2 research outputs found

    Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks

    Get PDF
    [EN] Although knowledge of the microstructure of food of vegetal origin helps us to understand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques¿Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)¿when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbita pepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. The comparison showed that the classifiers based on CNN produced a better fit, obtaining F1¿score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.Oblitas, J.; Mejía, J.; De-La-Torre, M.; Avila-George, H.; Seguí Gil, L.; Mayor López, L.; Ibarz, A.... (2021). Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks. Applied Sciences. 11(4):1-13. https://doi.org/10.3390/app11041581S113114Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006Fito, P., LeMaguer, M., Betoret, N., & Fito, P. J. (2007). Advanced food process engineering to model real foods and processes: The «SAFES» methodology. Journal of Food Engineering, 83(2), 173-185. doi:10.1016/j.jfoodeng.2007.02.017Topete-Betancourt, A., De D. Figueroa-Cárdenas, J., Morales-Sánchez, E., Arámbula-Villa, G., & Pérez-Robles, J. F. (2019). EVALUATION OF THE MECHANISM OF OIL UPTAKE AND WATER LOSS DURING DEEP-FAT FRYING OF TORTILLA CHIPS. Revista Mexicana de Ingeniería Química, 19(1), 409-422. doi:10.24275/rmiq/alim605Silva-Jara, J. M., López-Cruz, R., Ragazzo-Sánchez, J. A., & Calderón-Santoyo, M. (2019). Antagonistic microorganisms efficiency to suppress damage caused by Colletotrichum gloeosporioides in papaya crop: Perspectives and challenges. Revista Mexicana de Ingeniería Química, 19(2), 839-849. doi:10.24275/rmiq/bio788Aguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67(1-2), 3-11. doi:10.1016/j.jfoodeng.2004.05.050Pieczywek, P. M., & Zdunek, A. (2012). Automatic classification of cells and intercellular spaces of apple tissue. Computers and Electronics in Agriculture, 81, 72-78. doi:10.1016/j.compag.2011.11.006Mayor, L., Pissarra, J., & Sereno, A. M. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326-339. doi:10.1016/j.jfoodeng.2007.06.038Mebatsion, H. K., Verboven, P., Verlinden, B. E., Ho, Q. T., Nguyen, T. A., & Nicolaï, B. M. (2006). Microscale modelling of fruit tissue using Voronoi tessellations. Computers and Electronics in Agriculture, 52(1-2), 36-48. doi:10.1016/j.compag.2006.01.002Oblitas-Cruz, J. F., Castro-Silupu, W. M., & Mayor-López, L. (2015). Effect of different combinations of size and shape parameters in the percentage error of classification of structural elements in vegetal tissue of the pumpkin Cucurbita pepo L. using probabilistic neural networks. Revista Facultad de Ingeniería Universidad de Antioquia, (78). doi:10.17533/udea.redin.n78a04Meng, N., Lam, E. Y., Tsia, K. K., & So, H. K.-H. (2019). Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning. IEEE Journal of Biomedical and Health Informatics, 23(5), 2091-2098. doi:10.1109/jbhi.2018.2878878Adeshina, S. A., Adedigba, A. P., Adeniyi, A. A., & Aibinu, A. M. (2018). Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks. 2018 14th International Conference on Electronics Computer and Computation (ICECCO). doi:10.1109/icecco.2018.8634690Aliyu, H. A., Sudirman, R., Abdul Razak, M. A., & Abd Wahab, M. A. (2018). Red Blood Cell Classification: Deep Learning Architecture Versus Support Vector Machine. 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS). doi:10.1109/icbaps.2018.8527398Reddy, A. S. B., & Juliet, D. S. (2019). Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. 2019 International Conference on Communication and Signal Processing (ICCSP). doi:10.1109/iccsp.2019.8697909Mayor, L., Moreira, R., & Sereno, A. M. (2011). Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. Journal of Food Engineering, 103(1), 29-37. doi:10.1016/j.jfoodeng.2010.08.031Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., Bazan, K., & Avila-George, H. (2019). Classification of Cape Gooseberry Fruit According to its Level of Ripeness Using Machine Learning Techniques and Different Color Spaces. IEEE Access, 7, 27389-27400. doi:10.1109/access.2019.2898223Valdez-Morones, T., Perez-Espinosa, H., Avila-George, H., Oblitas, J., & Castro, W. (2018). An Android App for detecting damage on tobacco (Nicotiana tabacum L.) leaves caused by blue mold (Penospora tabacina Adam). 2018 7th International Conference On Software Process Improvement (CIMPS). doi:10.1109/cimps.2018.8625628Castro, W., Oblitas, J., Chuquizuta, T., & Avila-George, H. (2017). Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. Journal of Cereal Science, 74, 194-199. doi:10.1016/j.jcs.2017.02.002De-la -Torre, M., Zatarain, O., Avila-George, H., Muñoz, M., Oblitas, J., Lozada, R., … Castro, W. (2019). Multivariate Analysis and Machine Learning for Ripeness Classification of Cape Gooseberry Fruits. Processes, 7(12), 928. doi:10.3390/pr7120928Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P. A., & Carbonero-Ruz, M. (2011). Evolutionary q-Gaussian radial basis function neural networks for multiclassification. Neural Networks, 24(7), 779-784. doi:10.1016/j.neunet.2011.03.014Huang, W., Oh, S.-K., & Pedrycz, W. (2014). Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Networks, 60, 166-181. doi:10.1016/j.neunet.2014.08.007Zhou, Y., Nejati, H., Do, T.-T., Cheung, N.-M., & Cheah, L. (2016). Image-based vehicle analysis using deep neural network: A systematic study. 2016 IEEE International Conference on Digital Signal Processing (DSP). doi:10.1109/icdsp.2016.7868561Toliupa, S., Tereikovskyi, I., Tereikovskyi, O., Tereikovska, L., Nakonechnyi, V., & Kulakov, Y. (2020). Keyboard Dynamic Analysis by Alexnet Type Neural Network. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi:10.1109/tcset49122.2020.235466Lu, S., Lu, Z., & Zhang, Y.-D. (2019). Pathological brain detection based on AlexNet and transfer learning. Journal of Computational Science, 30, 41-47. doi:10.1016/j.jocs.2018.11.008Kraus, O. Z., Ba, J. L., & Frey, B. J. (2016). Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics, 32(12), i52-i59. doi:10.1093/bioinformatics/btw252Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 72(1), 39-55. doi:10.1016/j.jfoodeng.2004.11.017Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of Food Engineering, 61(1), 3-16. doi:10.1016/s0260-8774(03)00183-3Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLOS Computational Biology, 14(12), e1006613. doi:10.1371/journal.pcbi.1006613Rohmatillah, M., Pramono, S. H., Rahmadwati, Suyono, H., & Sena, S. A. (2018). Automatic Cervical Cell Classification Using Features Extracted by Convolutional Neural Network. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). doi:10.1109/eeccis.2018.8692888Sadanandan, S. K., Ranefall, P., & Wählby, C. (2016). Feature Augmented Deep Neural Networks for Segmentation of Cells. Computer Vision – ECCV 2016 Workshops, 231-243. doi:10.1007/978-3-319-46604-0_17Sharma, M., Bhave, A., & Janghel, R. R. (2019). White Blood Cell Classification Using Convolutional Neural Network. Soft Computing and Signal Processing, 135-143. doi:10.1007/978-981-13-3600-3_13Song, W., Li, S., Liu, J., Qin, H., Zhang, B., Zhang, S., & Hao, A. (2019). Multitask Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition. IEEE Journal of Biomedical and Health Informatics, 23(3), 1215-1224. doi:10.1109/jbhi.2018.2852718Akram, S. U., Kannala, J., Eklund, L., & Heikkila, J. (2016). Cell proposal network for microscopy image analysis. 2016 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2016.753295
    corecore