
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATION ENGINEERING

Caner Cuhac

CAMERA INTEGRATION TO WIRELESS SENSOR NODE

Master´s thesis for the degree of Master of Science in Technology submitted for

inspection, Vaasa, 24 May, 2011.

Supervisor Mohammed Elmusrati

Instructor Reino Virrankoski

2

TABLE OF CONTENTS

ABBREVATIONS 5

ABSTRACT 6

1. INTRODUCTION 7

2. THEORY AND BACKGROUND INFORMATION 9

2.1. Bayer filter 9

2.2. Single server exponential queuing system 10

2.3. Two dimensional discrete convolution 12

2.4. Gradient and the Sobel operator 13

2.5. Babylonian square root method 15

3. WIRELESS SENSOR NETWORKS AND IMAGE PROCESSING 16

3.1. Wireless sensor networks with vision sensors 16

3.2. The UWASA Node 17

3.3. Image processing in wireless sensor nodes 18

4. HARDWARE 22

4.1. Development kit 22

4.2. Camera board 23

4.3. Specifications of the vision sensor 26

4.3.1. Resolution 27

4.3.2. SCCB interface 29

4.3.3. Frame rate 30

4.3.4. Data format 31

4.3.5. Timing 31

4.3.6. Auto–adjustment options 32

3

4.3.7. Camera connection to the test board 33

4.4. Test board 34

4.4.1. FIFO concept 35

4.4.2. Advantage of using FIFO 36

4.4.3. FIFO chip 37

4.4.4. SRAM chip 39

4.4.5. DC to DC converter 41

4.4.6. Octal bus transceiver 42

4.4.7. Logic components 43

4.4.8. Passive components 44

5. SOFTWARE 46

5.1. Overview of the software 46

5.2. Camera settings 47

5.3. Creating a bmp file 48

5.4. Reading from the FIFO 49

5.4.1. Determining the first pixel of the frame 50

5.4.2. Reading and placing pixels in correct order to form a frame 50

5.5. Processing the image 52

5.5.1. Transformation to monochrome 52

5.5.2. Gradient calculation 53

5.5.3. Edge detection 55

6. EXPERIMENTS AND RESULTS 56

6.1. Captured image 56

6.2. Monochrome transformed image 56

6.3. Gradient calculated image 58

6.4. Edge detected image 59

6.5. Data compression on edge detected images 60

6.6. Usage of EMC and SRAM 62

4

7. CONCLUSIONS 65

REFERENCES 67

APPENDICES 69

APPENDIX 1. Schematic design of the hardware blocks on the board. 69

APPENDIX 2. Schematic design of the 5 V regulator. 70

APPENDIX 3. Schematic design of the camera bus. 71

APPENDIX 4. Schematic design of the FIFO. 72

APPENDIX 5. Schematic design of the SRAM. 73

APPENDIX 6. Schematic design of the switching circuit. 74

APPENDIX 7. Schematic design of external pin processor connections. 75

APPENDIX 8. PCB top layer. 76

APPENDIX 9. PCB bottom layer. 77

APPENDIX 10. Top and bottom views of the test board. 78

5

ABBREVATIONS

API Application Programming Interface
3D Three Dimensional
bmp Bitmap Image File
DC Direct Current
DRAM Dynamic Random Access Memory
EMC External Memory Controller
FIFO First In First Out
fps Frames per Second
GND Ground
GPIO General Purpose Input Output
I2C Inter Integrated Circuit
IDC Insulation-displacement connector
JTAG Joint Test Action Group
MSB Most Significant Bit
PC Personal Computer
PCB Printed Circuit Board
PWM Pulse Width Modulated
RGB Red Green Blue
RS232 Recommended Standard 232
SCCB Serial Camera Control Bus
SPI Serial Peripheral Interface Bus
SRAM Static Random Access Memory
USB Universal Serial Bus
VDD Positive Supply Voltage
WSAN Wireless Sensor Actuator Network
WSN Wireless Sensor Network

6

UNIVERSITY OF VAASA

Faculty of technology

Author: Caner Çuhac

Topic of the Thesis: Camera Integration to Wireless Sensor
Node

Supervisor: Mohammed Elmusrati

Instructor: Reino Virrankoski

Degree: Master of Science in Technology

Department: Department of Computer Science

Degree Programme: Degree Programme in Information
Technology

Major of Subject: Telecommunications Engineering

Year of Entering the University: 2009

Year of Completing the Master's Thesis: 2011 Pages: 78

ABSTRACT
A wireless sensor node with a vision sensing and image processing capabilities has a
great utilisation potential in many industrial, healthcare and military applications.
University of Vaasa has recently been developing a wireless sensor node called
UWASA Node. It is a generic, modular and stackable wireless sensor platform. This
work aims to integrate a camera module to UWASA Node and focuses on hardware
design, software development, and easy image processing methods. Since the design is
intended to prove the feasibility of the image processing in UWASA Node, a test board
has been developed and integrated to a development kit which reflects the same
behaviour as the sensor node platform. The new hardware and software has been
designed and tested to verify vision sensor adaptation, image processing, and feature
extraction in wireless sensor nodes. Due to the resource limited nature of the wireless
sensor nodes, some new methods are introduced to achieve fast and efficient image
processing. In summary, the hardware structure of the camera module and its working
principles are designed explained, data handling and image processing methods are
discussed, finally the achieved results are presented.

KEYWORDS: Camera, Image Processing, Wireless Sensor

7

1. INTRODUCTION

Wireless sensor nodes have a very wide application range in industrial automation,

healthcare, and military applications thus it is a very promising technology with a great

utilisation potential. A wireless sensor node with vision acquisition and processing

capability introduces new wide application range for wireless networks. In automation

systems decision making based on visual information greatly enhances the functionality

because machine vision opens a wide door for information gathering about the

environment of the network.

University of Vaasa has recently been developing a wireless sensor node called UWASA

Node. It is a generic, modular and stackable wireless sensor platform (Yiğitler,

Virrankoski & Elmusrati: 1). This work introduces a slave camera module integration to

UWASA Node. Camera module is basically composed of a camera board and memory

devices. The adapted camera board belongs to an already existing embedded vision

system CMUcam3.

In order to adapt the camera board and the sensor node, a new hardware interface has

been designed. The new interface basically contains a voltage converter, some logic

components and memory devices. A depiction of the proposed hardware architecture is

given in Figure 1.

8

Figure 1. Hardware architecture of the vision sensor equipped UWASA Node.

In order to prove the feasibility of this system, the new hardware interface has been

produced as a prototype PCB, that is, test board. Similarly, a development kit which

reflects all the properties and peripherals of the UWASA Node has been used for

prototyping purposes. The new designed test board gets the image data from the vision

sensor, properly stores it, then the processor handles the rest.

Apart from designing a system for image storage and acquisition, image processing

capabilities are also tested in this work. After capturing the original image, monochrome

transformation, convolution, image gradient calculation, and edge detection algorithms

have been verified.

Due to the limited computation power of the wireless sensor nodes, some new methods

based on existing methods are introduced. For example in a part of the algorithm, an

image processing operator somehow has to calculate a square root of a big number,

instead of calculating the precise number and complex mathematical operations, an

iterative method has been chosen for easy and fast computation.

Finally, the feasibility of image processing inside the wireless sensor node has been

verified and the results are presented.

Camera
Board

New
Hardware
Interface

UWASA
Node

Camera
Module

9

2. THEORY AND BACKGROUND INFORMATION

This section provides necessary background information related to the concepts and

solutions used in the work.

2.1. Bayer filter

A photosensor is a semiconductor device that regulates its output regarding to the light

intensity that falls onto its surface. A standard photosensor can not detect a specific

colour sharply because the ions on its surface gets excited by a wider light range.

Bayer filter distributes the primary colours of the RGB colour space onto different

adjacent photosensors. This allows reception of those primary colours in a form of two

dimensional array. Elements of this two dimensional array in Bayer filter are oriented

regarding to Figure 2.

Figure 2. Bayer filter (Wikipedia).

In front of each photosensor lies a colour filter that lets only specific wavelength to fall

onto the desired array element. Collection of the information from each semiconductor

photosensor in a matrix forms the RGB image.

As can be noticed, the number of green pixels are twice of those red or blue pixels. The

10

reason for that is the human eye is more sensitive to green colour than red or blue

colours. Using those primary colours it is possible to represent any others.

2.2. Single server exponential queuing system

For a single server queuing system in which the arrivals are Poisson distributed random

process with an intensity parameter λ, let λ be the unit arrival rate. In that case the mean

time between two arrivals is 1/λ. Each arriving unit enters the service if the queue is

empty, and it has to join to the end of the queue if there is any unit in the system. When

the service is complete, the unit that has been serviced leaves the system and the next

unit in the queue enters the service. If the service rate here is represented by μ, then the

mean service time is 1/μ (Sheldon 2010: 502–504).

Assuming an infinite queue, let Pn, for n = 0, 1, 2, ... be the probability that an arriving

unit finds n units in the queue. Here the queue is defined to be in state n if there n units

waiting. If a new unit arrives the state of the queue will jump from n to n+1. It is clear

that the rate at which the queue enters state n is equal to the rate that it leaves state n.

Hence the equality for the start of the queue can be written as:

λP0 = μ P1 (1)

This equation means that state 0 can increase by an arrival, and state 1 can decrease by a

service. The queue can leave the state either by an arrival or by a service completed.

Thus the rate at which the queue changes its state is λ+μ. Here the proportion of the

time that the process is in state 1 is equal to P1 so the rate at which the queue leaves

state 1 is equal to P1(λ+μ). On the other hand, a state can either be entered by an arrival

or by a departure, that is, state 1 can be entered from state 0 or from state 2. Formally

this rate can be expressed as λP0 + μP2. Since the rate the queue leaves state 1 is equal to

the rate that it is entered from 0th or 2nd state:

P1(λ+μ) = λ P0 +μ P2 (2)

11

Then the equations for this queuing system are:

λ P0 = μ P1 , if n = 0
(λ +μ)Pn = λ Pn−1 + μ Pn+1 , if n ≥ 1 (3)

Those equations are called balance equations. Equation 3 can be expressed as:

P1 = λ
μ P0 , n = 0

Pn+1 = λ
μ Pn + (Pn − λ

μ Pn−1) , n ≥ 1
(4)

Solving those equations in terms of P0:

P0 = P0 (5)

P1 = λ
μ P0 (6)

P2 = λ
μ P1+(P1−

λ
μ P0) = λ

μ P1 = (λμ)
2

P0 (7)

P3 = λ
μ P2+(P2−

λ
μ P1) = λ

μ P2 = (λμ)
3

P0 (8)

Pn+1 = λ
μ Pn+(Pn−

λ
μ Pn−1) = λ

μ Pn=(λμ)
n+1

P0 (9)

Using the fact that the sum of those probabilities equals to 1:

∑
n=0

∞

Pn = 1 =∑
n=0

∞

(λμ)
n

P0 =
P0

1−λ /μ
(10)

Hence,

12

P0 = 1− λ
μ , n = 0

Pn = (λμ)
n

(1−λ
μ) , n ≥ 1

(11)

As it is stated before, λ is the unit arrival rate. For this hardware design, λ can be related

with data arrival rate from the camera. In other words, the data output rate of the

camera. Similarly the service rate μ can be related with the data handling rate of the

processor. In other words, data input rate of the processor.

These equations are very important for embedded systems because they prove that the

destination must handle the data faster than the source can output. If the processor

would not have the capacity to handle the data faster than the camera outputs, λ would

be greater than μ and that would lead the above equation to be a negative probability

which is impossible. Theoretically this situation indicates that the queue reaches to

infinity. In practice that would cause data loss.

Lastly, in a system where μ is greater than λ, the queue length is given by:

L =∑
n=0

∞

n Pn (12)

2.3. Two dimensional discrete convolution

Convolution in image processing is a two dimensional discrete operation applied

usually for image transformations. The operands of the convolution are the convolution

kernel and the concerned image. Convolution kernel is an array that determines what the

convolution operation specifically does over the image. In most cases it is a fixed sized

two dimensional array with an anchor point which is typically located in the centre of

the array. A three by three convolution kernel is depicted in Figure 3 below.

13

Figure 3. A convolution kernel. The anchor point is usually located in the centre of the
array.

The result of the convolution for a certain pixel location is computed by first placing the

anchor point of the kernel on a pixel while the rest of the values around correspond to

the overlapping pixels. Each element of the kernel is then multiplied with its matching

pixel and the results are added together. This gives the convolution value at that point.

Convolution operation is repeated for every pixel by sweeping the kernel over the entire

image (Bradski & Kaehler 2008: 145).

If the image is represented by A(x, y) and the kernel by K(i, j). Assuming that the

anchor point is located at (a, b) of the kernel coordinates, the convolution C(x, y) can be

written as:

C (x , y)= ∑
i=0

N −1

∑
j=0

M−1

A(x+i−a , y+ j−b) K (i , j) (13)

Where M and N represents the horizontal and vertical sizes of the kernel respectively.

Since for each pixel, the number of multiplications is equal to the kernel size, chosen

kernel dimensions directly effects the required computational power. In advanced image

processing library APIs, these operations are optimised.

2.4. Gradient and the Sobel operator

Sobel operator is a discrete differential operator that computes an approximation to the

first derivative of the image at given location. It uses two dimensional convolution and

some mathematical operations to compute the result.

-1

-1

-1

-1

5

2

2

2

2

14

The output of the Sobel operator is the vectorial sum of the horizontal and vertical

gradient vectors at the given point. The values of the horizontal and vertical gradient

vectors here are the calculated respective to the image intensity, that is, monochrome

image.

According to (Kanopoulos, Vasanthavada & Baker: 358–359) Sobel operator uses two

convolution kernels, one for horizontal derivation and another for vertical derivation.

Both arrays are convolved with the original image to calculate the approximation to the

derivations. If the image part that lays under the convolution kernels is represented with

the matrix A, the horizontal gradient value Gx and the vertical gradient value Gy at that

point are:

G x = [−1 0 +1
−2 0 +2
−1 0 +1]∗ A and G y = [−1 −2 −1

0 0 0
+1 +2 +1]∗ A (14)

where * denotes the convolution operation. Since the calculated gradient values are the

lengths of two orthogonal vectors, the magnitude of the gradient can be calculated by:

G = √ G x
2
+G y

2 (15)

and the angle of the gradient vector is:

θ = arctan (G y

G x
) (16)

The disadvantage of the Sobel operator is, it calculates rather inaccurate image gradient

approximations. The reason of this handicap is the usage of integer values and the

kernel size which is limited to 3x3. On the other hand, for many applications it provides

satisfactory results in practice.

15

2.5. Babylonian square root method

Assuming that there is a positive number S that the square root of S is unknown,

according to (Fowler & Robson: 367–369) Babylonian Square Root method

approximates to the square root of S by sequential iterations with simple operations. In

order to start iteration, an initial starting value x0 should be chosen and placed in the

equation. Here x0 is a positive real valued initial number that will approach to the square

root with each iteration. The better estimation approximates to the result faster and more

accurate. Using this technique square root of S is calculated by:

x0 ≈ √S (17)

xn+1 =
1
2 (xn+

S
xn

) (18)

√S = lim
n→∞

xn (19)

where n is the number of iterations.

16

3. WIRELESS SENSOR NETWORKS AND IMAGE PROCESSING

This chapter covers wireless sensor networks, importance of vision sensors for those

networks, hardware structure of the UWASA Node, image processing and feature

extraction concepts.

3.1. Wireless sensor networks with vision sensors

Wireless sensor networks are formed of multiple wireless sensor nodes communicating

with each other. WSNs offer ideal solutions to many application needs in industrial,

military, and healthcare areas. These applications are mainly based on sensation,

actuation, communication and network integration.

WSANs are formed of low cost, low power, short distance and multifunctional sensor

nodes. Usage of WSANs in automation systems allows replacement of the cables. This

reduces the implementation cost and maintenance efforts of the networks. Compared to

wired systems, WSANs also come with the advantage of easier and faster deployment,

reconfiguration and expansion capabilities, and realisability of applications which are

impossible to carry out by using cabled systems. Cost effective replacement of wired

systems yields deployment of large number of measurement points, development of

self–organised, collaborating and self–healing systems (Çuhac, Yiğitler, Virrankoski &

Elmusrati: 1).

Wireless sensor and actuator networks need to retrieve information about the current

situation of the environment in order to change the state of the physical world.

Environment here can be defined as objects and their properties that are surrounding the

network. An important way of having information about the current state of the

environment is to obtain visual information retrieved by vision sensors which allow

determination of various object properties such as quantity, size, speed, colour, distance

and so on. Thus, wireless sensor nodes which are equipped with vision sensors are

essential for various applications.

17

Due to the power limitation of the wireless sensor nodes, vision sensor equipped

wireless sensor nodes focus on the acquisition and transmission of the image directly to

a central computer in order to maintain low power operation. Since the transmission

bandwidth and computation power are quite limited in wireless sensor nodes, they either

perform very basic operations on visual data like line tracking or they perform

computations with low frame rates (Çuhac 2010: 1).

3.2. The UWASA Node

The UWASA Node is a wireless sensor node designed to realise such a platform that

provides fast adaptation and development of various wireless automation applications.

This generic platform is achieved by stacking rather small simple slave modules on the

main module of the node. The UWASA Node has a modular and stackable hardware

architecture represented in Figure 4 (Yiğitler 2010a: 2–4).

Figure 4. Hardware model of UWASA Node.

The node has two essential modules which are called the Power Module and the Main

Module. They provide the fundamental properties and capabilities what makes it a

generic wireless sensor node. Those properties and capabilities are wireless

communication interface, support for many peripheral interfaces, basic processing and

memory, power management and distribution interfaces.

Power Module

Slave Module 1

Main Module

Slave Module N

Node Stack

18

Figure 5. Main module of the UWASA Node. Slave modules can be stacked onto white
connectors.

One or more simple slave modules can be added to the hardware stack and they are

application dependent custom designs. Signalling and power supply are transferred to

these slave modules via hardware stack connector regardless of type and number of the

slave modules.

The UWASA Node is designed to support from low power applications like relaying the

signal as simple transceiver up to applications that require high processing power and

complicated interfacing. The node can either be used without any slave module that

simply acts as a low power wireless transceiver or as a device that is equipped with

higher amount of resources and slave modules.

3.3. Image processing in wireless sensor nodes

Computers can't learn and reason the events like humans or animals are able to.

Therefore raw image data is rarely useful for computers to be able to perform tasks

based on visual information. In order to decide the next action to take based on visual

information, or do something specific to meet the application demands, image data

should be transformed to a level which represents useful information to the system. This

transformation is called image processing.

19

Formally, image processing is defined as a type of signal processing that takes an image

as input, and generates an output either as a form of another image or set of useful data

and parameters related to input image.

The low power nature of the wireless sensor nodes imposes the limitation to the

computation power. Since the images usually contain much larger data than most other

forms of information, image processing in wireless sensor nodes need to be limited up

to a reasonable level, as well as some easy computing methods may be implemented in

order to reduce computation efforts.

An efficient computation reduction is achieved by feature extraction. In some cases, the

input of the image processing system may contain very large data so it may be difficult

to process or transmit. In such situations the system can take the advantage of selecting

the useful data that represents same amount of information which is needed to compute

the output. Hence the input data firstly can be transformed to a reduced form, from

which the output can accurately be determined. This transformation of the input data is

called feature extraction.

Important point in feature extraction is the accuracy of the extracted data. Extracted

features must be collected very carefully so that it must still represent the relevant

information existing in the input data.

An example of a feature extraction which is applied in this work is given in Figure 6.

20

Figure 6. An example of a feature extraction that is applied in this work.

In this algorithm as soon as the data in RGB format is acquired, it is reduced to one

quarter sized monochrome format before being placed in the memory. As given in the

definition of the feature extraction above, the input data is reduced. Again, in definition

it is stated that after the feature extraction, desired results must be obtainable using

extracted features. An important point to mention here is that the edge detection is

performed over a monochrome image. Since the purpose is to perform edge detection,

monochrome image still represents almost the same information represented by the

RGB image. Therefore it is possible to compute edges, and that concludes all the criteria

of the feature extraction concept are verified.

The transmission part located in the end of Figure 6 is not performed in this work

because this work is a proof of in–node image processing thus the transmission is not

involved.

Another feature extraction would be easily performed in the last step. After computing

RGB Pixel
(4 Byte)

Monochrome
Pixel

(1 Byte)

Monochrome
Frame (N byte)

Edge Detected
Frame

Transmit only
Locations of

Edges

Mathematical
Operation

Frame
Construction

Mathematical
Operation

Compute Edge
Locations

RGB Pixel
(4 Byte)

Monochrome
Pixel

(1 Byte)

RGB Pixel
(4 Byte)

Monochrome
Pixel

(1 Byte)

21

the edge locations in the frame, it may often be easier to transmit only the coordinates of

the pixels that represent edges. Furthermore, if this would be a part of a continuous

image acquisition loop, transmitted data could only be the difference from the previous

image. By doing so, data transmission related to edge detection could be reduced to tiny

amounts while still advertising the results over the network.

22

4. HARDWARE

Three main hardware blocks of this design are a development kit with an ARM

processor, a camera board, a test board.

The camera board is a PCB that contains a vision sensor and a connector. The vision

sensor located on the camera board acquires the image data and delivers it over the pins

located on the connector. The test board acts as an interface between the camera board

and the processor. This chapter describes the structures of the designed hardware blocks,

gives an overview of hardware blocks' functionalities and capabilities, and explains how

they are related to each other.

4.1. Development kit

In this work Olimex LPC–2378STK development board is used as a representation of

UWASA Node since they both have the same microcontroller. This work is a proof of

concept, therefore instead of producing a complete slave module for UWASA Node, the

external connections of the development board is used to communicate with the

prototype test board in order to ease the hardware design and production. Development

board contains many peripheral interfaces but in order to comply with the test

conditions, only the pins which have direct connection to the processor are used.

The development kit and the blocks which are used in this work are shown in Figure 7.

23

Figure 7. LPC–2378STK development board and used interfaces. (Olimex 2010)

Development kit is either powered by an external power source, JTAG interface or

USB. Like the UWASA Node, development kit is also programmed using JTAG

interface so it was used as a power source too. External Connections 1, 2 and U are the

connections which introduce the development kit as UWASA Node to the test board.

RS232 serial interface is not needed for the operation but it is used to display the

computed results on the computer screen.

In order to connect the computer to JTAG interface for programming and debugging,

USB to JTAG adapter is used. JTAG adapter collaborates with the software

development environment to allow stepwise code debugging on hardware.

4.2. Camera board

There are already developed camera platforms with low power microcontroller

JTAG
interface

RS232
Serial
Interface

External
Connection
U

External
Connections 1

and 2

24

interfaces. Though those devices are low power, the power consumption of the image

acquisition in wireless sensor networks is more or less same as the transmission power

(Culuricello 2006: 39). CMUcam3 is one of those platforms which has open software. It

provides basic vision capabilities to small embedded systems in the form of an

intelligent sensor. CMUcam3 complements the low cost hardware platform by

providing a flexible and easy to use open source development environment which

makes it a good candidate to work with. Additionally, it is based on LPC2106

microcontroller which belongs to the same family with the UWASA Node’s LPC2378

microcontroller.

CMUcam3 basically consists of two different boards connected to each other: the

camera board and the main board. Those two boards are connected to each other with

standard 32–pin 0.1 inch headers. The processor, power connections and the FIFO chip

of the CMUcam3 are located on the main board while the camera board only consists of

a vision sensor and a header connected to sensors pins. Figure 8 shows the complete

CMUcam3 structure.

25

Figure 8. CMUcam3. Camera board is on the front (CMUcam3 2011).

In this design, only the camera board of the CMUcam3 is used as vision sensor. This

architecture aims to enable easy replacement of the vision sensor depending on the

application requirements. Since the behaviour of this slave module reflects all of the

hardware related features of CMUcam3, it may also be possible to substitute the camera

board with another one having different specifications.

The camera board of CMUcam3 is a portable PCB circuit that integrates some passive

components, OV6620 vision sensor, and a header. Header represents some of the vision

sensor pins to external devices.

The pins available on the camera board header are given in Table 1 with their

functionalities.

26

Table 1. Available camera board pins and their functions.

Pin Function Pin Function

1–8 Digital Output Y Bus 17 Analogue Ground

9 Power Down Mode 18 Pixel Clock

10 Reset 19 External Clock

11 I2C Serial Data 20 +5 V DC

12 Odd Field Flag 21 Analogue Ground

13 Serial Clock 22 +5 V DC

14 Horizontal Reference 23–30 Digital Output UV Bus

15 Analogue Ground 31 Common Ground

16 Vertical Sync 32 Video Out (75 Ω)

The 8–bit data output pins are pin 1 through pin 8. Pins 23 through 30 are active only

when the vision sensor is used in 16–bit mode so they aren't used in this design. Pins 9

and 10 are connected directly to a GPIO pin of the processor through the test board to

power down or reset the camera respectively. Pins 11 and 13 represent the SCCB bus

that is used to configure camera options and it operates in a similar way to I2C standard.

Pins 20 and 22 are 5 V DC supply voltage pins of the vision sensor. Since the UWASA

Nodes power module doesn't provide 5 V, a DC to DC conversion from 3.3 V is

necessary. This DC to DC conversion is discussed later in section 4.4.5 DC to DC

converter.

The rest of the pins aren't needed and not used in this design except horizontal

reference, vertical sync, and pixel clock. Those three pins carry the vision sensor output

signals which are vital for timing, synchronisation, and acquisition of the image data.

4.3. Specifications of the vision sensor

The vision sensor OV6620 which is used in the design is able to output images at a

maximum resolution of 352 x 288 pixels up to 60 fps. It can be configured via SCCB

27

interface to output in 8–bit or 16–bit, RGB or YCbCr colour modes. The maximum

power consumption of the camera is 80 mW and operates at 5 V DC. It is not a

sophisticated vision sensor but since this work is focused on limited image processing,

it is enough to show the proof of the concept.

4.3.1. Resolution

The Omnivision OV6620 vision sensor captures the images with an array of 356 x 292

photosensors. In this vision sensor, each pixel is represented by four values: B,G,R,G.

28

Table 2. Semiconductor array of the vision sensor.

Row \ Col 1 2 3 4 ... 353 354 355 356

1 B11 G12 B13 G14 B G B G

2 G21 R22 G23 R24 G R G R

3 B31 G32 B33 G34 B G B G

4 G41 R42 G43 R44 G R G R

5

...

289 B G B G B G B G

290 G R G R G R G R

291 B G B G B G B G

292 G R G R G R G R

As mentioned before, the maximum resolution that can be output is 352 x 288 but this

resolution is achieved by generating pixels that share the same photosensor value. To

make it clear, the first pixel is generated using elements B11, G12, R22, G21 and the second

pixel is generated using elements B13, G12, R22, G23. Among those sets of elements G12,

R22 are commonly used to generate two different pixels. In the elements of the third

pixel, there will be common elements with the second one and so on. Information rate in

the maximum resolution image can be determined by the ratio of unique information

versus total information.

α =
U
T

= 356 ×
292

352 × 288 × 4
≈ 0.5 (20)

where,

α = Information ratio

U = Number of unique elements used to generate the image

29

T = Number of total elements used to generate the image

This result shows that in fact the vision sensor is not capable of providing 100%

informative image at a resolution of 352 x 288 pixels. Because of that, instead of setting

the vision sensor to generate output at maximum resolution, a mode which has lower

resolution with the information rate of 100% is used in this design.

4.3.2. SCCB interface

The registers of the OV6620 vision sensor are configured via SCCB (Serial Camera

Control Bus) interface. Those registers keep the values for various camera settings as

long as the camera is continuously powered.

SCCB is a two wired serial interface that operates very similar to I2C standard. It

supports up to 400 kbps serial transfer rate using 7–bit address and data transfer

protocol. Within each byte, the MSB is transferred first and the last bit of the address

byte indicates whether the operation is read or write. Vision sensor is always a slave

device.

Write operation in SCCB bus is initiated by firstly transmitting a start condition. After

the start condition, slave device is aware of an ongoing communication. Any write

operation consists of three bytes. The first byte is the write address of the device to be

accessed. It is a fixed hexadecimal value (0xC0) for the camera board used in this

design. The second byte is the address byte of the register, and the last byte is the value

to be set.

Figure 9. SCCB write operation.

Write Address of
the Slave (0xC0)

Start ACK Register Address ACK Register Value ACK Stop

30

After the register value is sent, a stop condition occurs to inform the slave device that

the communication is terminated.

Just like the write operation, the read operation is also initiated when a start condition

occurs. However, read operation consists of two bytes. The first byte is a fixed value

(0xC1) which is the read address of the slave device. After the master sends the read

address of the slave, slave device outputs the value of the last written register to the bus.

Figure 10. SCCB read operation.

Similar to the write operation, a stop condition occurs to inform the master device that

the communication is terminated.

4.3.3. Frame rate

OV6620 vision sensor can output images up to 60 frames per second. Frame rate is

independent of the image size and is configured via SCCB registers at addresses 0x2A

and 0x2B. 0x2A contains the frame rate adjust enable bit and the MSB of the frame rate

value while 0x2B register contains least significant bits of the frame rate value. After

the frame rate adjustment is enabled, 512 different levels can be selected. Frame rate

varies from 0.21% up to 109%. For example, in case frame rate needs to be adjusted to

10 fps, first the register values must be calculated as follows:

10 fps
60 fps

=
x%

109%
→ x = 18.16 (21)

Now the register value should be set to:

Read Address of
the Slave (0xC1)

Start ACK Register Value Stop

31

18.16
0.21

≈ 86 (22)

which corresponds to 0x56 in hexadecimal.

4.3.4. Data format

Available data formats for OV6620 vision sensor are the combinations of YCbCr or

RGB colour modes, and 16–bit or 8–bit data modes. In the applications of this design,

RGB with 8–bit mode is used.

RGB mode is selected by setting the fourth bit of the register at address 0x12, and 8–bit

mode is selected by setting fifth bit of the register at address 0x13 using the SCCB bus.

4.3.5. Timing

Timing synchronisation is done by using PCLK, HREF and VSYNC signals. Those

signals indicate the data bus validity, row output time duration, and start of a new frame

respectively.

Timing diagram of the vision sensor output signals for one row duration are given in

Figure 11.

Figure 11. Timing diagram of the vision sensor output signals for a row.

DATA

PCLK

HREF

Duration of one row

32

PCLK signal is a clock signal that's why it alters its logic state continuously regardless

of the data existence on the bus. For that reason, it is impossible to determine in which

clocks the data is coming by only this signal. In order to clear this situation, horizontal

reference signal stays active during the image data output time span. In other words,

HREF signal stays active only when there is a meaningful data on the bus. HREF is an

indication for a complete image row duration.

The vision sensor starts to output the image with the first pixel of the first row,

continues until the end of that row, and then goes on with the second row. This process

repeats until the last row is output. After each image frame, a VSYNC signal indicating

a start of a new frame is asserted for synchronisation. The first HREF after the VSYNC

signal marks the first row of that image. Unlike HREF, VSYNC signal does not

maintain logic high level during the entire frame. How those two signals are coupled

with each other is given in Figure 12 below.

Figure 12. HREF and VSYNC signals for one frame. VSYNC marks the start of each
frame.

4.3.6. Auto–adjustment options

Many properties of image acquisition can be adjusted automatically by the camera

rather than manually setting them. OV6620 vision sensor is able to iteratively find the

optimum values that results the best image quality and highest SNR. Once the camera is

powered up, the internal circuitry calculates those values and set the corresponding

registers automatically.

HREF

VSYNC

Duration of one frame

33

 Some significant properties which can be auto–adjusted are listed in Table 3.

Table 3. Automatically adjustable properties of the vision sensor.

Auto Adjustable Properties

Red, Green, Blue channel gains

Saturation Control

Contrast Control

Brightness control

Sharpness control

White balance background

Exposure control

4.3.7. Camera connection to the test board

In order to ensure physical flexibility, the camera board is connected to the test board

via IDC cable so that it is easy to rotate by hand without moving the whole hardware.

Figure 13. Camera board is connected to the test board via IDC cable.

34

Vision sensor has a lens in front of it which focuses the image on the semiconductor

array. Depending on the interested distance, this lens must be adjusted manually for the

best quality.

4.4. Test board

The test board is the interface between the camera board and the processor. Together

with the camera board, it represents the prototype version of the slave camera module

for UWASA Node.

The hardware has firstly been designed in a schematic level on the PC. The schematic

drawings of each hardware block can be found in the appendices. Upon the completion

of the schematic design, PCB layout was designed and routed. The three dimensional

view of the test board PCB is represented in Figure 14.

After the PCB design, the prototype circuit has been produced and tested in both

electrical and physical level.

The hardware elements of the test board can be divided into groups as FIFO, SRAM,

DC to DC converter, octal bus transceiver, logic components, and passive components.

35

Figure 14. Front and back of the test board in 3D view.

4.4.1. FIFO concept

FIFO, meaning First–In–First–Out in computing and electronic design, is a concept of

organising data transfer efficiently between the data source and destination having

different speeds.

The data output rate of the source and the data handling capability of the destination

may sometimes be different. In case the source outputs the data faster than the

destination can handle in average, theoretically the queue would go to infinity. But in

practice, since the memories are limited, such a situation results in data loss. If the

source outputs the data slower than the destination can handle, then there will be a

limited queue in the system.

36

FIFO buffers the incoming data from the source system. The destination system which

is capable of handling data at a faster average rate than the source system outputs, waits

for a certain time so that a considerable amount of data is accumulated in the buffer,

then empties the buffer quickly. This way the destination system doesn't need to handle

the data very frequently since it has the capability of handling larger amount of data at

once.

4.4.2. Advantage of using FIFO

In section 2.2, the average number of units in the system, in other words, the length of

the queue is given by:

L =∑
n=0

∞

n Pn (23)

Using equation 11:

=∑
n=0

∞

n(λμ)
n

(1−λ
μ) (24)

= λ
μ−λ (25)

If the camera was directly connected to the processor, to be able to handle all the

incoming data, there had to be no queue in front of the processor input which means L

had to be equal to 0. If there was any data bit which wasn't handled by the processor at a

time, and there came another bit, the one that hadn't been handled until that time would

disappear from the data bus, and that would lead to inconsistency in the system.

Achieving zero length in the queue would be possible when there is an infinitely great

handling rate μ.

Those results prove that between the camera and the processor, there must be some

memory to buffer the data because the processor can't handle the data on the bus with

37

infinitely small time intervals. The write clock signal from the camera is directly

connected to the FIFO buffer, similarly the read clock from the processor is also

connected to the FIFO buffer and they operate independently from each other. This way

it is ensured that all data that comes inside the buffer will stay there until the processor

reads it.

4.4.3. FIFO chip

The FIFO chip used in this design has 512 kB x 8–bit memory and completely

independently operating input and output ports each having 8–bit data widths. Output

ports can operate up to 80 MHz and are supported by built–in circuitry which provides

pointer reset, data skipping and some more useful functions that make it an easy to use

memory device. Power supply is rated at 3.3 V and the chip has around 55 mA of

current consumption at given voltage.

AL440B has 44 pins in total but only the ones that have importance in this design are

given in Table 4 below.

Table 4. Significant pins of AL440B FIFO chip and their functionalities.

Pin Function

DI[0..7], DO[0..7] Data Input Bus, Data Output Bus

WE, IE, RE, OE Write Enable, Input Enable, Read Enable, Output Enable

WCK, RCK Write Clock, Read Clock

WRST, RRST Write Reset, Read Reset

SDA, SCL Serial Data, Serial Clock

SDAEN Serial Data Enable

PLRTY Polarity of the control signals

RESET Reset FIFO chip.

IRDY, ORDY Input Ready, Output Ready

VCC, GND Supply Pin, Ground Pin

38

FIFO chip has no address bus. Memory access for both write and read operations is

conducted by write and read pointers. Those pointers are incremented by clock signals

WCK and RCK when WE and RE signals are active respectively. Write and read

pointers are always incremented. When pointer reaches to the end of the memory it

restarts from the first address. Another way to set the pointers to the initial positions is

using WRST and RRST signals.

Data input bus of the FIFO is directly connected to the camera data output bus, and

WCK input is connected the PCLK signal of the camera board. Hence, the data that

comes from the vision sensor is directly written to FIFO chip. The hardware structure

that connects the camera board to the FIFO is given in Figure 15.

Figure 15. Connection of FIFO to camera board.

Here WEE signal allows selective data reading. Details about this signal is discussed

further in section 4.4.7.

WE and IE signals have different functionalities. If both IE and WE are active, normal

read operation is done and write pointer is always increased with WCK. In the presence

of WE but not IE, write pointer is increased but the data on the input bus is not written

to internal registers. This is very useful feature for write skipping. When WE signal is

not active, regardless of IE, both data input and WCK are disabled. Similar relation

applies to OE and RE signals. When the output is not enabled but RE signal is active,

DATA OUT

PCLK

HREF
WE

WCK

DATA IN
8

Camera
Board

FIFO

WEE

39

read pointer is increased for data skipping.

4.4.4. SRAM chip

SRAM is a type of semiconductor memory which is capable of keeping the register

values continuously as long as it is powered. Unlike DRAM, SRAM doesn't need to be

refreshed within certain amount of time intervals to be able to keep the values in

registers.

The embedded applications that work with images occupy much more memory than

ordinary embedded applications because the image must somehow be stored in a

memory. For that reason this hardware design consists of an SRAM to store the image,

to process the image, and to keep the resulting image after processing.

SRAM used on the test board is IS61LV5128AL chip. Main features of this chip are its

high speed access time which is as low as 10 ns, power down option, fully static

operation without any clock, 3.3 V supply voltage, and 80 mA typical operating current.

The most important feature of this chip is its access time which is only 10 ns. The

access time from the processor side has a high scalability since it is done by external

memory controller. EMC can be configured by the internal registers of the processor,

and can be precisely adjusted to achieve the most efficient data handling in both reading

and writing periods.

Pins of the SRAM and their functions are given in Table 5 below.

40

Table 5: Connections available on SRAM chip.

Pin Function

A[0..18] Address Bus

CE, OE, WE Chip Enable, Output Enable, Write Enable

IO[0..7] Bidirectional Ports

VDD, GND Supply, Ground

The image that is obtained from the vision sensor has a size of 176 x 144 pixels. In raw

image data format each pixel is represented by four bytes. Hence the size of an image

on the memory is:

4×176×144 = 101376 B = 99 kB (26)

The EMC can address up to two adjacent memories at a size of 64 kB, so the image can

be stored on the 128 kB reserved location on the SRAM. Since the SRAM chip has a

size of 512 kB, four different forms of images can be stored on it and processed. The

allocation of those extended memories is done by using two more GPIO pins connected

to two most significant address pins. The structure that is capable of doing such an

addressing is given below in Figure 16.

41

Figure 16. The connection between SRAM and the processor. Here addressable
memory is quadrupled by using GPIO pins.

4.4.5. DC to DC converter

The power module of the UWASA Node doesn't have 5 V DC supply. The whole node

operates with lower DC voltages, so does the slave modules. In order to generate a 5 V

DC supply for the camera board, DC to DC step converter has been used on the test

circuit.

The logic behind the DC to DC step converter is that is uses an inductor, an integrated

switching circuit, and two capacitors to filter both the input and output. Inductor

behaves like a short circuit in DC circuits, and like an open circuit for infinitely high

frequency. The current equation for an RL circuit is given by (Serway & Jewett 2010:

931):

I=
ε
R

e−t / τ
=I i e

−t / τ
(27)

Here:

16
A[0..15]

CS0

CS1

GPIO

GPIO

A[0..15]

A16

CE

A17

A18

Processor SRAM

OE OE

BLSBLS WE

D[0..7] I/O[0..7]
8

42

I = Current

ε = Electromotive Force

R = Resistance

t = Time

τ = Time constant of the circuit

Equation 27 shows that, for very short t values compared to τ, an inductor has a

tendency to keep the flowing current constant through itself. In DC to DC step

converter, this small t is achieved by the switching circuit. Closing the switch makes the

current flow through the inductor and when the switch is opened, inductor behaves as a

current source. The rate of switching and the duty cycle determines the output voltage

of the DC to DC converter. The application circuit of this conversion is given below in

Figure 17.

Figure 17. Application circuit of the DC to DC converter (Maxim 2011).

4.4.6. Octal bus transceiver

Octal bus transceiver on the test board has been placed to isolate the EMC from the

common 8–bit data bus which is accessed by both FIFO and SRAM. Like SRAM, this

43

chip also has a very high access time as low as 6 ns. It can totally isolate the EMC from

the shared data bus or set the data direction either from EMC or to EMC.

When OE is not active it isolates the two sides of the bus but when active, data direction

can be switched regarding to the logic state of the DIR pin located on the chip.

The aim of using such a property was to enable glue–less data transfer from FIFO to

SRAM but due to some limitations that sort of transfer is not performed in this work.

4.4.7. Logic components

Logic components on the test board have essential importance. There are three logic

chips which are inverter, AND gate, and a D–type Flip–Flop.

Inverter is used to alter the logic levels of some signals in order to comply with the

active low or active high properties of the signal inputs, or to comply the logic design

necessities.

AND gate has an important role on the communication interface between the EMC and

the SRAM. EMC has two memory bank selection signals, namely CS0 and CS1. 16

address pins A[0..15] of the EMC are capable of addressing 64 kB of memory at most.

When CS0 is active, the lower 64 kB memory bank is selected and when CS1 is active

the higher 64 kB memory bank is selected. The following logical structure in Figure 18

is designed in order to address adjacent memory banks on the SRAM.

Figure 18. Adjacent memory bank selection logic

CS0

CS1

A16

CE
EMC SRAM

44

Another logic component used in the hardware design is D–type flip–flop which has an

important role in the image acquisition circuit. It makes the incoming data to be parsed

in the forms of frames on the FIFO chip. The hardware design of how the image is a–

synchronised using a D–type flip–flop is represented in Figure 19.

Figure 19. Usage of the D–type flip–flop in frame acquisition.

Unless the processor does not activate ALLOW A FRAME signal, flip–flop keeps the

WEE signal deactivated thus FIFO WE signal is never enabled. In this situation no data

is written to FIFO. When this signal is activated and kept at high level, with the first

VSYNC signal WEE is activated during the active periods of HREF signal, data in the

bus will be continuously written to the FIFO register with each PCLK signal. VSYNC

signal is also connected to WRST pin so that each frame is always written by starting

from the first memory location of the FIFO. This makes it much more easy to handle the

data located inside the FIFO chip. Continuous frame transfer can easily be done by

keeping the ALLOW A FRAME signal active.

4.4.8. Passive components

Passive components used in the circuit are some capacitors, resistors, and an inductor.

Many of the capacitors are implemented in order to increase the noise immunity. Noise

filtering capacitors are connected parallel to the signal to the ground. All the resistors

D

CLK Q

VSYNC HREF

ALLOW A
FRAME

DATA OUT

PCLK

WEE

WE

DATA IN

WCK

Camera
Board

Processor

FIFO

WRST
8

45

except one are used as a pull up resistor to ensure that the signal stays high unless

desired to be low. This prevents the signals from floating when they are not driven by a

high or low logic voltage. One resistor with a value of 0 Ω is used to isolate the ground

of the test board from the ground of the camera board. The inductor is used to generate

5 V supply voltage for the camera board.

46

5. SOFTWARE

The software in this design defines the interaction and communication rules between the

camera, test board, and the processor. Another role of the software is to establish

communication with a computer in order to display the graphical results of the

operations as a bmp file. The software is written in C language and doesn't run on any

operating system.

5.1. Overview of the software

The main function algorithm starts by initialising the processor and interrupts. Then it

sets the functions of the used pins and their initial states. The LPC2378 processor has

four ports and almost all pins of each port can be assigned up to four different pin

functionalities. For example, pin 21 that belongs to port 1 can be configured to be

operating in GPIO, USB, PWM, or SPI modes. In order to comply with the hardware

properties, the necessary configuration is done before doing any operations.

After the initialisation of the pins, the software powers up the camera and configures the

it to work in 8–bit RGB mode. Then the algorithm waits for some time to allow the

camera to stabilise with its internal auto adjustment circuitry. Following the

stabilisation, ALLOW A FRAME signal is set active so the FIFO grabs an image from

the camera. After waiting for at least 1 frame duration, all the inputs to FIFO chip is

disabled and the image is stored inside the chip. At that point, before reading the image,

an image file header is generated. As soon as the file header is sent to computer via

serial terminal, next step is to read the partial data and process it. Necessary signals are

then configured to enable the read operation. Details about reading and processing the

image are described further in section 5.4.

Finally the resultant image is sent to the computer and the software enters an infinite

loop. Flowchart of the main function is represented in Figure 20.

47

Figure 20. Flowchart of the main function.

5.2. Camera settings

Camera settings are configured using I2C peripheral. SCCB bus of the camera operates

in a very similar way to I2C standard, so suitable processor pins are assigned to operate

in I2C mode.

In order to set the value of any camera configuration register, firstly the address of that

register is assigned to a char sized variable. This variable is the input parameter of the

register setting function. After the register setting function transmits its input parameter

as the register address, it checks for an acknowledgement. Then in the same way the

register value is sent without transmitting a stop condition in the middle. If an error

Start

Initialize the
Processor

Initialize
Interrupts

Switch the
Camera On

Set the Camera
to 8-bit RGB

mode

Reset FIFO

Grab an Image
to FIFO

Adjust Settings
to Read from

FIFO

Initialize
UART

Create BMP File
Header

Send the File
Header to
Computer

Read the Frame and
Perform Image

Processing Operations

Send the Image
to Computer in

BMP File Format

End

48

occurs during this process, the interrupt handler terminates all operations. After a

register is set, the processor asks the camera to read back the value it has received in

order to ensure the configuration is done properly.

5.3. Creating a bmp file

File format bmp is a commonly used image file format that stores digital images as a

bitmap with its various properties like width, height, colour depth, and resolution etc.

All those properties and many others take place in the bmp file header.

In order to write the image as a file on the hard disk of the computer, the file header

creator function in the software automatically generates the parameters of the bmp file

header. The structure of the bmp file format is given in Table 6 below (Frontier 2011).

49

Table 6. bmp file format. File header excludes the colour map given in the last row.

Offset Size Contents Description

00 02 “BM” Microsoft’s bmp ID word

02 04 Varies Size in bytes of the file

06 04 00, 00 Reserved

10 04 Varies Offset in file where image starts

14 04 40 Size of bitmap header

18 04 Varies Width in pixels

22 04 Varies Height in pixels

26 02 1 Number of image planes (only one)

28 02 Varies Bits per pixel (1,4,8, or 24)

30 04 Varies Compression type

34 04 Varies Size of compressed image (or zero)

38 04 Varies Horizontal Res. in pixels/meter

42 04 Varies Vertical Res. in pixels/meter

46 04 Varies Number of colours used

50 04 Varies Number of 'important' colours

54 04 Varies Colour Map

File header creator function creates an array according to Table 6 and then passes this

array to another function which sends it to the computer over the serial interface. Since

it is a simple matrix construction regarding to the table above, the flowchart is not

represented here.

5.4. Reading from the FIFO

After a stable image is stored in FIFO, all of its input signals are disabled so the image

is never overwritten during a read operation. As described before in section 4.4.7 the

image data always starts from the first location on the FIFO, because within each

incoming frame, a write reset is applied to FIFO.

50

After the necessary settings are done, read clock signal is set to high level so that the

data is present on the bus. In that moment, pixel data variable in the processor is

assigned to the 8–bit value on the bus, and read clock is lowered back. When this

operation is performed, FIFO automatically increments its read pointer so the next time

read clock goes high, next value will be on the bus and so on. This process repeats itself

up to desired number of pixels is obtained.

5.4.1. Determining the first pixel of the frame

As stated before, the first pixel of the frame should always be located in the first

memory location of the FIFO, but in the datasheet of the camera it is stated that in 8–bit

RGB mode, the first row of the frame is always unstable. This puts a challenge of

finding which byte represents the first byte of the frame. At that point live debug option

of the compiler enabled to figure out that the byte sequence before the first byte of the

frame follows this order in hexadecimal:

Figure 21. The unstable output sequence before a frame starts.

Here the question marks stand for a random value. Noticing that two 0x10 values follow

each other with a random value between them before the frame starts, it was possible to

parse the data correctly. This sequence may occur at different locations of the FIFO

memory every time, thus a sequence detector function had to be written. The situation

introduces instability to the system and is not mentioned in the vision sensor datasheet.

Possible reason is that VSYNC signal is not very accurate in timing.

5.4.2. Reading and placing pixels in correct order to form a frame

In 8–bit RGB mode, the vision sensor outputs the data in the following order:

? 2nd Byte1st Byte? 0x10?0x10

51

Table 7. 8–bit RGB mode output sequence from the vision sensor.

1 2 3 4 5 6 7 8 9 10 ...

G B G R G B G R G B ...

On the other hand bmp file format has a pixel order as:

Table 8. Distribution of the colours in bmp file.

R\C 1 2 3 4 5 6 ...

1 R G B R G B

2 R G B R G B

3 R G B R G B

4 R G B R G B

5 R G B R G B

6 R G B R G B

... ...

Vision sensor output for one pixel consists of four bytes as shown in Table 7, but bmp

file has three bytes in different order. The software firstly takes the four bytes from the

camera and right shifts the green values once. Right shifting means division by two for

binary numbers. After that, adding them together will result in the average value of

those green pixels. Placing the red value first, computed green value second and blue

value last, there exists a three byte pixel in correct order. Repeating this operation for

every four bytes and joining resultant values sequentially, after a certain amount of

times, it forms one row of a frame. Similarly, after successive row computations the

colour matrix is completed.

52

5.5. Processing the image

There are countless existing image processing algorithms like image segmentation, face

detection etc. for different application purposes. However, basically there are some very

fundamental operations performed on the images in order to obtain those algorithms.

One of them is Sobel operator which has a significant importance in edge detection

algorithms. Sobel operator works on a monochrome image. It finds the gradient values

around each pixel, and generates an output image.

Explanation of the Sobel Operator concept, how it is applied in this design, and how to

compute edges inside the image are discussed in this part.

5.5.1. Transformation to monochrome

The processor reads the image from the FIFO in RGB format. In order to apply edge

detection algorithms to the image, the image needs to be transformed to monochrome

format. Monochrome image is often represented with Y since it is the first component of

YCbCr colour space. The transformation to the monochrome from RGB colour space is

formally defined as:

Y = 0.2125×R + 0.7154×G + 0.0721×B (28)

Equation 28 shows that the green component has the most contribution to the

monochrome image because the human eye is much more sensitive to green than the

other colours.

Since the aim of this work is to test image processing feasibility within the context of

limited image processing, instead of following the formal transformation equation,

software uses an approximation which saves computation power.

The approximation to the formal transformation applied in the software follows that:

53

Y =
1
4
×R +

5
8
×G +

1
8
×B (29)

It should be noted that the coefficients of the colour components are very easy to obtain

by using simple bitwise right shift operation and addition. Of course this method

introduces some error but on the other hand it is a very easy and fast way compared to

having multiplication with fractional numbers and summing them for all the pixels of

the image.

5.5.2. Gradient calculation

Once the monochrome image is formed, Sobel operator can be applied on it. Definition,

usage and explanation of Sobel operator has been described in section 2.4 before. Again,

to reduce computational power, some modifications are applied to this original method

and explained.

The Sobel operator has only +2, +1, 0, -1, and -2 coefficients in the matrix. Among

those values, only +2 and -2 needs multiplication operation but since they can be

obtained with bitwise left shift operation, just summation after left shifting solves the

computation in the kernel.

Convolution in two dimension for image processing has been described in section 2.3.

Same two dimensional convolution operations are performed for computation of both

the horizontal and the vertical gradients. Once the Gx and the Gy orthogonal gradients

are obtained as a vector, the magnitude of the vectorial sum must be calculated to find

total gradient value.

At this point a problem arises with the computation of big gradient values. The values of

the pixels are represented by 256 levels ranging from 0x00 up to 0xFF values in

hexadecimal notation. In order to compute the magnitude, the square of those two

orthogonal gradient values must be calculated and added together, then the square root

operator must be applied.

54

Assuming that both horizontal and vertical convolution kernels computed the values of

0xFF, taking the second power of 255 and adding same two numbers results in 130050.

This number can't be represented by char or short type of variable, thus a 32–bit integer

must be assigned to store this value. Square root computation is not a very easy task for

computers compared to addition, multiplication etc. Here the operation needs a lot of

computation because square root operation must be performed for every pixel of the

image. For that reason, iterative square root calculation technique called Babylonian

Square Root is applied. This method has been explained in section 2.5 before.

In order to justify this approximation, giving an example from the image processing

software would be appropriate. Let x and y gradients be 0xF4 and 0xA5 respectively.

Sum of second powers of these two numbers is 86761 and the square root of it is

295.552 precisely in decimal. Here it should be noted that another problem in Sobel

operator application is that the gradient magnitude can exceed the value what an

unsigned char variable can represent. That's why the calculated magnitude is later scaled

down to three quarter. Iterations given below show how fast and accurate Babylonian

Square Root technique is. Software always takes 180 as initial estimation because it is

half of the maximum gradient magnitude.

x0 ≈ 180 (30)

x1 =
1
2 (x0+

S
x0

)= 1
2 (180+

86761
180)= 1461 (31)

x2 =
1
2 (x1+

S
x1

) =
1
2 (1461+

86761
1461)= 760 (32)

x3 =
1
2 (x2+

S
x2

) =
1
2 (760+

86761
760) = 437 (33)

x4 =
1
2 (x3+

S
x3

) =
1
2 (437+

86761
437)= 317 (34)

55

x5 =
1
2 (x4+

S
x4

)= 1
2 (317+

86761
317)= 295 (35)

Here very accurate result is achieved after the 5th iteration but 4th iteration is also close

to the result with an error of:

∣317−295∣
295

= 7.5 % (36)

For the algorithm which is applied in this software, this error rate is acceptable because

the error rate is proportional to how big the number is, thus it doesn't seriously affect the

ratio between the gradients of different points.

Now the gradient magnitude is calculated for a given pixel, it is placed in the

corresponding locations of all pixels of the output image. Gradient values are coded on

the output image in grayscale format.

5.5.3. Edge detection

Edge detection is done by filtering the resultant gradient image that is obtained after the

application of Sobel algorithm.

Firstly a threshold value of the filter is chosen. The gradient values which are below this

threshold will be coded as black, and the values that are greater than the threshold can

either be coded as pure white or the gradient value itself. Gradient image is in fact the

edge detected image with a zero threshold. Setting the threshold value to maximum

level will of course result in a pure black image.

Applying the Sobel operation over the image twice results in an approximation of

Laplace transform of the image, but in this work it is not performed.

56

6. EXPERIMENTS AND RESULTS

In this section the acquired images, their transformations to monochrome format,

gradient detected format, and edge detected formats with different parameters are

represented.

6.1. Captured image

A captured image of a paper that consists of the primary colours red, green, and blue on

it is depicted below in Figure 22.

Figure 22. A captured image depicting the primary colours of RGB colour space.

This image is in a raw form after receiving from the camera. It was sent directly to the

computer as a bmp file in 176 x 144 resolution.

6.2. Monochrome transformed image

As it is described in the software chapter, the monochrome transformation that the

software computes is obtained by using the multiples of two in order to achieve high

performance. Since the results are obtainable by implementing bitwise operations, using

fractional numbers and using mathematical operators are avoided.

57

Figure 23. RGB and monochrome coded images of the same object.

The Figure 23 above shows two pictures of the same object taken from the same

location at different times. The image on the left is captured and directly sent to the

computer as a bmp file without any operation, and the one on the right is captured and

transformed to monochrome format before being sent to the computer as a bmp file. The

transformation is done by using monochrome.

Another example of the transformation is shown in Figure 24. Notice that the output

image from the vision sensor is not scaled to match with the horizontal versus vertical

ratio of the object. The pen seems thicker than it really is. This situation can be

corrected by finding the camera calibration parameters and scaling the image with those

parameters.

Figure 24. Two monochrome transformed images. Camera doesn't provide scaled
images in 8–bit RGB mode.

Though the images were transformed by avoiding more complicated arithmetic, results

seem satisfactory.

58

6.3. Gradient calculated image

As described in section 2.4, gradient of the image is calculated with horizontal and

vertical convolution kernels. Using a 3x3 kernel over the monochrome images, first

derivatives of the images are approximated as shown illustrations in this section.

The gradient magnitudes of the images below are computed by using Babylonian

Square Root approximation with four step iteration. This method was already described

in 2.5. It allows easy square root calculation without dealing with a lot of computations

in order to find precise square root values of big numbers. Since this operation is done

for every single pixel, it is quite beneficial for performance.

Figure 25. Original, monochrome, and the first derivative (gradient) of some images.

Here it should be noted that after the Sobel operation, the last column and the last raw of

the gradient images are missing. In order to compute a gradient value for those pixels,

59

there should be further pixels to calculate how much they differ from each other. That's

why those values can not be computed.

6.4. Edge detected image

Edge detection of an image is done by applying a filter over the gradient calculated

image. Application of the filter is as simple as coding black level for the pixels that have

a gradient value lower than a threshold level.

Different threshold levels introduce various results with different noise levels.

Depending on the application and the environmental conditions, the optimum threshold

level should be determined.

Figure 26. Original image in RGB format.

The results below illustrate the edge detection for the object in Figure 26 with different

threshold levels.

60

Figure 27. Original, monochrome, and edge detected images using various parameters.

The gradient image here is just a special case of the edge detected image with zero

filtering level. Parameters of the edge detected images from top left to bottom right are

0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, and lastly 0xFF in hexadecimal. Filtering the

image with maximum threshold level results in black image.

6.5. Data compression on edge detected images

Data compression in wireless sensor networks is directly related to the transmission

amount that's why it is quite important in the means of power consumption.

Compressing the amount of transmitted data doesn't only mean the reduction of

transmission power, but also means increased security. In Figure 27 the edge detected

pictures either have white or black colours. Instead of transmitting the whole picture,

just the white pixel coordinates can be transmitted.

For any pixel, both vertical and horizontal coordinate can be represented by one byte,

61

totalling in two bytes. But in a grayscale image, one pixel value is coded with a single

byte, for that reason it may not always be beneficial to transmit the coordinates instead

of the whole image.

Assume that the pictures shown in Figure 27 starting from the top left, down to bottom

right are numbered from 1 to 9. Figure 28 shows the amount of transmission data in

both the full transmission case and the coordinate transmission case for each picture.

Figure 28. The amount of data to transmit for pictures 1–9.

Since the first three pictures have more white pixels than the black pixels, it is not

beneficial to choose coordinate transmission. In that case, transmitting only the black

pixel coordinates would inverse the situation. Since this work doesn't focus deeply on

transmission algorithms, only the idea is presented.

The ratios between full transmission and coordinate transmission for each image are

listed in Table 9 by percentages.

1 2 3 4 5 6 7 8 9
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4
x 1 0

4

P i c t u r e

N
um

be
r

of
 b

yt
es

 t
o

tr
an

sm
it

T r a n s m i t t i n g f u l l p i c t u r e

T r a n s m i t t i n g o n l y c o o r d i n a t e s

62

Table 9. Image sizes using coordinate transmission compared to original from.

Picture
Image size using

coordinate transmission

1 200%

2 198%

3 117%

4 63%

5 17%

6 8%

7 5%

8 3%

9 0%

Although using the threshold levels in number 8 and 9 may seem the best option

regarding to image sizes, they probably may not represent sufficient information. The

optimum edge detection threshold must be chosen depending on the application

criterias.

6.6. Usage of EMC and SRAM

The current configuration of the design that generates the images represented in this

work, the EMC of the processor and SRAM weren't used. In order to demonstrate that

the data transfer between the processor and the SRAM is possible, a test is represented

in this section.

The code used in the test is given below:

63

Here the software creates a small two–dimensional array called frame on the internal

memory, and assigns the characters of UWASA word to its elements. Then the SRAM

pointer s_p is assigned to the previously allocated external memory block on the

SRAM. The function called switch_track here is necessary for data direction

configuration on the test board. After that, using EMC, the elements of the frame matrix

are written from internal memory to the external SRAM memory. Following that

operation, the UART interface is initialised, and the UART pointer u_p points to the

external memory that is previously written by s_p. Finally, the processor sends those

values to computer by directly reading from external SRAM in order to ensure that the

operation is successful.

64

Figure 29. Characters of UWASA were sent directly from external SRAM to computer.

In this test a memory bank on the SRAM was allocated as a variable called space0. This

memory location behaves like it internally exists inside the processor. As illustrated in

here, a variable on that memory location can be created and used. The EMC peripheral

of the processor makes this operation possible.

65

7. CONCLUSIONS

It would be appropriate to say that this work has achieved two major goals. The primary

goal at first sight was to design a slave module for the UWASA Node in order to make it

capable of image acquisition, transmission, and processing.

The primary goal has been achieved when the proposed hardware architecture which

consists of a camera board, a processor and a new designed hardware interface has been

successfully produced as a prototype and tested. The test board has provided a working

platform to identify and troubleshoot the problems which had been faced during the

development process. The test board and the camera board together have represented

the behaviour of the slave camera module which may be adapted to UWASA Node. If a

camera module needs to be produced based on the work here, it is verified that the

schematic structure can be applied without any problem. Even though the test board was

produced in rather big dimensions to enable easy production, the slave module can be

designed in a form as small as approximately 15 cm2.

The secondary goal attained has been the development of convolution, monochrome

image transformation, gradient calculation, and edge detection algorithms. Instead of

doing complex calculations in a formalised way, some easy computation methods for

those algorithms have been introduced. Here it should be noted that those easy

computation methods were chosen and employed appropriately to prevent mistaken

results. In the end, all those methods verified to fulfil the requirements.

Although the images provided by the vision sensor don't have very good quality due to

the fact that it was designed more than ten years ago, the feasibility of the image

processing inside the UWASA wireless sensor node has been proven.

In future, the edge detection method demonstrated in here can be developed further into

contour detection, then into image segmentation, and finally into object identification.

On the contrary, it would also be a good decision to optimise and improve the

capabilities of the existing algorithms before moving further. Although the hardware can

66

currently be produced, the efficient utilisation of the SRAM chip, and redesigning the

test board with minor improvements can bring this design into a finalised work. In case

the camera board has to be replaced, moderate level changes would be necessary. In that

case, of course a new prototype should be tested.

67

REFERENCES

Bradski, Gary & Kaehler, Adrian (2008). Learning OpenCV. 1st Ed. California etc.:

O'Reilly Media Inc.

CMUcam3. CMUcam3: Open Source Programmable Embedded Color Vision Platform

[online] [cited 25 April 2011]. Available from the Internet: <URL:

http://cmucam.org/chrome/site/images/gallery_imgs/front.jpg>.

Çuhac, Caner, Hüseyin, Yiğitler, Reino, Virrankoski & Mohammed, Elmusrati (2010).

Camera Integration to Wireless Sensor Node. In: Aalto University Workshop on

Wireless Sensor Systems [online]. Aalto University Wireless Systems Group.

Helsinki: Aalto University.

Culuricello, Eugieno & Andreas G. Andreou. (2006). CMOS image sensors for sensor

networks. Analog Integrated Circuits and Signal Processing. 49:1. 39–51.

Fowler, David & Eleanor, Robson (1998). Square Root Approximations in Old

Babylonian Mathematics: YBC 7289 in Context. Historia Mathematica 25, 366–

378.

Frontier. bmp graphics files explained. [online] [cited 18 March 2011]. Available from

the Internet: <URL: http://www.frontiernet.net/~fys/bmpfile.htm>

Kanopoulos, Nick, Nagesh, Vasanthavada & Robert L. Baker (1988). Design of an

Image Edge Detection Filter Using the Sobel Operator. IEEE Journal of Solid–State

Circuits 23:2, 358–367.

Maxim. Maxim Full Datasheet. [online] [cited 23 April 2011]. Available from the

Internet: <URL: http://datasheets.maxim-ic.com/en/ds/MAX1722-MAX1724.pdf>.

Olimex. LPC2378STK [online] [cited 25 April 2011]. Available from the Internet:

http://datasheets.maxim-ic.com/en/ds/MAX1722-MAX1724.pdf
http://www.frontiernet.net/~fys/bmpfile.htm
http://cmucam.org/chrome/site/images/gallery_imgs/front.jpg

68

<URL: http://www.olimex.com/dev/index.html>.

Serway, Raymond A. & John W. Jewett (2010). Physics for Scientists and Engineers

with Moders Physics. 8th Ed. California. Cengage Learning.

Sheldon, M. Ross (2010). Introduction to Probability Models. 10th Ed. California etc.:

Elsevier Inc.

Wikipedia. Bayer filter [online] [cited 18 April 2011]. Available from the Internet:

<URL: http://en.wikipedia.org/wiki/Bayer_filter>.

Yiğitler, Hüseyin. (2010a). The UWASA Node Reference Manual [online]. 1st Ed.

Vaasa–Finland: University of Vaasa, 2011. Available from the Internet: <URL:

http://wsn.tkk.fi/en/software/uwasa_manual.pdf>.

Yiğitler, Hüseyin, Reino, Virrankoski & Mohammed, Elmusrati (2010b). Stackable

Wireless Sensor and Actuator Network Platform for Wireless Automation: The

UWASA Node. In: Aalto University Workshop on Wireless Sensor Systems [online].

Aalto University Wireless Systems Group. Helsinki: Aalto University.

http://wsn.tkk.fi/en/software/uwasa_manual.pdf
http://en.wikipedia.org/wiki/Bayer_filter
http://www.olimex.com/dev/index.html

69

APPENDICES

APPENDIX 1. Schematic design of the hardware blocks on the board.

70

APPENDIX 2. Schematic design of the 5 V regulator.

71

APPENDIX 3. Schematic design of the camera bus.

72

APPENDIX 4. Schematic design of the FIFO.

73

APPENDIX 5. Schematic design of the SRAM.

74

APPENDIX 6. Schematic design of the switching circuit.

75

APPENDIX 7. Schematic design of external pin processor connections.

76

APPENDIX 8. PCB top layer.

77

APPENDIX 9. PCB bottom layer.

78

APPENDIX 10. Top and bottom views of the test board.

	APPENDIX 1. Schematic design of the hardware blocks on the board.
	APPENDIX 2. Schematic design of the 5 V regulator.
	APPENDIX 3. Schematic design of the camera bus.
	APPENDIX 4. Schematic design of the FIFO.
	APPENDIX 5. Schematic design of the SRAM.
	APPENDIX 6. Schematic design of the switching circuit.
	APPENDIX 7. Schematic design of external pin processor connections.
	APPENDIX 8. PCB top layer.
	APPENDIX 9. PCB bottom layer.
	APPENDIX 10. Top and bottom views of the test board.
	ABBREVATIONS
	ABSTRACT
	1. INTRODUCTION
	2. THEORY AND BACKGROUND INFORMATION
	2.1. Bayer filter
	2.2. Single server exponential queuing system
	2.3. Two dimensional discrete convolution
	2.4. Gradient and the Sobel operator
	2.5. Babylonian square root method

	3. WIRELESS SENSOR NETWORKS AND IMAGE PROCESSING
	3.1. Wireless sensor networks with vision sensors
	3.2. The UWASA Node
	3.3. Image processing in wireless sensor nodes

	4. HARDWARE
	4.1. Development kit
	4.2. Camera board
	4.3. Specifications of the vision sensor
	4.3.1. Resolution
	4.3.2. SCCB interface
	4.3.3. Frame rate
	4.3.4. Data format
	4.3.5. Timing
	4.3.6. Auto–adjustment options
	4.3.7. Camera connection to the test board

	4.4. Test board
	4.4.1. FIFO concept
	4.4.2. Advantage of using FIFO
	4.4.3. FIFO chip
	4.4.4. SRAM chip
	4.4.5. DC to DC converter
	4.4.6. Octal bus transceiver
	4.4.7. Logic components
	4.4.8. Passive components

	5. SOFTWARE
	5.1. Overview of the software
	5.2. Camera settings
	5.3. Creating a bmp file
	5.4. Reading from the FIFO
	5.4.1. Determining the first pixel of the frame
	5.4.2. Reading and placing pixels in correct order to form a frame

	5.5. Processing the image
	5.5.1. Transformation to monochrome
	5.5.2. Gradient calculation
	5.5.3. Edge detection

	6. EXPERIMENTS AND RESULTS
	6.1. Captured image
	6.2. Monochrome transformed image
	6.3. Gradient calculated image
	6.4. Edge detected image
	6.5. Data compression on edge detected images
	6.6. Usage of EMC and SRAM

	7. CONCLUSIONS
	REFERENCES
	APPENDICES

