set-up shown in Fig. 5, the procedures for the rough (encoder 

offset) and fine calibrations are addressed in what follows.  



 

 

5.1 Rough (encoder offset) calibration  

   In the rough calibration, assume that the point P undergoes 3n   evenly spaced poses along the 

boundary of middle layer of the workspace since p is identifiable if 3K  provided that the three 

selected poses are not co-linear. Given the threshold 0 1%  , it is easy to see that the minimum 

number of the measurement poses is 5n  as shown in Fig.6.  Therefore, evaluated in the virtual frame 

 mO  established by the laser tracker, the realistic coordinates of P at the above poses are measured, 

resulting in 
2

6 15K C   distance errors generated by the coordinate measurements. Consequently, the 

encoder offsets, p , can be roughly identified using Eq.(17) and the positioning errors of P caused by 

the estimated p  can be compensated using Eq.(25) . In the experiment, we need to run the 

calibration procedure twice due to the relatively large encoder offsets until they converge to 

1 0.911  ， 2 1.098  and 3 1.441  . It can be seen from Table 2 that the maximum distance 

error denoted by   and the maximum volumetric error denoted by v  of the kP  ( 1,2, ,5k  ) 

relative to 0P can dramatically be reduced from 4.181mm and  4.962 mm to 0.187 mm and  1.047 mm, 

respectively, via the encoder offset calibration.   

 

Fig. 5 The experiment set-up 

Laser tracker 

Reflector 

 

(a) 

(b) 

Table 1  Nominal geometric parameters of the prototype Delta robot     (unit：mm) 

b  a  L  l  c  H  R  h  

200 51 375 950 100 728 500 250 

 



 

         

5.2 Fine calibration  

In the fine calibration, the model 18 and model 32 are used respectively to investigate their 

difference in terms of the end results of calibration. According to Section 3.3, assume that the point P 

undergoes 4n   evenly spaced poses along the boundary of top and bottom layers of the workspace. 

Given 0 1%   again, it can be seen from Fig.7 that the minimum number of the measurement poses is 

7n  for the model 18 and 9n   for the model 32. Therefore, for the model 18, 
2

15 105K C   

distance errors can be generated using the coordinate measurements of P, i.e. the reflector centre as 

shown in Fig. 5(a), at 2 1 15n   poses to identify rp .   In the experiment, we only need to run the 

calibration procedure once for identifying rp because sufficient accuracy can be achieved thanks to 

the encoder offset calibration ahead. As a result, rp are identified as represented in Table 3.  The 

difference in calibration procedure using the model 32 from that using the model 18 lies in that two sets 

of distance errors are needed for identifying both rp and p . The first set corresponds to the 

reference point shown in Fig. 5(a), and the second set relates the reference point shown in Fig. 5(b) 

because the orientation errors of the travelling plate about the x and y axes can be detected by this 

arrangement. Thus, for the model 32, 
2

192 342K C   distance errors can be generated using the 

Fig.7 The variations of   vs. n in the find calibration 
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Fig.6 The variations of   vs. n in the rough calibration 
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Table 2 Distance and volumetric errors before 

 and after encoder offset compensation    (unit: mm) 

Points 1P  2P  3P  4P  5P  

Before 
  -3.405 -3.859 -2.863 -4.181 -2.663 

v  3.769 3.888 3.163 4.962 2.975 

After 
  0.025 -0.061 0.008 0.187 -0.011 

v  0.309 1.015 0.961 0.859 1.047 

 



coordinate measurements of the P at 2 1 19n   poses, allowing p to be identified using Eq.(20) as 

represented in Table 4. 

 To evaluate robot accuracy after calibration, coordinate measurements on the circles of radii 250 mm 

and 500 mm in the top, middle and bottom layers are taken. This makes a total of 96 poses beside the 

home configuration. Each validation measurement is repeated three times, and the mean values are 

retained. Then, the distance and volumetric errors at all the poses relative to the home pose can be 

calculated. As represented in Table 5, by using the compensator given in Eq.(25) for the model 18, the 

maximum absolute distance error and the maximum volumetric error (after encoder offset calibration) 

are reduced from 0.682 mm and 1.303 mm to 0.167 mm and 0.386 mm; whereas by using the 

compensator given in Eq.(23) for the model 32, the corresponding errors are reduced to 0.134 mm and 

0.371 mm, respectively.  Given R= 500 mm in the middle layer of the workspace, Fig.8 shows the 

variations of the distance and volumetric errors vs. the swing angel   (see Fig.4) before and after fine 

calibration. It can be seen that the variations for the model 18 differ from those for the model 32, but 

the positioning accuracy can slightly be improved by the model 32. This implies that the source errors 

affecting the uncompensatable pose accuracy have been well suppressed in building that robot, these 

source errors thereby have little bearing on the end results of kinematic calibration.  

 

 

Table 4 Results of source error identification using the model 32    (unit：mm) 

 ,Δ x ie  ,Δ y ie  Δ iL θ  Δ iL  0,Δ iL α  0,Δ iL β  Δ il  

Limb 1 -- 0.160 1.107 0.919 -0.707 0.636 0.114 

Limb 2 -0.187 -- -0.112 0.110 -0.901 -0.524 0.125 

Limb 3 0.174 -- -0.941 0.122 0.872 0.497 0.193 

 Δ il  Δ ic  03,Δ ic α  03,Δ ic β  2,Δ ic α  2,Δ ic β   

Limb 1 0.048 -0.021 -0.175 0.267 0.057 -0.032  

Limb 2 0.052 0.014 -- -0.242 -0.017 -0.047  

Limb 3 0.039 -0.009 -- -- -- 0.061  

 

Table 3 Results of source error identification using the model 18    (unit：mm) 

 ,Δ x ie  ,Δ y ie  Δ iL θ  Δ iL  0,Δ iL α  0,Δ iL β  Δ il  

Limb 1 -- 0.114 0.965 0.112 -0.841 0.421 0.107 

Limb 2 -0.201 -- -0.034 0.101 -0.546 -0.764 0.157 

Limb 3 0.146 -- -0.578 0.098 0.759 0.432 0.302 

 



 

6. Conclusions 

   This paper investigates the kinematic calibration of Delta robot using distance based approach and 

the following conclusions are drawn: 

(1) We have developed two linear models for kinematic calibration of the Delta robot. The model 18 

can be used to identify the source errors affecting the positioning accuracy whereas the model 32 can 

be employed to identify a partial set of source errors affecting both the positioning and orientation 

errors of the travelling plate.   

(2) We have found that the errors identified by the model 18 are different from the same set identified 

by the model 32 due to the unmodelled errors. We have also found that although the source errors 

affecting the orientation accuracy of the travelling plate cannot fully be identified by the distance-based 

approach, the positioning errors induced by the realistic unidentifiable source errors can still partially 

be compensated because these errors are shared amongst the identifiable ones via the least square 

algorithm. 

(3) We strongly recommend the model 18 to be used in practice provided that the source errors 

affecting the uncompensatable (angular) pose accuracy can be eliminated or at least minimized via 

tolerance design, manufacturing as well as assembly processes.  
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Fig. 8 Distance and volumetric errors before and after the calibration across the middle layer in the workspace. 

(1: Before fine calibration; 2: Calibration using the model 18; 3: Calibration using the model 32) 
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Table 5 The maximum distance and volumetric errors over the task workspace before and after calibration 

 
A B 18C  32C  

  v    v    v    v  

Max. 5.704 6.361 0.682 1.303 0.167 0.386 0.134 0.371 

A—Before encoder offset calibration,  B—After encoder offset calibration,  18C —Model 18-based calibration, 32C —

Model 32-based calibration.   
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