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ABBREVATIONS

API Application Programming Interface
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ABSTRACT
A wireless sensor node with a vision sensing and image processing capabilities has a 
great  utilisation  potential  in  many  industrial,  healthcare  and  military  applications. 
University  of  Vaasa  has  recently  been  developing  a  wireless  sensor  node  called 
UWASA Node. It is a generic, modular and stackable wireless sensor platform. This 
work aims to integrate a camera module to UWASA Node and focuses on hardware 
design, software development, and easy image processing methods. Since the design is 
intended to prove the feasibility of the image processing in UWASA Node, a test board 
has  been  developed  and  integrated  to  a  development  kit  which  reflects  the  same 
behaviour  as  the  sensor  node  platform.  The  new hardware  and  software  has  been 
designed and tested to verify vision sensor adaptation, image processing, and feature 
extraction in wireless sensor nodes. Due to the resource limited nature of the wireless 
sensor nodes, some new methods are introduced to achieve fast and efficient image 
processing. In summary, the hardware structure of the camera module and its working 
principles are designed explained, data handling and image processing methods are 
discussed, finally the achieved results are presented.

KEYWORDS: Camera, Image Processing, Wireless Sensor
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1. INTRODUCTION

Wireless  sensor  nodes  have  a  very  wide  application  range in  industrial  automation, 

healthcare, and military applications thus it is a very promising technology with a great 

utilisation  potential.  A wireless  sensor  node  with  vision  acquisition  and  processing 

capability introduces new wide application range for wireless networks. In automation 

systems decision making based on visual information greatly enhances the functionality 

because  machine  vision  opens  a  wide  door  for  information  gathering  about  the 

environment of the network.

University of Vaasa has recently been developing a wireless sensor node called UWASA 

Node.  It  is  a  generic,  modular  and  stackable  wireless  sensor  platform  (Yiğitler, 

Virrankoski & Elmusrati: 1). This work introduces a slave camera module integration to 

UWASA Node. Camera module is basically composed of a camera board and memory 

devices.  The adapted camera board belongs to  an already existing embedded vision 

system CMUcam3.

In order to adapt the camera board and the sensor node, a new hardware interface has 

been designed. The new interface basically contains a voltage converter,  some logic 

components and memory devices. A depiction of the proposed hardware architecture is 

given in Figure 1.



8

Figure 1. Hardware architecture of the vision sensor equipped UWASA Node.

In order to prove the feasibility of this system, the new hardware interface has been 

produced as a prototype PCB, that is, test board. Similarly, a development kit which 

reflects  all  the  properties  and  peripherals  of  the  UWASA Node  has  been  used  for 

prototyping purposes. The new designed test board gets the image data from the vision 

sensor, properly stores it, then the processor handles the rest.

Apart  from designing a system for image storage and acquisition,  image processing 

capabilities are also tested in this work. After capturing the original image, monochrome 

transformation, convolution, image gradient calculation, and edge detection algorithms 

have been verified.

Due to the limited computation power of the wireless sensor nodes, some new methods 

based on existing methods are introduced. For example in a part of the algorithm, an 

image processing operator somehow has to calculate a square root of a big number, 

instead  of  calculating  the  precise  number  and complex mathematical  operations,  an 

iterative method has been chosen for easy and fast computation.

Finally,  the feasibility of image processing inside the wireless sensor node has been 

verified and the results are presented.
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2. THEORY AND BACKGROUND INFORMATION

This section provides necessary background information related to the concepts and 

solutions used in the work.

2.1. Bayer filter

A photosensor is a semiconductor device that regulates its output regarding to the light 

intensity that falls  onto its surface. A standard photosensor can not detect a specific 

colour sharply because the ions on its surface gets excited by a wider light range.

Bayer  filter  distributes  the  primary  colours  of  the  RGB colour  space  onto  different 

adjacent photosensors. This allows reception of those primary colours in a form of two 

dimensional array. Elements of this two dimensional array in Bayer filter are oriented 

regarding to Figure 2.

Figure 2. Bayer filter (Wikipedia).

In front of each photosensor lies a colour filter that lets only specific wavelength to fall 

onto the desired array element. Collection of the information from each semiconductor 

photosensor in a matrix forms the RGB image.

As can be noticed, the number of green pixels are twice of those red or blue pixels. The 
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reason for that is the human eye is more sensitive to green colour than red or blue 

colours. Using those primary colours it is possible to represent any others.

2.2. Single server exponential queuing system

For a single server queuing system in which the arrivals are Poisson distributed random 

process with an intensity parameter λ, let λ be the unit arrival rate. In that case the mean 

time between two arrivals is 1/λ. Each arriving unit enters the service if the queue is 

empty, and it has to join to the end of the queue if there is any unit in the system. When 

the service is complete, the unit that has been serviced leaves the system and the next 

unit in the queue enters the service. If the service rate here is represented by μ, then the 

mean service time is 1/μ (Sheldon 2010: 502–504).

Assuming an infinite queue, let Pn, for n = 0, 1, 2, ... be the probability that an arriving 

unit finds n units in the queue. Here the queue is defined to be in state n if there n units 

waiting. If a new unit arrives the state of the queue will jump from n to n+1. It is clear  

that the rate at which the queue enters state n is equal to the rate that it leaves state n. 

Hence the equality for the start of the queue can be written as:

λP0 = μ P1 (1)

This equation means that state 0 can increase by an arrival, and state 1 can decrease by a 

service. The queue can leave the state either by an arrival or by a service completed. 

Thus the rate at which the queue changes its state is  λ+μ. Here the proportion of the 

time that the process is in state 1 is equal to P1 so the rate at which the queue leaves 

state 1 is equal to P1(λ+μ). On the other hand, a state can either be entered by an arrival 

or by a departure, that is, state 1 can be entered from state 0 or from state 2.  Formally 

this rate can be expressed as λP0 + μP2. Since the rate the queue leaves state 1 is equal to 

the rate that it is entered from 0th or 2nd state:

P1(λ+μ) = λ P0 +μ P2 (2)
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Then the equations for this queuing system are:

λ P0 = μ P1 , if n = 0
(λ +μ)Pn = λ Pn−1 + μ Pn+1 , if n ≥ 1 (3)

Those equations are called balance equations. Equation 3 can be expressed as:

P1 = λ
μ P0 , n = 0

Pn+1 = λ
μ Pn + (Pn − λ

μ Pn−1) , n ≥ 1
(4)

Solving those equations in terms of P0:

P0 = P0 (5)

P1 = λ
μ P0 (6)

P2 = λ
μ P1+(P1−

λ
μ P0) = λ

μ P1 = ( λμ )
2

P0 (7)

P3 = λ
μ P2+(P2−

λ
μ P1) = λ

μ P2 = ( λμ )
3

P0 (8)

Pn+1 = λ
μ Pn+(Pn−

λ
μ Pn−1) = λ

μ Pn=( λμ )
n+1

P0 (9)

Using the fact that the sum of those probabilities equals to 1:

∑
n=0

∞

Pn = 1 =∑
n=0

∞

( λμ )
n

P0 =
P0

1−λ /μ
(10)

Hence,
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P0 = 1− λ
μ , n = 0

Pn = ( λμ )
n

(1−λ
μ ) , n ≥ 1

(11)

As it is stated before, λ is the unit arrival rate. For this hardware design, λ can be related 

with  data  arrival  rate  from the  camera.  In  other  words,  the  data  output  rate  of  the 

camera. Similarly the service rate μ can be related with the data handling rate of the 

processor. In other words, data input rate of the processor.

These equations are very important for embedded systems because they prove that the 

destination must  handle the data  faster  than  the  source  can output.  If  the processor 

would not have the capacity to handle the data faster than the camera outputs, λ would 

be greater than μ and that would lead the above equation to be a negative probability 

which  is  impossible.  Theoretically  this  situation  indicates  that  the  queue reaches  to 

infinity. In practice that would cause data loss.

Lastly, in a system where  μ  is greater than λ, the queue length is given by:

L =∑
n=0

∞

n Pn (12)

2.3. Two dimensional discrete convolution

Convolution  in  image  processing  is  a  two  dimensional  discrete  operation  applied 

usually for image transformations. The operands of the convolution are the convolution 

kernel and the concerned image. Convolution kernel is an array that determines what the 

convolution operation specifically does over the image. In most cases it is a fixed sized 

two dimensional array with an anchor point which is typically located in the centre of 

the array.  A three by three convolution kernel is depicted in Figure 3 below.
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Figure 3. A convolution kernel. The anchor point is usually located in the centre of the 
array.

The result of the convolution for a certain pixel location is computed by first placing the 

anchor point of the kernel on a pixel while the rest of the values around correspond to 

the overlapping pixels. Each element of the kernel is then multiplied with its matching 

pixel and the results are added together. This gives the convolution value at that point. 

Convolution operation is repeated for every pixel by sweeping the kernel over the entire 

image (Bradski & Kaehler 2008: 145).

If the image is  represented by A(x, y) and the kernel by K(i,  j).  Assuming that the 

anchor point is located at (a, b) of the kernel coordinates, the convolution C(x, y) can be 

written as:

C (x , y )= ∑
i=0

N −1

∑
j=0

M−1

A(x+i−a , y+ j−b) K (i , j) (13)

Where M and N represents the horizontal and vertical sizes of the kernel respectively. 

Since for each pixel, the number of multiplications is equal to the kernel size, chosen 

kernel dimensions directly effects the required computational power. In advanced image 

processing library APIs, these operations are optimised.

2.4. Gradient and the Sobel operator

Sobel operator is a discrete differential operator that computes an approximation to the 

first derivative of the image at given location. It uses two dimensional convolution and 

some mathematical operations to compute the result.

-1

-1

-1

-1

5

2

2

2

2
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The output of the Sobel operator is the vectorial  sum of the horizontal  and vertical 

gradient vectors at the given point. The values of the horizontal and vertical gradient 

vectors here are the calculated respective to the image intensity, that is, monochrome 

image.

According to (Kanopoulos,  Vasanthavada & Baker: 358–359) Sobel operator uses two 

convolution kernels, one for horizontal derivation and another for vertical derivation. 

Both arrays are convolved with the original image to calculate the approximation to the 

derivations. If the image part that lays under the convolution kernels is represented with 

the matrix A, the horizontal gradient value Gx and the vertical gradient value Gy at that 

point are:

G x = [−1 0 +1
−2 0 +2
−1 0 +1]∗ A and G y = [−1 −2 −1

0 0 0
+1 +2 +1]∗ A (14)

where * denotes the convolution operation. Since the calculated gradient values are the 

lengths of two orthogonal vectors, the magnitude of the gradient can be calculated by:

G = √ G x
2
+G y

2 (15)

and the angle of the gradient vector is:

θ = arctan (G y

G x
) (16)

The disadvantage of the Sobel operator is, it calculates rather inaccurate image gradient 

approximations.  The reason of  this  handicap is  the usage of  integer  values  and the 

kernel size which is limited to 3x3. On the other hand, for many applications it provides 

satisfactory results in practice.
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2.5. Babylonian square root method

Assuming that  there  is  a  positive  number  S  that  the  square  root  of  S is  unknown, 

according  to  (Fowler &  Robson:  367–369)  Babylonian  Square  Root  method 

approximates to the square root of S by sequential iterations with simple operations. In 

order to start iteration, an initial starting value x0 should be chosen and placed in the 

equation. Here x0 is a positive real valued initial number that will approach to the square 

root with each iteration. The better estimation approximates to the result faster and more 

accurate. Using this technique square root of S is calculated by:

x0 ≈ √S (17)

xn+1 =
1
2 (xn+

S
xn

) (18)

√S = lim
n→∞

xn (19)

where n is the number of iterations.
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3. WIRELESS SENSOR NETWORKS AND IMAGE PROCESSING

This chapter covers wireless sensor networks, importance of vision sensors for those 

networks,  hardware  structure  of  the  UWASA Node,  image  processing  and  feature 

extraction concepts.

3.1. Wireless sensor networks with vision sensors

Wireless sensor networks are formed of multiple wireless sensor nodes communicating 

with each other. WSNs offer ideal solutions to many application needs in industrial, 

military,  and  healthcare  areas.  These  applications  are  mainly  based  on  sensation, 

actuation, communication and network integration.

WSANs are formed of low cost, low power, short distance and multifunctional sensor 

nodes. Usage of WSANs in automation systems allows replacement of the cables. This 

reduces the implementation cost and maintenance efforts of the networks. Compared to 

wired systems, WSANs also come with the advantage of easier and faster deployment, 

reconfiguration and expansion capabilities, and realisability of applications which are 

impossible to carry out by using cabled systems. Cost effective replacement of wired 

systems yields  deployment of large number of  measurement  points,  development  of 

self–organised, collaborating and self–healing systems (Çuhac, Yiğitler, Virrankoski & 

Elmusrati: 1).

Wireless sensor and actuator networks need to retrieve information about the current 

situation  of  the  environment  in  order  to  change  the  state  of  the  physical  world. 

Environment here can be defined as objects and their properties that are surrounding the 

network.  An  important  way  of  having  information  about  the  current  state  of  the 

environment is to obtain visual information retrieved by vision sensors which allow 

determination of various object properties such as quantity, size, speed, colour, distance 

and so on.  Thus,  wireless sensor  nodes  which are equipped with vision sensors are 

essential for various applications.
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Due  to  the  power  limitation  of  the  wireless  sensor  nodes,  vision  sensor  equipped 

wireless sensor nodes focus on the acquisition and transmission of the image directly to 

a central computer in order to maintain low power operation. Since the transmission 

bandwidth and computation power are quite limited in wireless sensor nodes, they either 

perform  very  basic  operations  on  visual  data  like  line  tracking  or  they  perform 

computations with low frame rates (Çuhac 2010: 1).

3.2. The UWASA Node

The UWASA Node is a wireless sensor node designed to realise such a platform that 

provides fast adaptation and development of various wireless automation applications. 

This generic platform is achieved by stacking rather small simple slave modules on the 

main module of the node. The UWASA Node has a modular and stackable hardware 

architecture represented in Figure 4 (Yiğitler 2010a: 2–4).

Figure 4. Hardware model of UWASA Node.

The node has two essential modules which are called the Power Module and the Main 

Module.  They  provide  the  fundamental  properties  and  capabilities  what  makes  it  a 

generic  wireless  sensor  node.  Those  properties  and  capabilities  are  wireless 

communication interface, support for many peripheral interfaces, basic processing and 

memory, power management and distribution interfaces.

Power Module

Slave Module 1

Main Module

Slave Module N

Node Stack
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Figure 5. Main module of the UWASA Node. Slave modules can be stacked onto white 
connectors.

One or more simple slave modules can be added to the hardware stack and they are 

application dependent custom designs. Signalling and power supply are transferred to 

these slave modules via hardware stack connector regardless of type and number of the 

slave modules.

The UWASA Node is designed to support from low power applications like relaying the 

signal as simple transceiver up to applications that require high processing power and 

complicated interfacing. The node can either be used without any slave module that 

simply acts as a low power wireless transceiver or as a device that is equipped with 

higher amount of resources and slave modules.

3.3. Image processing in wireless sensor nodes

Computers  can't  learn  and  reason  the  events  like  humans  or  animals  are  able  to. 

Therefore raw image data is rarely useful for computers to be able to perform tasks 

based on visual information. In order to decide the next action to take based on visual 

information,  or  do  something specific  to  meet  the  application  demands,  image data 

should be transformed to a level which represents useful information to the system. This 

transformation is called image processing.
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Formally, image processing is defined as a type of signal processing that takes an image 

as input, and generates an output either as a form of another image or set of useful data 

and parameters related to input image.

The  low  power  nature  of  the  wireless  sensor  nodes  imposes  the  limitation  to  the 

computation power. Since the images usually contain much larger data than most other 

forms of information, image processing in wireless sensor nodes need to be limited up 

to a reasonable level, as well as some easy computing methods may be implemented in 

order to reduce computation efforts.

An efficient computation reduction is achieved by feature extraction. In some cases, the 

input of the image processing system may contain very large data so it may be difficult  

to process or transmit. In such situations the system can take the advantage of selecting 

the useful data that represents same amount of information which is needed to compute 

the output. Hence the input data firstly can be transformed to a reduced form, from 

which the output can accurately be determined. This transformation of the input data is 

called feature extraction.

Important point in feature extraction is the accuracy of the extracted data. Extracted 

features  must  be collected  very carefully  so that  it  must  still  represent  the  relevant 

information existing in the input data. 

An example of a feature extraction which is applied in this work is given in Figure 6.
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Figure 6. An example of a feature extraction that is applied in this work.

In this algorithm as soon as the data in RGB format is acquired, it is reduced to one 

quarter sized monochrome format before being placed in the memory. As given in the 

definition of the feature extraction above, the input data is reduced. Again, in definition 

it  is stated that after  the feature extraction,  desired results must be obtainable using 

extracted features.  An important  point  to  mention here  is  that  the edge detection is 

performed over a monochrome image. Since the purpose is to perform edge detection, 

monochrome image still  represents  almost  the  same information  represented  by  the 

RGB image. Therefore it is possible to compute edges, and that concludes all the criteria 

of the feature extraction concept are verified.

The transmission part  located in the end of  Figure 6 is  not performed in this  work 

because this work is a proof of in–node image processing thus the transmission is not 

involved.

Another feature extraction would be easily performed in the last step. After computing 
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the edge locations in the frame, it may often be easier to transmit only the coordinates of 

the pixels that represent edges. Furthermore, if this would be a part of a continuous 

image acquisition loop, transmitted data could only be the difference from the previous 

image. By doing so, data transmission related to edge detection could be reduced to tiny 

amounts while still advertising the results over the network.
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4. HARDWARE

Three  main  hardware  blocks  of  this  design  are  a  development  kit  with  an  ARM 

processor, a camera board, a test board.

The camera board is a PCB that contains a vision sensor and a connector. The vision 

sensor located on the camera board acquires the image data and delivers it over the pins 

located on the connector. The test board acts as an interface between the camera board 

and the processor. This chapter describes the structures of the designed hardware blocks, 

gives an overview of hardware blocks' functionalities and capabilities, and explains how 

they are related to each other.

4.1. Development kit

In this work Olimex LPC–2378STK development board is used as a representation of 

UWASA Node since they both have the same microcontroller. This work is a proof of 

concept, therefore instead of producing a complete slave module for UWASA Node, the 

external  connections  of  the  development  board  is  used  to  communicate  with  the 

prototype test board in order to ease the hardware design and production. Development 

board  contains  many  peripheral  interfaces  but  in  order  to  comply  with  the  test 

conditions, only the pins which have direct connection to the processor are used.

The development kit and the blocks which are used in this work are shown in Figure 7.
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Figure 7. LPC–2378STK development board and used interfaces. (Olimex 2010)

Development kit  is  either  powered by an external  power source,  JTAG interface or 

USB.  Like  the  UWASA Node,  development  kit  is  also  programmed  using  JTAG 

interface so it was used as a power source too. External Connections 1, 2 and U are the 

connections which introduce the development kit as UWASA Node to the test board. 

RS232 serial  interface  is  not  needed for  the  operation  but  it  is  used to  display  the 

computed results on the computer screen.

In order to connect the computer to JTAG interface for programming and debugging, 

USB  to  JTAG  adapter  is  used.  JTAG  adapter  collaborates  with  the  software 

development environment to allow stepwise code debugging on hardware.

4.2. Camera board

There  are  already  developed  camera  platforms  with  low  power  microcontroller 
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interface

RS232 
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Interface 

External 
Connection 
U

External 
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and 2
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interfaces. Though those devices are low power, the power consumption of the image 

acquisition in wireless sensor networks is more or less same as the transmission power 

(Culuricello 2006: 39). CMUcam3 is one of those platforms which has open software. It 

provides  basic  vision  capabilities  to  small  embedded  systems  in  the  form  of  an 

intelligent  sensor.  CMUcam3  complements  the  low  cost  hardware  platform  by 

providing  a  flexible  and  easy  to  use  open  source  development  environment  which 

makes  it  a  good  candidate  to  work  with.  Additionally,  it  is  based  on  LPC2106 

microcontroller which belongs to the same family with the UWASA Node’s LPC2378 

microcontroller.

CMUcam3  basically  consists  of  two  different  boards  connected  to  each  other:  the 

camera board and the main board. Those two boards are connected to each other with 

standard 32–pin 0.1 inch headers. The processor, power connections and the FIFO chip 

of the CMUcam3 are located on the main board while the camera board only consists of 

a vision sensor and a header connected to sensors pins.  Figure 8 shows the complete 

CMUcam3 structure.
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Figure 8. CMUcam3. Camera board is on the front (CMUcam3 2011).

In this design, only the camera board of the CMUcam3 is used as vision sensor. This 

architecture aims to enable easy replacement  of  the vision sensor depending on the 

application requirements. Since the behaviour of this slave module reflects all of the 

hardware related features of CMUcam3, it may also be possible to substitute the camera 

board with another one having different specifications.

The camera board of CMUcam3 is a portable PCB circuit that integrates some passive 

components, OV6620 vision sensor, and a header. Header represents some of the vision 

sensor pins to external devices.

The  pins  available  on  the  camera  board  header  are  given  in  Table  1 with  their 

functionalities.
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Table 1. Available camera board pins and their functions.

Pin Function Pin Function

1–8 Digital Output Y Bus 17 Analogue Ground

9 Power Down Mode 18 Pixel Clock

10 Reset 19 External Clock

11 I2C Serial Data 20 +5 V DC

12 Odd Field Flag 21 Analogue Ground

13 Serial Clock 22 +5 V DC

14 Horizontal Reference 23–30 Digital Output UV Bus

15 Analogue Ground 31 Common Ground

16 Vertical Sync 32 Video Out (75 Ω)

The 8–bit data output pins are pin 1 through pin 8. Pins 23 through 30 are active only 

when the vision sensor is used in 16–bit mode so they aren't used in this design. Pins 9 

and 10 are connected directly to a GPIO pin of the processor through the test board to 

power down or reset the camera respectively. Pins 11 and 13 represent the SCCB bus 

that is used to configure camera options and it operates in a similar way to I2C standard. 

Pins 20 and 22 are 5 V DC supply voltage pins of the vision sensor. Since the UWASA 

Nodes  power  module  doesn't  provide  5  V,  a  DC to  DC conversion  from 3.3  V is 

necessary.  This  DC to DC conversion is  discussed later  in section  4.4.5 DC to DC

converter.

The  rest  of  the  pins  aren't  needed  and  not  used  in  this  design  except  horizontal 

reference, vertical sync, and pixel clock. Those three pins carry the vision sensor output 

signals which are vital for timing, synchronisation, and acquisition of the image data.

4.3. Specifications of the vision sensor

The vision sensor OV6620 which is used in the design is able to output images at a 

maximum resolution of 352 x 288 pixels up to 60 fps. It can be configured via SCCB 
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interface to output in 8–bit or 16–bit,  RGB or YCbCr colour modes. The maximum 

power  consumption  of  the  camera  is  80  mW and  operates  at  5  V DC.  It  is  not  a  

sophisticated vision sensor but since this work is focused on limited image processing, 

it is enough to show the proof of the concept.

4.3.1. Resolution

The Omnivision OV6620 vision sensor captures the images with an array of 356 x 292 

photosensors. In this vision sensor, each pixel is represented by four values: B,G,R,G.
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Table 2. Semiconductor array of the vision sensor.

Row \ Col 1 2 3 4 ... 353 354 355 356

1 B11 G12 B13 G14 B G B G

2 G21 R22 G23 R24 G R G R

3 B31 G32 B33 G34 B G B G

4 G41 R42 G43 R44 G R G R

5

...

289 B G B G B G B G

290 G R G R G R G R

291 B G B G B G B G

292 G R G R G R G R

As mentioned before, the maximum resolution that can be output is 352 x 288 but this 

resolution is achieved by generating pixels that share the same photosensor value. To 

make it clear, the first pixel is generated using elements B11, G12, R22, G21 and the second 

pixel is generated using elements B13, G12, R22, G23. Among those sets of elements G12, 

R22 are commonly used to generate two different pixels. In the elements of the third 

pixel, there will be common elements with the second one and so on. Information rate in 

the maximum resolution image can be determined by the ratio of unique information 

versus total information.

α =
U
T

= 356 ×
292

352 × 288 × 4
≈ 0.5 (20)

where,

α = Information ratio

U = Number of unique elements used to generate the image
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T = Number of total elements used to generate the image

This  result  shows  that  in  fact  the  vision  sensor  is  not  capable  of  providing  100% 

informative image at a resolution of 352 x 288 pixels. Because of that, instead of setting 

the vision sensor to generate output at maximum resolution, a mode which has lower 

resolution with the information rate of 100% is used in this design.

4.3.2. SCCB interface

The registers of the OV6620 vision sensor are configured via SCCB (Serial Camera 

Control Bus) interface. Those registers keep the values for various camera settings as 

long as the camera is continuously powered.

SCCB is  a  two wired  serial  interface  that  operates  very  similar  to  I2C standard.  It 

supports  up  to  400  kbps  serial  transfer  rate  using  7–bit  address  and  data  transfer 

protocol. Within each byte, the MSB is transferred first and the last bit of the address 

byte indicates whether the operation is read or write. Vision sensor is always a slave 

device.

Write operation in SCCB bus is initiated by firstly transmitting a start condition. After 

the  start  condition,  slave  device  is  aware  of  an  ongoing communication.  Any write 

operation consists of three bytes. The first byte is the write address of the device to be 

accessed.  It  is  a  fixed hexadecimal  value (0xC0) for the camera board used in  this 

design. The second byte is the address byte of the register, and the last byte is the value 

to be set.

Figure 9. SCCB write operation.

Write Address of 
the Slave (0xC0)

Start ACK Register Address ACK Register Value ACK Stop
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After the register value is sent, a stop condition occurs to inform the slave device that 

the communication is terminated.

Just like the write operation, the read operation is also initiated when a start condition 

occurs. However, read operation consists of two bytes. The first byte is a fixed value 

(0xC1) which is the read address of the slave device. After the master sends the read 

address of the slave, slave device outputs the value of the last written register to the bus.

Figure 10. SCCB read operation.

Similar to the write operation, a stop condition occurs to inform the master device that 

the communication is terminated.

4.3.3. Frame rate

OV6620 vision sensor can output images up to 60 frames per second. Frame rate is 

independent of the image size and is configured via SCCB registers at addresses 0x2A 

and 0x2B. 0x2A contains the frame rate adjust enable bit and the MSB of the frame rate 

value while 0x2B register contains least significant bits of the frame rate value. After 

the frame rate adjustment is enabled, 512 different levels can be selected. Frame rate 

varies from 0.21% up to 109%. For example, in case frame rate needs to be adjusted to 

10 fps, first the register values must be calculated as follows:

10 fps
60 fps

=
x%

109%
→ x = 18.16 (21)

Now the register value should be set to:

Read Address of 
the Slave (0xC1)

Start ACK Register Value Stop
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18.16
0.21

≈ 86 (22)

which corresponds to 0x56 in hexadecimal.

4.3.4. Data format

Available data formats for OV6620 vision sensor are the combinations of YCbCr or 

RGB colour modes, and 16–bit or 8–bit data modes. In the applications of this design, 

RGB with 8–bit mode is used.

RGB mode is selected by setting the fourth bit of the register at address 0x12, and 8–bit 

mode is selected by setting fifth bit of the register at address 0x13 using the SCCB bus.

4.3.5. Timing

Timing synchronisation is  done by using PCLK, HREF and VSYNC signals.  Those 

signals indicate the data bus validity, row output time duration, and start of a new frame 

respectively.

Timing diagram of the vision sensor output signals for one row duration are given in 

Figure 11.

Figure 11. Timing diagram of the vision sensor output signals for a row.

DATA

PCLK

HREF

Duration of one row
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PCLK signal is a clock signal that's why it alters its logic state continuously regardless 

of the data existence on the bus. For that reason, it is impossible to determine in which 

clocks the data is coming by only this signal. In order to clear this situation, horizontal 

reference signal stays active during the image data output time span. In other words, 

HREF signal stays active only when there is a meaningful data on the bus. HREF is an 

indication for a complete image row duration.

The  vision  sensor  starts  to  output  the  image  with  the  first  pixel  of  the  first  row, 

continues until the end of that row, and then goes on with the second row. This process 

repeats until the last row is output. After each image frame, a VSYNC signal indicating 

a start of a new frame is asserted for synchronisation. The first HREF after the VSYNC 

signal  marks  the  first  row  of  that  image.  Unlike  HREF,  VSYNC  signal  does  not 

maintain logic high level during the entire frame. How those two signals are coupled 

with each other is given in Figure 12 below.

Figure 12. HREF and VSYNC signals for one frame. VSYNC marks the start of each 
frame.

4.3.6. Auto–adjustment options

Many properties  of  image  acquisition  can  be  adjusted  automatically  by  the  camera 

rather than manually setting them. OV6620 vision sensor is able to iteratively find the 

optimum values that results the best image quality and highest SNR. Once the camera is 

powered up,  the  internal  circuitry  calculates  those  values  and set  the corresponding 

registers automatically.

HREF

VSYNC

Duration of one frame
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 Some significant properties which can be auto–adjusted are listed in Table 3.

Table 3. Automatically adjustable properties of the vision sensor.

Auto Adjustable Properties

Red, Green, Blue channel gains

Saturation Control

Contrast Control

Brightness control

Sharpness control

White balance background

Exposure control

4.3.7. Camera connection to the test board

In order to ensure physical flexibility, the camera board is connected to the test board 

via IDC cable so that it is easy to rotate by hand without moving the whole hardware.

Figure 13. Camera board is connected to the test board via IDC cable.
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Vision sensor has a lens in front of it which focuses the image on the semiconductor 

array. Depending on the interested distance, this lens must be adjusted manually for the 

best quality.

4.4. Test board

The test board is the interface between the camera board and the processor. Together 

with the camera board, it represents the prototype version of the slave camera module 

for UWASA Node.

The hardware has firstly been designed in a schematic level on the PC. The schematic 

drawings of each hardware block can be found in the appendices. Upon the completion 

of the schematic design, PCB layout was designed and routed. The three dimensional 

view of the test board PCB is represented in Figure 14.

After  the  PCB design,  the  prototype  circuit  has  been  produced  and  tested  in  both 

electrical and physical level.

The hardware elements of the test board can be divided into groups as FIFO, SRAM, 

DC to DC converter, octal bus transceiver, logic components, and passive components.
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Figure 14. Front and back of the test board in 3D view.

4.4.1. FIFO concept

FIFO, meaning First–In–First–Out in computing and electronic design, is a concept of 

organising  data  transfer  efficiently  between  the  data  source  and  destination  having 

different speeds.

The data output rate of the source and the data handling capability of the destination 

may  sometimes  be  different.  In  case  the  source  outputs  the  data  faster  than  the 

destination can handle in average, theoretically the queue would go to infinity. But in 

practice,  since the memories are limited,  such a situation results  in data loss. If  the 

source outputs the data slower than the destination can handle,  then there will  be a 

limited queue in the system.
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FIFO buffers the incoming data from the source system. The destination system which 

is capable of handling data at a faster average rate than the source system outputs, waits 

for a certain time so that a considerable amount of data is accumulated in the buffer, 

then empties the buffer quickly. This way the destination system doesn't need to handle 

the data very frequently since it has the capability of handling larger amount of data at 

once.

4.4.2. Advantage of using FIFO

In section 2.2, the average number of units in the system, in other words, the length of 

the queue is given by:

L =∑
n=0

∞

n Pn (23)

Using equation 11:

=∑
n=0

∞

n( λμ )
n

(1−λ
μ ) (24)

= λ
μ−λ (25)

If  the  camera  was  directly  connected  to  the  processor,  to  be  able  to  handle  all  the 

incoming data, there had to be no queue in front of the processor input which means L 

had to be equal to 0. If there was any data bit which wasn't handled by the processor at a 

time, and there came another bit, the one that hadn't been handled until that time would 

disappear  from  the  data  bus,  and  that  would  lead  to  inconsistency  in  the  system. 

Achieving zero length in the queue would be possible when there is an infinitely great 

handling rate μ.

Those results prove that between the camera and the processor, there must be some 

memory to buffer the data because the processor can't handle the data on the bus with 



37

infinitely  small  time  intervals.  The  write  clock  signal  from  the  camera  is  directly 

connected  to  the  FIFO  buffer,  similarly  the  read  clock  from  the  processor  is  also 

connected to the FIFO buffer and they operate independently from each other. This way 

it is ensured that all data that comes inside the buffer will stay there until the processor 

reads it.

4.4.3. FIFO chip

The  FIFO  chip  used  in  this  design  has  512  kB  x  8–bit  memory  and  completely 

independently operating input and output ports each having 8–bit data widths. Output 

ports can operate up to 80 MHz and are supported by built–in circuitry which provides 

pointer reset, data skipping and some more useful functions that make it an easy to use 

memory device.  Power supply is  rated at  3.3 V and the chip has around 55 mA of 

current consumption at given voltage.

AL440B has 44 pins in total but only the ones that have importance in this design are 

given in Table 4 below.

Table 4. Significant pins of AL440B FIFO chip and their functionalities.

Pin Function

DI[0..7], DO[0..7] Data Input Bus, Data Output Bus

WE, IE, RE, OE Write Enable, Input Enable, Read Enable, Output Enable

WCK, RCK Write Clock, Read Clock

WRST, RRST Write Reset, Read Reset

SDA, SCL Serial Data, Serial Clock

SDAEN Serial Data Enable

PLRTY Polarity of the control signals

RESET Reset FIFO chip.

IRDY, ORDY Input Ready, Output Ready

VCC, GND Supply Pin, Ground Pin
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FIFO chip has no address bus. Memory access for both write and read operations is 

conducted by write and read pointers. Those pointers are incremented by clock signals 

WCK and  RCK when  WE and  RE signals  are  active  respectively.  Write  and  read 

pointers are always incremented. When pointer reaches to the end of the memory it 

restarts from the first address. Another way to set the pointers to the initial positions is 

using WRST and RRST signals.

Data input bus of the FIFO is directly connected to the camera data output bus, and 

WCK input is connected the PCLK signal of the camera board. Hence, the data that 

comes from the vision sensor is directly written to FIFO chip. The hardware structure 

that connects the camera board to the FIFO is given in Figure 15.

Figure 15. Connection of FIFO to camera board.

Here WEE signal allows selective data reading. Details about this signal is discussed 

further in section 4.4.7.

WE and IE signals have different functionalities. If both IE and WE are active, normal 

read operation is done and write pointer is always increased with WCK. In the presence 

of WE but not IE, write pointer is increased but the data on the input bus is not written 

to internal registers. This is very useful feature for write skipping. When WE signal is 

not active, regardless of IE, both data input and WCK are disabled. Similar relation 

applies to OE and RE signals. When the output is not enabled but RE signal is active, 

DATA OUT

PCLK

HREF
WE

WCK

DATA IN
8

Camera 
Board

FIFO

WEE
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read pointer is increased for data skipping.

4.4.4. SRAM chip

SRAM is a type of semiconductor memory which is capable of keeping the register 

values continuously as long as it is powered. Unlike DRAM, SRAM doesn't need to be 

refreshed  within  certain  amount  of  time  intervals  to  be  able  to  keep  the  values  in 

registers.

The embedded applications that work with images occupy much more memory than 

ordinary  embedded  applications  because  the  image  must  somehow  be  stored  in  a 

memory. For that reason this hardware design consists of an SRAM to store the image, 

to process the image, and to keep the resulting image after processing.

SRAM used on the test board is IS61LV5128AL chip. Main features of this chip are its 

high  speed  access  time which  is  as  low as  10  ns,  power  down option,  fully  static 

operation without any clock, 3.3 V supply voltage, and 80 mA typical operating current.

The most important feature of this chip is its  access time which is only 10 ns. The 

access time from the processor side has a high scalability since it is done by external 

memory controller. EMC can be configured by the internal registers of the processor, 

and can be precisely adjusted to achieve the most efficient data handling in both reading 

and writing periods.

Pins of the SRAM and their functions are given in Table 5 below.
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Table 5: Connections available on SRAM chip.

Pin Function

A[0..18] Address Bus

CE, OE, WE Chip Enable, Output Enable, Write Enable

IO[0..7] Bidirectional Ports

VDD, GND Supply, Ground

The image that is obtained from the vision sensor has a size of 176 x 144 pixels. In raw 

image data format each pixel is represented by four bytes. Hence the size of an image 

on the memory is:

4×176×144 = 101376 B = 99 kB (26)

The EMC can address up to two adjacent memories at a size of 64 kB, so the image can  

be stored on the 128 kB reserved location on the SRAM. Since the SRAM chip has a 

size of 512 kB, four different forms of images can be stored on it and processed. The 

allocation of those extended memories is done by using two more GPIO pins connected 

to two most significant address pins. The structure that is capable of doing such an 

addressing is given below in Figure 16.
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Figure  16.  The  connection  between  SRAM  and  the  processor.  Here  addressable 
memory is quadrupled by using GPIO pins.

4.4.5. DC to DC converter

The power module of the UWASA Node doesn't have 5 V DC supply. The whole node 

operates with lower DC voltages, so does the slave modules. In order to generate a 5 V 

DC supply for the camera board, DC to DC step converter has been used on the test 

circuit.

The logic behind the DC to DC step converter is that is uses an inductor, an integrated 

switching  circuit,  and  two  capacitors  to  filter  both  the  input  and  output.  Inductor 

behaves like a short circuit in DC circuits, and like an open circuit for infinitely high 

frequency. The current equation for an RL circuit is given by (Serway & Jewett 2010: 

931):

I=
ε
R

e−t / τ
=I i e

−t / τ
(27)

Here:

16
A[0..15]

CS0

CS1

GPIO

GPIO

A[0..15]

A16

CE

A17

A18

Processor SRAM

OE OE

BLSBLS WE

D[0..7] I/O[0..7]
8
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I = Current

ε = Electromotive Force

R = Resistance

t = Time

τ = Time constant of the circuit

Equation  27 shows  that,  for  very  short  t  values  compared  to  τ,  an  inductor  has  a 

tendency  to  keep  the  flowing  current  constant  through  itself.  In  DC  to  DC  step 

converter, this small t is achieved by the switching circuit. Closing the switch makes the 

current flow through the inductor and when the switch is opened, inductor behaves as a 

current source. The rate of switching and the duty cycle determines the output voltage 

of the DC to DC converter. The application circuit of this conversion is given below in 

Figure 17.

Figure 17. Application circuit of the DC to DC converter (Maxim 2011).

4.4.6. Octal bus transceiver

Octal bus transceiver on the test board has been placed to isolate the EMC from the 

common 8–bit data bus which is accessed by both FIFO and SRAM. Like SRAM, this 
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chip also has a very high access time as low as 6 ns. It can totally isolate the EMC from 

the shared data bus or set the data direction either from EMC or to EMC.

When OE is not active it isolates the two sides of the bus but when active, data direction 

can be switched regarding to the logic state of the DIR pin located on the chip.

The aim of using such a property was to enable glue–less data transfer from FIFO to 

SRAM but due to some limitations that sort of transfer is not performed in this work.

4.4.7. Logic components

Logic components on the test board have essential importance. There are three logic 

chips which are inverter, AND gate, and a D–type Flip–Flop.

Inverter is used to alter the logic levels of some signals in order to comply with the 

active low or active high properties of the signal inputs, or to comply the logic design 

necessities.

AND gate has an important role on the communication interface between the EMC and 

the SRAM. EMC has two memory bank selection signals, namely CS0 and CS1. 16 

address pins A[0..15] of the EMC are capable of addressing 64 kB of memory at most. 

When CS0 is active, the lower 64 kB memory bank is selected and when CS1 is active 

the higher 64 kB memory bank is selected. The following logical structure in Figure 18 

is designed in order to address adjacent memory banks on the SRAM.

Figure 18. Adjacent memory bank selection logic

CS0

CS1

A16

CE
EMC SRAM
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Another logic component used in the hardware design is D–type flip–flop which has an 

important role in the image acquisition circuit. It makes the incoming data to be parsed 

in the forms of frames on the FIFO chip. The hardware design of how the image is a–

synchronised using a D–type flip–flop is represented in Figure 19.

Figure 19. Usage of the D–type flip–flop in frame acquisition.

Unless the processor does not activate ALLOW A FRAME signal, flip–flop keeps the 

WEE signal deactivated thus FIFO WE signal is never enabled. In this situation no data 

is written to FIFO. When this signal is activated and kept at high level, with the first  

VSYNC signal WEE is activated during the active periods of HREF signal, data in the 

bus will be continuously written to the FIFO register with each PCLK signal. VSYNC 

signal is also connected to WRST pin so that each frame is always written by starting 

from the first memory location of the FIFO. This makes it much more easy to handle the 

data located inside the FIFO chip.  Continuous frame transfer can easily be done by 

keeping the ALLOW A FRAME signal active.

4.4.8. Passive components

Passive components used in the circuit are some capacitors, resistors, and an inductor. 

Many of the capacitors are implemented in order to increase the noise immunity. Noise 

filtering capacitors are connected parallel to the signal to the ground. All the resistors 
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except one are used as a pull up resistor to ensure that the signal stays high unless 

desired to be low. This prevents the signals from floating when they are not driven by a 

high or low logic voltage. One resistor with a value of 0 Ω is used to isolate the ground 

of the test board from the ground of the camera board. The inductor is used to generate 

5 V supply voltage for the camera board.
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5. SOFTWARE

The software in this design defines the interaction and communication rules between the 

camera,  test  board,  and  the  processor.  Another  role  of  the  software  is  to  establish 

communication  with  a  computer  in  order  to  display  the  graphical  results  of  the 

operations as a bmp file. The software is written in C language and doesn't run on any 

operating system.

5.1. Overview of the software

The main function algorithm starts by initialising the processor and interrupts. Then it 

sets the functions of the used pins and their initial states. The LPC2378 processor has 

four ports and almost all  pins of each port can be assigned up to four different pin 

functionalities.  For  example,  pin 21 that  belongs to  port  1  can be configured to be 

operating in GPIO, USB, PWM, or SPI modes. In order to comply with the hardware 

properties, the necessary configuration is done before doing any operations.

After the initialisation of the pins, the software powers up the camera and configures the 

it to work in 8–bit RGB mode. Then the algorithm waits for some time to allow the 

camera  to  stabilise  with  its  internal  auto  adjustment  circuitry.  Following  the 

stabilisation, ALLOW A FRAME signal is set active so the FIFO grabs an image from 

the camera. After waiting for at least 1 frame duration, all the inputs to FIFO chip is 

disabled and the image is stored inside the chip. At that point, before reading the image, 

an image file header is generated. As soon as the file header is sent to computer via 

serial terminal, next step is to read the partial data and process it. Necessary signals are 

then configured to enable the read operation. Details about reading and processing the 

image are described further in section 5.4.

Finally the resultant image is sent to the computer and the software enters an infinite 

loop. Flowchart of the main function is represented in Figure 20.
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Figure 20. Flowchart of the main function.

5.2. Camera settings

Camera settings are configured using I2C peripheral. SCCB bus of the camera operates 

in a very similar way to I2C standard, so suitable processor pins are assigned to operate 

in I2C mode.

In order to set the value of any camera configuration register, firstly the address of that 

register is assigned to a char sized variable. This variable is the input parameter of the 

register setting function. After the register setting function transmits its input parameter 

as the register address, it checks for an acknowledgement. Then in the same way the 

register value is sent without transmitting a stop condition in the middle. If an error 
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occurs  during  this  process,  the  interrupt  handler  terminates  all  operations.  After  a 

register is set, the processor asks the camera to read back the value it has received in 

order to ensure the configuration is done properly.

5.3. Creating a bmp file

File format bmp is a commonly used image file format that stores digital images as a 

bitmap with its various properties like width, height, colour depth, and resolution etc. 

All those properties and many others take place in the bmp file header.

In order to write the image as a file on the hard disk of the computer, the file header 

creator function in the software automatically generates the parameters of the bmp file 

header. The structure of the bmp file format is given in Table 6 below (Frontier 2011).



49

Table 6. bmp file format. File header excludes the colour map given in the last row.

Offset Size Contents Description

00 02 “BM” Microsoft’s bmp ID word 

02 04 Varies Size in bytes of the file 

06 04 00, 00 Reserved 

10 04 Varies Offset in file where image starts 

14 04 40 Size of bitmap header 

18 04 Varies Width in pixels 

22 04 Varies Height in pixels 

26 02 1 Number of image planes (only one) 

28 02 Varies Bits per pixel (1,4,8, or 24) 

30 04 Varies Compression type 

34 04 Varies Size of compressed image (or zero) 

38 04 Varies Horizontal Res. in pixels/meter 

42 04 Varies Vertical Res. in pixels/meter 

46 04 Varies Number of colours used 

50 04 Varies Number of 'important' colours

54 04 Varies Colour Map

File header creator function creates an array according to Table 6 and then passes this 

array to another function which sends it to the computer over the serial interface. Since 

it  is  a  simple matrix  construction regarding to  the table  above, the flowchart  is  not 

represented here.

5.4. Reading from the FIFO

After a stable image is stored in FIFO, all of its input signals are disabled so the image 

is never overwritten during a read operation. As described before in section  4.4.7 the 

image  data  always  starts  from the  first  location  on  the  FIFO,  because  within  each 

incoming frame, a write reset is applied to FIFO.
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After the necessary settings are done, read clock signal is set to high level so that the 

data  is  present  on  the  bus.  In  that  moment,  pixel  data  variable  in  the  processor  is 

assigned to  the 8–bit  value on the bus,  and read clock is  lowered back.  When this 

operation is performed, FIFO automatically increments its read pointer so the next time 

read clock goes high, next value will be on the bus and so on. This process repeats itself  

up to desired number of pixels is obtained.

5.4.1. Determining the first pixel of the frame

As stated  before,  the  first  pixel  of  the  frame should  always  be  located  in  the  first 

memory location of the FIFO, but in the datasheet of the camera it is stated that in 8–bit  

RGB mode,  the first  row of the frame is  always unstable.  This puts a challenge of 

finding which byte represents the first byte of the frame. At that point live debug option 

of the compiler enabled to figure out that the byte sequence before the first byte of the 

frame follows this order in hexadecimal:

Figure 21. The unstable output sequence before a frame starts.

Here the question marks stand for a random value. Noticing that two 0x10 values follow 

each other with a random value between them before the frame starts, it was possible to 

parse the data correctly. This sequence may occur at different locations of the FIFO 

memory every time, thus a sequence detector function had to be written. The situation 

introduces instability to the system and is not mentioned in the vision sensor datasheet. 

Possible reason is that VSYNC signal is not very accurate in timing.

5.4.2. Reading and placing pixels in correct order to form a frame

In 8–bit RGB mode, the vision sensor outputs the data in the following order:

? 2nd Byte1st Byte? 0x10?0x10



51

Table 7. 8–bit RGB mode output sequence from the vision sensor.

1 2 3 4 5 6 7 8 9 10 ...

G B G R G B G R G B ...

On the other hand bmp file format has a pixel order as:

Table 8. Distribution of the colours in bmp file.

R\C 1 2 3 4 5 6 ...

1 R G B R G B

2 R G B R G B

3 R G B R G B

4 R G B R G B

5 R G B R G B

6 R G B R G B

... ...

Vision sensor output for one pixel consists of four bytes as shown in Table 7, but bmp 

file has three bytes in different order. The software firstly takes the four bytes from the 

camera and right shifts the green values once. Right shifting means division by two for 

binary numbers. After that,  adding them together will result in the average value of 

those green pixels. Placing the red value first, computed green value second and blue 

value last, there exists a three byte pixel in correct order. Repeating this operation for 

every four  bytes  and joining resultant  values  sequentially,  after  a  certain amount  of 

times, it forms one row of a frame. Similarly, after successive row computations the 

colour matrix is completed.
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5.5. Processing the image

There are countless existing image processing algorithms like image segmentation, face 

detection etc. for different application purposes. However, basically there are some very 

fundamental operations performed on the images in order to obtain those algorithms. 

One of them is Sobel operator which has a significant importance in edge detection 

algorithms. Sobel operator works on a monochrome image. It finds the gradient values 

around each pixel, and generates an output image. 

Explanation of the Sobel Operator concept, how it is applied in this design, and how to 

compute edges inside the image are discussed in this part.

5.5.1. Transformation to monochrome

The processor reads the image from the FIFO in RGB format. In order to apply edge 

detection algorithms to the image, the image needs to be transformed to monochrome 

format. Monochrome image is often represented with Y since it is the first component of 

YCbCr colour space. The transformation to the monochrome from RGB colour space is 

formally defined as:

Y = 0.2125×R + 0.7154×G + 0.0721×B (28)

Equation  28 shows  that  the  green  component  has  the  most  contribution  to  the 

monochrome image because the human eye is much more sensitive to green than the 

other colours.

Since the aim of this work is to test image processing feasibility within the context of 

limited  image  processing,  instead  of  following  the  formal  transformation  equation, 

software uses an approximation which saves computation power.

The approximation to the formal transformation applied in the software follows that:
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Y =
1
4
×R +

5
8
×G +

1
8
×B (29)

It should be noted that the coefficients of the colour components are very easy to obtain 

by  using  simple  bitwise  right  shift  operation  and  addition.  Of  course  this  method 

introduces some error but on the other hand it is a very easy and fast way compared to 

having multiplication with fractional numbers and summing them for all the pixels of 

the image.

5.5.2. Gradient calculation

Once the monochrome image is formed, Sobel operator can be applied on it. Definition, 

usage and explanation of Sobel operator has been described in section 2.4 before. Again, 

to reduce computational power, some modifications are applied to this original method 

and explained.

The Sobel operator has only +2, +1, 0, -1, and -2 coefficients in the matrix. Among 

those  values,  only  +2  and  -2  needs  multiplication  operation  but  since  they  can  be 

obtained with bitwise left shift operation, just summation after left shifting solves the 

computation in the kernel.

Convolution in two dimension for image processing has been described in section 2.3. 

Same two dimensional convolution operations are performed for computation of both 

the horizontal and the vertical gradients. Once the Gx and the Gy  orthogonal gradients 

are obtained as a vector, the magnitude of the vectorial sum must be calculated to find 

total gradient value.

At this point a problem arises with the computation of big gradient values. The values of 

the  pixels  are  represented  by  256  levels  ranging  from 0x00  up  to  0xFF  values  in 

hexadecimal  notation.  In  order  to  compute  the  magnitude,  the  square  of  those  two 

orthogonal gradient values must be calculated and added together, then the square root 

operator must be applied.
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Assuming that both horizontal and vertical convolution kernels computed the values of 

0xFF, taking the second power of 255 and adding same two numbers results in 130050. 

This number can't be represented by char or short type of variable, thus a 32–bit integer 

must be assigned to store this value. Square root computation is not a very easy task for 

computers compared to addition, multiplication etc. Here the operation needs a lot of 

computation because square root operation must be performed for every pixel of the 

image. For that reason, iterative square root calculation technique called Babylonian 

Square Root is applied. This method has been explained in section 2.5 before.

In order to justify this approximation, giving an example from the image processing 

software would be appropriate. Let x and y gradients be 0xF4 and 0xA5 respectively. 

Sum of  second powers  of these two numbers is  86761 and the square root  of it  is 

295.552 precisely in decimal. Here it should be noted that another problem in Sobel 

operator  application  is  that  the  gradient  magnitude  can  exceed  the  value  what  an 

unsigned char variable can represent. That's why the calculated magnitude is later scaled 

down to three quarter. Iterations given below show how fast and accurate Babylonian 

Square Root technique is. Software always takes 180 as initial estimation because it is 

half of the maximum gradient magnitude.

x0 ≈ 180 (30)

x1 =
1
2 (x0+

S
x0

)= 1
2 (180+

86761
180 )= 1461 (31)

x2 =
1
2 (x1+

S
x1

) =
1
2 (1461+

86761
1461 )= 760 (32)

x3 =
1
2 (x2+

S
x2

) =
1
2 (760+

86761
760 ) = 437 (33)

x4 =
1
2 ( x3+

S
x3

) =
1
2 (437+

86761
437 )= 317 (34)
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x5 =
1
2 (x4+

S
x4

)= 1
2 (317+

86761
317 )= 295 (35)

Here very accurate result is achieved after the 5th iteration but 4th iteration is also close 

to the result with an error of:

∣317−295∣
295

= 7.5 % (36)

For the algorithm which is applied in this software, this error rate is acceptable because 

the error rate is proportional to how big the number is, thus it doesn't seriously affect the 

ratio between the gradients of different points.

Now  the  gradient  magnitude  is  calculated  for  a  given  pixel,  it  is  placed  in  the 

corresponding locations of all pixels of the output image. Gradient values are coded on 

the output image in grayscale format.

5.5.3. Edge detection

Edge detection is done by filtering the resultant gradient image that is obtained after the 

application of Sobel algorithm. 

Firstly a threshold value of the filter is chosen. The gradient values which are below this 

threshold will be coded as black, and the values that are greater than the threshold can 

either be coded as pure white or the gradient value itself. Gradient image is in fact the 

edge detected image with a zero threshold.  Setting the threshold value to maximum 

level will of course result in a pure black image.

Applying the Sobel operation over the image twice results in an approximation of 

Laplace transform of the image, but in this work it is not performed.
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6. EXPERIMENTS AND RESULTS

In  this  section  the  acquired  images,  their  transformations  to  monochrome  format, 

gradient  detected  format,  and  edge  detected  formats  with  different  parameters  are 

represented.

6.1. Captured image

A captured image of a paper that consists of the primary colours red, green, and blue on 

it is depicted below in Figure 22.

Figure 22. A captured image depicting the primary colours of RGB colour space.

This image is in a raw form after receiving from the camera. It was sent directly to the 

computer as a bmp file in 176 x 144 resolution.

6.2. Monochrome transformed image

As it  is  described in  the  software  chapter,  the  monochrome transformation  that  the 

software computes is obtained by using the multiples of two in order to achieve high 

performance. Since the results are obtainable by implementing bitwise operations, using 

fractional numbers and using mathematical operators are avoided.
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Figure 23. RGB and monochrome coded images of the same object.

The  Figure  23 above shows  two  pictures  of  the  same object  taken  from the  same 

location at different times. The image on the left is captured and directly sent to the 

computer as a bmp file without any operation, and the one on the right is captured and 

transformed to monochrome format before being sent to the computer as a bmp file. The 

transformation is done by using monochrome.

Another example of the transformation is shown in  Figure 24. Notice that the output 

image from the vision sensor is not scaled to match with the horizontal versus vertical 

ratio  of  the  object.  The  pen  seems  thicker  than  it  really  is.  This  situation  can  be 

corrected by finding the camera calibration parameters and scaling the image with those 

parameters.

Figure  24. Two  monochrome  transformed  images.  Camera  doesn't  provide  scaled 
images in 8–bit RGB mode.

Though the images were transformed by avoiding more complicated arithmetic, results 

seem satisfactory.
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6.3. Gradient calculated image

As described in section  2.4,  gradient of the image is calculated with horizontal  and 

vertical  convolution kernels.  Using a 3x3 kernel over the monochrome images, first 

derivatives of the images are approximated as shown illustrations in this section.

The  gradient  magnitudes  of  the  images  below are  computed  by  using  Babylonian 

Square Root approximation with four step iteration. This method was already described 

in 2.5. It allows easy square root calculation without dealing with a lot of computations 

in order to find precise square root values of big numbers. Since this operation is done 

for every single pixel, it is quite beneficial for performance.

Figure 25. Original, monochrome, and the first derivative (gradient) of some images.

Here it should be noted that after the Sobel operation, the last column and the last raw of 

the gradient images are missing. In order to compute a gradient value for those pixels, 
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there should be further pixels to calculate how much they differ from each other. That's 

why those values can not be computed.

6.4. Edge detected image

Edge detection of an image is done by applying a filter over the gradient calculated 

image. Application of the filter is as simple as coding black level for the pixels that have 

a gradient value lower than a threshold level.

Different  threshold  levels  introduce  various  results  with  different  noise  levels. 

Depending on the application and the environmental conditions, the optimum threshold 

level should be determined.

Figure 26. Original image in RGB format.

The results below illustrate the edge detection for the object in Figure 26 with different 

threshold levels.
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Figure 27. Original, monochrome, and edge detected images using various parameters.

The gradient image here is just a special case of the edge detected image with zero 

filtering level. Parameters of the edge detected images from top left to bottom right are 

0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, and lastly 0xFF in hexadecimal. Filtering the 

image with maximum threshold level results in black image.

6.5. Data compression on edge detected images

Data compression in wireless sensor networks is directly related to the transmission 

amount  that's  why  it  is  quite  important  in  the  means  of  power  consumption. 

Compressing  the  amount  of  transmitted  data  doesn't  only  mean  the  reduction  of 

transmission power, but also means increased security. In  Figure 27 the edge detected 

pictures either have white or black colours. Instead of transmitting the whole picture, 

just the white pixel coordinates can be transmitted.

For any pixel, both vertical and horizontal coordinate can be represented by one byte, 
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totalling in two bytes. But in a grayscale image, one pixel value is coded with a single  

byte, for that reason it may not always be beneficial to transmit the coordinates instead 

of the whole image.

Assume that the pictures shown in Figure 27 starting from the top left, down to bottom 

right are numbered from 1 to 9.  Figure 28 shows the amount of transmission data in 

both the full transmission case and the coordinate transmission case for each picture.

Figure 28. The amount of data to transmit for pictures 1–9.

Since the first  three pictures have more white pixels than the black pixels, it  is  not 

beneficial to choose coordinate transmission. In that case, transmitting only the black 

pixel coordinates would inverse the situation. Since this work doesn't focus deeply on 

transmission algorithms, only the idea is presented.

The ratios between full transmission and coordinate transmission for each image are 

listed in Table 9 by percentages.
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Table 9. Image sizes using coordinate transmission compared to original from.

Picture
Image size using 

coordinate transmission

1 200%

2 198%

3 117%

4 63%

5 17%

6 8%

7 5%

8 3%

9 0%

Although  using  the  threshold  levels  in  number  8  and  9  may  seem the  best  option 

regarding to image sizes, they probably may not represent sufficient information. The 

optimum  edge  detection  threshold  must  be  chosen  depending  on  the  application 

criterias.

6.6. Usage of EMC and SRAM

The current configuration of the design that generates the images represented in this 

work, the EMC of the processor and SRAM weren't used. In order to demonstrate that  

the data transfer between the processor and the SRAM is possible, a test is represented 

in this section.

The code used in the test is given below:
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Here the software creates a small two–dimensional array called  frame  on the internal 

memory, and assigns the characters of  UWASA word to its elements. Then the SRAM 

pointer  s_p is  assigned  to  the  previously  allocated  external  memory  block  on  the 

SRAM.  The  function  called  switch_track here  is  necessary  for  data  direction 

configuration on the test board. After that, using EMC, the elements of the frame matrix 

are  written  from  internal  memory  to  the  external  SRAM  memory.  Following  that 

operation, the UART interface is initialised, and the UART pointer  u_p points to the 

external memory that is previously written by s_p.  Finally, the processor sends those 

values to computer by directly reading from external SRAM in order to ensure that the 

operation is successful.
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Figure 29. Characters of UWASA were sent directly from external SRAM to computer.

In this test a memory bank on the SRAM was allocated as a variable called space0. This 

memory location behaves like it internally exists inside the processor. As illustrated in 

here, a variable on that memory location can be created and used. The EMC peripheral 

of the processor makes this operation possible.
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7. CONCLUSIONS

It would be appropriate to say that this work has achieved two major goals. The primary 

goal at first sight was to design a slave module for the UWASA Node in order to make it 

capable of image acquisition, transmission, and processing.

The primary goal has been achieved when the proposed hardware architecture which 

consists of a camera board, a processor and a new designed hardware interface has been 

successfully produced as a prototype and tested. The test board has provided a working 

platform to identify and troubleshoot the problems which had been faced during the 

development process. The test board and the camera board together have represented 

the behaviour of the slave camera module which may be adapted to UWASA Node. If a 

camera module needs to be produced based on the work here, it  is verified that the 

schematic structure can be applied without any problem. Even though the test board was 

produced in rather big dimensions to enable easy production, the slave module can be 

designed in a form as small as approximately 15 cm2.

The secondary goal attained has been the development of convolution, monochrome 

image transformation, gradient calculation, and edge detection algorithms. Instead of 

doing complex calculations in a formalised way, some easy computation methods for 

those  algorithms  have  been  introduced.  Here  it  should  be  noted  that  those  easy 

computation  methods  were  chosen  and employed  appropriately  to  prevent  mistaken 

results. In the end, all those methods verified to fulfil the requirements.

Although the images provided by the vision sensor don't have very good quality due to 

the  fact  that  it  was  designed  more  than  ten  years  ago,  the  feasibility  of  the  image 

processing inside the UWASA wireless sensor node has been proven.

In future, the edge detection method demonstrated in here can be developed further into 

contour detection, then into image segmentation, and finally into object identification. 

On  the  contrary,  it  would  also  be  a  good  decision  to  optimise  and  improve  the 

capabilities of the existing algorithms before moving further. Although the hardware can 
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currently be produced, the efficient utilisation of the SRAM chip, and redesigning the 

test board with minor improvements can bring this design into a finalised work. In case 

the camera board has to be replaced, moderate level changes would be necessary. In that 

case, of course a new prototype should be tested.
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APPENDICES

APPENDIX 1. Schematic design of the hardware blocks on the board.
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APPENDIX 2. Schematic design of the 5 V regulator.
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APPENDIX 3. Schematic design of the camera bus.
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APPENDIX 4. Schematic design of the FIFO.
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APPENDIX 5. Schematic design of the SRAM.
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APPENDIX 6. Schematic design of the switching circuit.
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APPENDIX 7. Schematic design of external pin processor connections.
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APPENDIX 8. PCB top layer.
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APPENDIX 9. PCB bottom layer.
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APPENDIX 10. Top and bottom views of the test board.
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