27,297 research outputs found

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Energy Harvesting and Management for Wireless Autonomous Sensors

    No full text
    Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols

    The CLARITY modular ambient health and wellness measurement platform

    Get PDF
    Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture

    A Structured Hardware/Software Architecture for Embedded Sensor Nodes

    No full text
    Owing to the limited requirement for sensor processing in early networked sensor nodes, embedded software was generally built around the communication stack. Modern sensor nodes have evolved to contain significant on-board functionality in addition to communications, including sensor processing, energy management, actuation and locationing. The embedded software for this functionality, however, is often implemented in the application layer of the communications stack, resulting in an unstructured, top-heavy and complex stack. In this paper, we propose an embedded system architecture to formally specify multiple interfaces on a sensor node. This architecture differs from existing solutions by providing a sensor node with multiple stacks (each stack implements a separate node function), all linked by a shared application layer. This establishes a structured platform for the formal design, specification and implementation of modern sensor and wireless sensor nodes. We describe a practical prototype of an intelligent sensing, energy-aware, sensor node that has been developed using this architecture, implementing stacks for communications, sensing and energy management. The structure and operation of the intelligent sensing and energy management stacks are described in detail. The proposed architecture promotes structured and modular design, allowing for efficient code reuse and being suitable for future generations of sensor nodes featuring interchangeable components

    Camera Integration to Wireless Sensor Node

    Get PDF
    A wireless sensor node with a vision sensing and image processing capabilities has a great utilisation potential in many industrial, healthcare and military applications. University of Vaasa has recently been developing a wireless sensor node called UWASA Node. It is a generic, modular and stackable wireless sensor platform. This work aims to integrate a camera module to UWASA Node and focuses on hardware design, software development, and easy image processing methods. Since the design is intended to prove the feasibility of the image processing in UWASA Node, a test board has been developed and integrated to a development kit which reflects the same behaviour as the sensor node platform. The new hardware and software has been designed and tested to verify vision sensor adaptation, image processing, and feature extraction in wireless sensor nodes. Due to the resource limited nature of the wireless sensor nodes, some new methods are introduced to achieve fast and efficient image processing. In summary, the hardware structure of the camera module and its working principles are designed explained, data handling and image processing methods are discussed, finally the achieved results are presented.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Development of a long range wireless sensor platform

    Get PDF
    Wireless Sensor Networks have emerged as an exciting field in recent years. There have been numerous studies on how to improve and standardise different aspects of wireless sensor networks. This paper aims to develop a wireless sensor network suitable for environmental monitoring applications. More specifically this paper aims to address the limited communication range of the existing wireless sensor technology. In order to achieve the desired objectives, we have initially developed a hardware platform and then integrated the hardware with a long range RF radio module to achieve the goals. The system is further enhanced with mesh networking capabilities to increase the communication range and overall reliability of the network. The developed wireless sensor network is composed of sensors, microcontroller, RF radio module, antenna and expansion connectors for additional sensors and peripheral devices. The developed wireless sensor network has been rigorously tested under three different scenarios to ensure the correct operation of the mesh network, communication range and effect of environmental obstacles such as vegetation and trees. The developed wireless sensor network has been proven to be a suitable platform for environmental monitoring applications and the modular design has made it very easy to optimise it for different applications

    Quality of service in heterogeneous wireless sensor networks

    Get PDF

    Prototype Design and Analysis of Wireless Vibration Sensor

    Get PDF
    Since the technology era began, sensor systems have been frequently updated. In order to keep the sensor up to date, components are designed using a modular approach that can be updated with the latest technology. The objective of this paper is to illustrate the design of a vibration sensor that integrates an enhanced Mechanism for Hardware Health Monitoring (MHHM). The design achieves the digitizing, wireless communication and modularity aspects of this system as required. The selection of appropriate components is also presented in the paper as a guide
    • …
    corecore