280 research outputs found

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Design synthesis and miniaturization of multiband and reconfigurable microstrip antenna for future wireless applications

    Get PDF
    Tese de Doutoramento. Engenharia Electrónica e de Computadores - Telecomunicações. Faculdade de Engenharia. Universidade do Porto. 201

    Microwave Antennas for Energy Harvesting Applications

    Get PDF
    In the last few years, the demand for power has increased; therefore, the need for alternate energy sources has become essential. Sources of fossil fuels are finite, are costly, and causes environmental hazard. Sustainable, environmentally benign energy can be derived from nuclear fission or captured from ambient sources. Large-scale ambient energy is widely available and large-scale technologies are being developed to efficiently capture it. At the other end of the scale, there are small amounts of wasted energy that could be useful if captured. There are various types of external energy sources such as solar, thermal, wind, and RF energy. Energy has been harvested for different purposes in the last few recent years. Energy harvesting from inexhaustible sources with no adverse environmental effect can provide unlimited energy for harvesting in a way of powering an embedded system from the environment. It could be RF energy harvesting by using antennas that can be held on the car glass or building, or in any places. The abundant RF energy is harvested from surrounding sources. This chapter focuses on RF energy harvesting in which the abundant RF energy from surrounding sources, such as nearby mobile phones, wireless LANs (WLANs), Wi-Fi, FM/AM radio signals, and broadcast television signals or DTV, is captured by a receiving antenna and rectified into a usable DC voltage. A practical approach for RF energy harvesting design and management of the harvested and available energy for wireless sensor networks is to improve the energy efficiency and large accepted antenna gain. The emerging self-powered systems challenge and dictate the direction of research in energy harvesting (EH). There are a lot of applications of energy harvesting such as wireless weather stations, car tire pressure monitors, implantable medical devices, traffic alert signs, and mars rover. A lot of researches are done to create several designs of rectenna (antenna and rectifier) that meet various objectives for use in RF energy harvesting, whatever opaque or transparent. However, most of the designed antennas are opaque and prevent the sunlight to pass through, so it is hard to put it on the car glass or window. Thus, there should be a design for transparent antenna that allows the sunlight to pass through. Among various antennas, microstrip patch antennas are widely used because they are low profile, are lightweight, and have planar structure. Microstrip patch-structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a rectenna with harmonic rejection functionality, frequency, and polarization selectivity. Multiple frequency bands are tapped for energy harvesting, and this aspect of the implementation is one of the main focus points. The bands targeted for harvesting in this chapter will be those that are the most readily available to the general population. These include Wi-Fi hotspots, as well as cellular (900/850 MHz band), personal communications services (1800/1900 MHz band), and sources of 2.4 GHz and WiMAX (2.3/3.5 GHz) network transmitters. On the other hand, at high frequency, advances in nanotechnology have led to the development of semiconductor-based solar cells, nanoscale antennas for power harvesting applications, and integration of antennas into solar cells to design low-cost light-weight systems. The role of nanoantenna system is transforming thermal energy provided by the sun to electricity. Nanoantennas target the mid-infrared wavelengths where conventional photo voltaic cells are inefficient. However, the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago. Recently, it has invited a surge of interest, with different laboratories around the world working on various aspects of the technology. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Unlike conventional solar cells that harvest energy in visible light frequency range. Since the UV frequency range is much greater than visible light, we consider the quantum mechanical behavior of a driven particle in nanoscale antennas for power harvesting applications

    Design and Analysis of Fractal Monopole Antennas for Multiband Wireless Applications

    Get PDF
    In this report three antenna designs using fractal geometry have been proposed. Fractal is a concept which is being employed in patch antenna to have better characteristics than conventional microstrip antenna. In the first design, a Sierpinski fractal antenna is proposed for multiband wireless applications. It consists of three-stage Sierpinski fractal geometry as the radiating element. The proposed antenna has compact dimension of 75×89.5×1.5 mm3. The multiband characteristic for a return loss less than 10dB is achieved. The model is applied to predict the behavior of fractal antenna when the height of the antenna is changed. The proposed antenna is considered a good candidate for Multiband Wireless applications. In the second proposal, a Sierpinski Carpet fractal antenna is proposed for multiband wireless applications. It consists of two-stage Sierpinski Carpet fractal geometry as the radiating element. The proposed antenna has compact dimension of 59.06×47.16×1.6 mm3. The multiband characteristic for a return loss less than 10dB is achieved. The major advantage of Sierpinski Carpet antenna is, it exhibits high self-similarity and symmetry. In the third proposal, multiband Koch curve antenna with fractal concept is presented. It consists of two-stage Koch curve as the radiating element. The proposed antenna is a compact dimension of 88×88×1.6 mm3. The multiband characteristic for a return loss less than 10dB is achieved. The proposed design is appropriate for mobile communication systems. CST Microwave Studio Suite 2012 is used to simulate these antennas. All the proposed antennas are fabricated on FR4 substrate of relative permittivity of 4.4 and height 1.6mm has been used

    Composite right/left handed antennas for wireless lan applications

    Get PDF
    The term ‘metamaterial’ has become a buzzword in electromagnetics over the past decade. In recent years, advancement in this new scientific area has given birth to numerous discoveries and inventions based on the exotic properties exhibited by these materials. Some of the exotic properties like negative permittivity, negative permeability, and infinite propagation at a particular non-zero resonant frequency are shown by these artificial materials especially called as Composite Right Left Handed structures. Metamaterials gain these properties from their structural configuration rather than from their material constitution. The electromagnetic characteristics of metamaterials can be exploited to meet the ever increasing demand for lighter, compact, size reduced, multiband antennas. One of the most exciting applications of these CRLH transmission lines (TL) is the Zeroth Order Resonant Antennas. CRLH TL metamaterials when open or short ended produce standing waves and thus behave as resonant antennas. Miniaturization of antennas is possible through these structures as the resonant frequency is independent of the parameters of the antenna aperture. Due to their infinite wavelength propagation property; reduced size, quarter wavelength antennas can be designed

    Fractal Antenna Applications

    Get PDF
    Non

    Microstrip Patch Antenna for GPS Application

    Get PDF
    The study and the design of rectangular microstrip patch antenna for multiband applications are presented in this paper. They can be simulated on antenna design software’s such as High Frequency Simulation Software (HFSS), Advanced Design System Momentum (ADS) and Agilent Vector Network Analyzer (E8361A) where different feeding techniques have been deployed to get the desired results. Two rectangular microstrip patch antennas of frequencies 1.5 GHz and 2.4 GHz are designed and simulated on HFSS

    Microstrip Patch Antenna for GPS Application

    Get PDF
    The study and the design of rectangular microstrip patch antenna for multiband applications are presented in this paper. They can be simulated on antenna design software’s such as High Frequency Simulation Software (HFSS), Advanced Design System Momentum (ADS) and Agilent Vector Network Analyzer (E8361A) where different feeding techniques have been deployed to get the desired results. Two rectangular microstrip patch antennas of frequencies 1.5 GHz and 2.4 GHz are designed and simulated on HFSS
    corecore