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Abstract   

This paper presents the quantification of uncertain natural frequency for laminated composite 

plates by using a novel surrogate model. A group method of data handling in conjunction to 

polynomial neural network (PNN) is employed as surrogate for numerical model and is 

trained by using Latin hypercube sampling. Subsequently the effect of noise on a PNN based 

uncertainty quantification algorithm is explored in this study. The convergence of the 

proposed algorithm for stochastic natural frequency analysis of composite plates is verified 

and validated with original finite element method (FEM). Both individual and combined 

variation of stochastic input parameters are considered to address the influence on the output 

of interest. The sample size and computational cost are reduced by employing the present 

approach compared to direct Monte Carlo simulation (MCS).  
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1. Introduction 

     Laminated composite plates are extensively used in aerospace, civil, marine and many 

other engineering applications due to the benefit of light-weightiness without compromising 

its strength and stiffness requirement. As modern weight-sensitive structures made of 

composite materials require more critical and complex design, the need for an accurate 

approach to assess the underlying uncertainties in the model, geometry, material properties, 

manufacturing process and operational environments has increased significantly. In the 

conventional deterministic analysis of structures, the variations in the system parameters are 

neglected and mean values of system parameters are used in the analysis with some factor of 

safety that may often lead to a conservative design. Due to the dependency on a large number 

of parameters in complex production and fabrication processes of laminated composite plate, 

the system properties can be random in nature resulting in uncertainty in the response of the 

laminated composite plate. Therefore, to well define the original problems and enable a better 

understanding and characterization of the actual behavior of the laminated composite 

structures, it is of prime importance that the inherent randomness in system parameters is 

incorporated in the analysis. To establish the reliability of such structures, application of 

computational power has favored the development of high-fidelity finite element models to 

deal with industrial problems. In spite of advances in capacity and speed of computer, the 

enormous computational cost of running complex, high fidelity scientific and engineering 

simulations makes it impractical to rely exclusively on simulation codes for the purpose of 

uncertainty quantification. Hence these high-fidelity models however own the drawback that 

they can be very time consuming so that only a few runs of the model can be affordable. Thus 

these models are practically unusable in computationally intensive methods such as traditional 

Monte Carlo simulation based approach, which needs thousands of finite element simulations. 

To overcome this lacuna generally surrogate based approach is utilized for uncertainty 

quantification of computationally intensive models. 



  

Considerable researches based on deterministic analysis have been carried out on free 

vibration analysis of composite plates using classical laminated plate theory (CLPT) [1], first 

order shear deformation theory (FSDT) [2], higher order shear deformation theory (HSDT) 

[3] and three-dimensional (3-D) elasticity theory [4]. A considerable volume of literature is 

available on different analyses of laminated composites considering both deterministic [5-8] 

and stochastic [9-12] approaches. Based on higher-order theory, Naveenthraj et al. [13] 

studied the linear static response of graphite-epoxy composite laminates with randomness in 

material properties by using combination of finite element analysis and Monte Carlo 

simulation (MCS). Further Salim et al. [14] examined the effect of randomness in material 

properties such as elastic modulus Poisson’s ratios etc. on the response statistics of a 

composite plate subjected to static loading using CLPT in conjunction with first order 

perturbation techniques (FOPT). Onkar and Yadav [15] investigated the nonlinear response 

statistics of composite-laminated flat panels with random material properties subjected to 

transverse random loading based on CLPT in conjunction with FOPT. Giunta et al. [16] 

studied the free vibration of composite plates using refined theories accounting for 

uncertainties. The random vibration problem deals with big data of several stochastic input 

parameters wherein the dimension of stiffness matrix and number of iteration reduces the 

computational efficacy. The curse of dimensionality is a potential challenge related with the 

fact that the convergence of any estimator to the true value of a smooth function defined on a 

space of high dimension is very slow. This means that, a priori, an ample amount of 

observations are required to obtain a good estimated function of the parameter of interest. 

This problem can be solved by using suitable reduced order model (ROM). Many researchers 

used ROM in different applications such as high dimensional model representation (HDMR) 

[17-18], Kriging [19-20], artificial neural network [21-22], polynomial regression model [23-

25]. Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos 

expansion is reported recently [26]. Relatively little efforts have been made in the past by the 



  

researchers and investigators on using polynomial neural network (PNN) model for the 

prediction of random system properties. Zjavka [27] employed the polynomial neural network 

model for forecasting the correct wind speed while Gómez-Ramírez et al. [28] investigated on 

forecasting time series with a new architecture for polynomial artificial neural network. Zhang 

et al. [29] studied the cross-validation based weights and structural analysis by Chebyshev-

polynomial neural networks. Xin et al. [30, 31] investigated on monotonicity and convergence 

of asynchronous update gradient method and with penalty using ridge polynomial neural 

network while Roh et al. [32, 33] studied on fuzzy linear regression and radial basis function 

based on PNN. Recently, Huang et al. [34], Oh et al. [35] and Fazel Zarandi et al. [36] also 

studied the fuzzy polynomial neural networks with respective applications. Maric [37] 

introduced the self-organizing polynomial neural networks for solving the optimization 

problem while Dorn et al. [38] studied on group method of data handling (GMDH) - 

polynomial neural network-based method to predict approximate three-dimensional structures 

of polypeptides. To the best of the authors’ knowledge, there is no literature covering the 

uncertainty quantification of natural frequencies in laminated composite structures using the 

polynomial neural network model. Moreover, the analysis of noise on such surrogate based 

uncertainty quantification algorithms is first attempted in this study. 

In the present study, stochastic natural frequencies of laminated composite plates are 

analyzed in the presence of small random variation in the systems input variables. A 

polynomial neural network model is developed to reduce the computational time with 

adequate level of accuracy. The finite element formulation in conjunction with PNN model is 

thereby utilized to map the variation of responses of interest for randomness in layer-wise 

input parameters with different level of noise.  

 



  

 

Fig. 1 Laminated composite cantilever plate 

2. Mathematical formulation 

     Consider a rectangular composite laminated cantilever plate of uniform length L, width b, 

and thickness t, which consists of three plies located in a three-dimensional Cartesian 

coordinate system (x, y, z), where the x–y plane passes through the middle of the plate 

thickness with its origin placed at the corner of the cantilever plate as shown in Figure 1. The 

composite plate is considered with uniform thickness with the principal material axes of each 

layer being arbitrarily oriented with respect to mid-plane. If the mid-plane forms the x-y plane 

of the reference plane, then the displacements can be computed as  

 0( , , ) ( , ) ( , )xu x y z u x y z x yθ= −   
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Assuming u, v and w are the displacement components in x-, y- and z-directions, respectively 

and u
0
, v

0
 and w

0
 are the mid-plane displacements, and θx and θy are rotations of cross-

sections along the x- and y-axes. The strain-displacement relationships for small deformations 

can be expressed as  
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which in matrix form can be expressed as 
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where 000 ,, xyyx γεε are the strains in the reference plane and xyyx kkk ,, are the curvatures of 

reference plane of the plate. The random in-plane forces and moments acting on small 

element and the transverse shear forces (per unit length) are 
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The stress-strain relationship for each ply can be expressed in matrix form 
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where )]([ ωijQ is the stiffness matrix of the ply in x-y co-ordinate system and expressed as  
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Here )(sin ωθ=m  and )(cos ωθ=n , wherein )(ωθ  is the random fibre orientation angle. 

However, laminate consists of a number of laminae wherein [Qij] and )]([ ωijQ  denotes the 

on-axis elastic constant matrix and the off-axis elastic constant matrix, respectively. In matrix 



  

form, the in-plane stress resultant {N}, the moment resultant {M}, and the transverse shear 

resultants {Q} can be expressed as 

 { } 0[ ]{ } [ ]{ }N A B kε= +      and      { } 0[ ]{ } [ ]{ }M B D kε= +  

(7) 
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The elasticity matrix of the laminated composite plate is given by, 
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where 
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where αs is the shear correction factor and is assumed as 5/6. Now, the mass per unit area is 

denoted by P and is given by 
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The element mass matrix is expressed as 
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The element stiffness matrix is given by 
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 The Hamilton’s principle [39] is employed to study the dynamic nature of the composite 

structure. The principle used for the Lagrangian which is defined as 



  

WUTL f −−= where T, U and W are total kinetic energy, total strain energy and total 

potential of the applied load, respectively. The Hamilton’s principle applicable to non-

conservative system can be expressed as, 
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The energy functional for Hamilton’s principle is the Lagrangian (Lf) which includes kinetic 

energy (T) in addition to potential strain energy (U) of an elastic body. The expression for 

kinetic energy of an element is given by 
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The potential strain energy for an element of a plate can be expressed as,   
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The Langrange’s equation of motion is given by 
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where {Fe} is the applied external element force vector of an element and Lf is the Lagrangian 

function. Substituting Lf = T – U, and the corresponding expressions for T and U in 

Lagrange’s equation, one obtains the dynamic equilibrium equation for free vibration of each 

element in the following form [40] 

 0}{)]([}{)]([ =+ eeee KM δωδω ��  (18) 

 

After assembling all the element matrices and the force vectors with respect to the common 

global coordinates, the resulting equilibrium equation is obtained. For the purpose of this 

study, the finite element model is developed for different element types and finite element 

discretization and nodal positions of the driving point and measurement point. Considering 

randomness of input parameters like ply-orientation angle, thickness, elastic modulus and 



  

mass density etc., the equation of motion of a linear free vibration system with n degrees of 

freedom can expressed as 

 0)()]([)()]([ =+ tKtM δωδω ��  (19) 

 

where K(ω )  ϵ  R
n x n

 is the elastic stiffness matrix, M(ω ) ϵ  R
n x n

 is the mass matrix and δ(t) 

ϵ R
n  

is the vector of generalized coordinates. The governing equations are derived based on 

Mindlin’s theory incorporating rotary inertia, transverse shear deformation [41] using an eight 

noded isoparametric plate bending element [42]. The composite cantilever plate is assumed to 

be under free vibration and the natural frequencies of the system are obtained as: 
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Here )(ωλ j  is the j -th eigenvalue of matrix )()(1 ωω MKA
−=  and rn  indicates the number 

of modes retained in this analysis. 

 

3. Polynomial neural network  

    In general, the Polynomial Neural Network (PNN) algorithm [43-45] is the advanced 

succession of Group Method of Data Handling (GMDH) method wherein different linear, 

modified quadratic, cubic polynomials are used. By choosing the most significant input 

variables and polynomial order among various types of forms available, the best partial 

description (PD) can be obtained based on selection of nodes of each layer and generation of 

additional layers until the best performance is reached. Such methodology leads to an optimal 

PNN structure wherein the input–output data set can be expressed as 

 

),......,,,(),( 321 iniiiiii yxxxxYX = where i=1,2,3……..n (21) 

By computing the polynomial regression equations for each pair of input variable ix  and jx  

and output Y of the object system which desires to modeling 
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where A, B, C, D, E, F are the coefficients of the polynomial equation. This provides 

2/)1( −nn  high-order variables for predicting the output Y in place of the original n 

variables ),........,,( 21 nxxx . After finding these regression equations from a set of input-output 

observations, we then find out which ones to save. This gives the best predicted collection of 

quadratic regression models. We now use each of the quadratic equations that we have just 

computed and generate new independent observations that will replace the original 

observations of the variables ),........,,( 21 nxxx . From these new independent variables we will 

combine them exactly as we did before. That is, we compute all of the quadratic regression 

equations of Y versus these new variables. This will provide a new collection of 

2/)1( −nn regression equation for predicting Y from the new variables, which in turn are 

estimates of Y from above equations. Now the best of new estimates is selected to generate 

new independent variables from selected equations to replace the old, and combine all pair of 

these new variables. This process is continued until the regression equations begin to have a 

poorer predictability power than did the previous ones.  In other words, it is the time when the 

model starts to become overfitted. The estimated output iŶ can be further expressed as 
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where kji ,, =1,2,3……..n 

(23) 

 

where ),......,,( 21 nxxxX is the input variables vector and ,........),,,( 0 ijkiji DCBAP  is vector of 

coefficients or weight of the Ivakhnenko polynomials. Components of the input vector X can 

be independent variables, functional forms or finite difference terms. This algorithm allows to 

find simultaneously the structure of model and model system output on the values of most 



  

significant inputs of the system. The following steps are to be performed for the framework of 

the design procedure of PNN:  

 

Step1: Determination of input variables: Define the input variables as nxi ,......3,2,1=  related 

to output variable Y. If required, the normalization of input data is also completed. 

Step 2: Create training and testing data: Create the input–output data set )(n and divide into 

two parts, namely, training data )( trainn and testing data )( testn  where testtrain nnn += . The 

training data set is employed to construct the PNN model including an estimation of the 

coefficients of the partial description of nodes situated in each layer of the PNN. Next, the 

testing data set is used to evaluate the estimated PNN model. 

 
 

Step 3: Selection of structure: The structure of PNN is selected based on the number of input 

variables and the order of PD in each layer. Two kinds of PNN structures, namely a basic 

PNN and a modified PNN structure are distinguished. The basic taxonomy for the 

architectures of PNN structure is furnished in Figure 2. 

 

                      

Fig. 2 Taxonomy for architectures of PNN 

 

Step 4: Determination of number of input variables and order of the polynomial: Determine 

the regression polynomial structure of a PD related to PNN structure. The input variables of a 

node from n input variables nxxxx ......,,, 321  are selected. The total number of PDs 

located at the current layer differs according to the number of the selected input variables 

from the nodes of the preceding layer. This results in !)!!(/! rrnnk −=  nodes, where r is the 



  

number of the chosen input variables. The choice of the input variables and the order of a PD 

itself help to select the best model with respect to the characteristics of the data, model design 

strategy, nonlinearity and predictive capability. 

 

Step 5: Estimation of coefficients of PD: The vector of coefficients iA  is derived by 

minimizing the mean squared error between iY  and iŶ . 

2

1

)ˆ(
1
∑

=

−=
trainn

i

ii

train

YY
n

PI  
(24) 

where PI represents a criterion which uses the mean squared differences between the output 

data of original system and the output data of the model. Using the training data subset, this 

gives rise to the set of linear equations 
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The coefficients of the PD of the processing nodes in each layer are derived in the form 
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with the following notations i as the node number, k as the data number, trainn  as the number of 

the training data subset, n as the number of the selected input variables, m as the maximum 

order, and n′ as the number of estimated coefficients. This procedure is implemented 

repeatedly for all nodes of the layer and also for all layers of PNN starting from the input 

layer and moving to the output layer. 



  

 

                                                                    

Fig. 3 Flowchart of stochastic natural frequency analysis using PNN model 

 

Step 6: Selection of PDs with the best predictive capability: Each PD is estimated and 

evaluated using both the training and testing data sets. Then we compare these values and 

choose several PDs, which give the best predictive performance for the output variable. 

Usually a predetermined number W of PDs is utilized. 

Step 7: Check the stopping criterion: The stopping condition indicates that a sufficiently good 

PNN model is accomplished at the previous layer, and the modelling can be terminated. This 



  

condition reads as 
j

PI  > PI* where 
j

PI  is a minimal identification error of the current layer 

whereas PI* denotes a minimal identification error that occurred at the previous layer. 

Step 8: Determination of new input variables for the next layer: If 
j

PI (the minimum value in 

the current layer) has not been satisfied (so the stopping criterion is not satisfied), the model 

has to be expanded. The outputs of the preserved PDs serve as new inputs to the next layer. 

4. Stochastic approach using PNN model 

 

       Layer-wise stochasticity in material and geometric properties are considered as input 

parameters for stochastic natural frequency analysis of composite plates. The individual and 

combined cases of layer-wise random variations considered in the present analysis are as 

follows: 

(a) Variation of ply-orientation angle only:                    }..............{)( 321 li θθθθθωθ =  

(b) Variation of thickness only:                     }..............{)( 321 li tttttt =ω  

(c) Variation of elastic modulus only:                     }..............{)(
)(1)(1)3(1)2(1)1(11 li

EEEEEE =ω

 
(d) Variation of mass density only:                     }..............{)( 321 li ρρρρρωρ =  

(e) Combined variation of ply orientation angle, thickness, elastic modulus (longitudinal)   

and mass density:  

 })..(,)...(),...(),...({)}(),(),(),({ 14)(1)1(1312111 llll EEttEtg ρρΦΦΦθθΦωρωωωθ =  

where θi , ti , E1(i) and ρi are the ply orientation angle, thickness, elastic modulus along 

longitudinal direction and mass density, respectively and ‘l’ denotes the number of layer in 

the laminate. In the present study it is assumed that the distribution for randomness of input 

parameters exists within a certain band of tolerance with their deterministic values. ± 5º for 

ply orientation angle and ± 10% tolerance for material properties and thickness from 

deterministic values are considered. The flowchart of the proposed stochastic natural 

frequency analysis using PNN model is shown in Figure 3. Latin hypercube sampling [43] is  



  

 

Fig. 4 Flowchart for analyzing the effect of noise on uncertainty quantification algorithm 

based on PNN  

employed for generating sample points to ensure the representation of all portions of the 

vector space. In Latin hypercube sampling, the interval of each dimension is divided into m 

non-overlapping intervals having equal probability considering a uniform distribution, so the 

intervals should have equal size. Moreover, the sample is chosen randomly from a uniform 

distribution with a point in each interval, in each dimension and the random pair is selected 



  

considering equal likely combinations for the point from each dimension. Subsequently to 

portray the effect of noise on the proposed PNN based uncertainty quantification algorithm, 

different levels of noise is introduced as described in Figure 4.   

In the proposed approach, a Gaussian white noise with a specific multiplication factor 

(Var) is introduced in the set of output responses, which is used for PNN model formation 

fijN = fij + Var × ijξ  (28) 

where f denotes natural frequency with the subscript i and j as frequency number and sample 

number, respectively. ijξ  is a function that generates normally distributed random numbers. 

Subscript ‘N’ is used here to indicate the noisy frequency. Physical quantities that are 

expected to be the sum of many independent processes often have distributions that are nearly 

normal [46]. Therefore, Gaussian distribution has been adopted in this study to explore the 

effect of random noise. Thus, simulated noisy dataset (i.e. the sampling matrix for PNN 

model formation) is formed by introducing pseudo random noise in the responses, while the 

input design points are kept unaltered. Subsequently for each dataset, PNN based MCS is 

carried out to quantify the uncertainty of composite plates as described in Figure 4. Effects of 

noise are found to be accounted in several other studies in available literature [47-49] dealing 

with deterministic analysis. Recently noise is found to be accounted in uncertainty 

propagation using Kriging [50]. Assessment of PNN based uncertainty propagation algorithm 

under the effect of noise is the first attempt of its kind to the best of the authors’ knowledge. 

The effect of such simulated noise can be regarded as considering other sources of uncertainty 

(except the commonly considered stochasticity in material and geometric parameters) such as 

error in measurement of responses, error in modelling and computer simulation and various 

other epistemic uncertainties involved with the system. It is difficult to quantitatively account 

the above mentioned sources of uncertainty and therefore, often ignored in most of the 



  

available literature. Thus, the kind of analysis carried out here will provide a comprehensive 

idea about the robustness of PNN based uncertainty quantification algorithm under noisy data.  

5. Results and Discussion 
 

       In this study, three layered graphite-epoxy symmetric angle-ply laminated composite 

cantilever plates are considered. The length, width and thickness of the composite laminate 

considered in the present analysis are 1 m, 1 m and 5 mm, respectively. Material properties of 

graphite–epoxy composite [51] considered with deterministic mean value as E1 = 138.0 GPa, 

E2 = 8.96 GPa, G12 = 7.1 GPa, G13 = 7.1 GPa, G23 = 2.84 GPa, µ = 0.3, ρ=1600 kg/m
3
. A 

discretization of (6 × 6) mesh on plan area with 36 elements 133 nodes with natural 

coordinates of an isoparametric quadratic plate bending element are considered for the present 

FEM approach. The finite element mesh size is finalized using a convegence study as shown 

in Table 1. For full scale MCS, the number of original finite element analysis is same as the 

sampling size. In general for complex composite structures, the performance function is not 

available as an explicit function of the random variables. The random response in terms of 

natural frequencies of the composite structure can only be evaluated numerically at the end of 

a structural analysis procedure such as the finite element method which is often time-

consuming and computationally expensive. The present PNN method is employed to develop 

a predictive and representative surrogate model relating each natural frequency to a number of 

input variables. Thus the PNN model represents the result of structural analysis encompassing 

every possible combination of all stochastic input variables. From this mathematical model, 

thousands of combinations of all design variables can be created and performed using a 

pseudo analysis for each variable set, by adopting the corresponding predictive values. 

 

 

 



  

Table 1 Convergence study for non-dimensional fundamental natural frequencies [ω=ωn L
2
 

√(ρ/E1t
2
)] of three layered (θ°/-θ°/θ°) graphite-epoxy composite plates, a/b=1, b/t=100, 

considering E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, µ = 0.3.  

 

Ply angle, 

θ  

Present FEM 

(4 ×  4) 

Present FEM 

(6 ×  6) 

Present FEM 

(8 ×  8) 

Present FEM 

(10 ×  10) 

Qatu and 

Leissa [52] 

0° 1.0112 1.0133 1.0107 1.004 1.0175 

45° 0.4591 0.4603 0.4603 0.4604 0.4613 

90° 0.2553 0.2567 0.2547 0.2542 0.2590 

A convergence study of sample size for PNN model formation with respect to direct 

MCS is shown in Table 2 for the first three stochastic natural frequencies due to individual 

and combined variation of ply-orientation angle, thickness, elastic modulus and mass density. 

It is a common practice to choose the sample size as 2
N
, where N is a positive integer. In the 

present article we have shown typical results of convergence study for N = 8, 9 and 10 due to 

paucity of space. By analysing the statistical parameters presented in the Table 2 it is evident 

that sample size of 256 and 512 are adequate to form PNN model for individual and combined 

variation cases respectively.  

 

 

 

 



  
 

 

(a) (b) 

  

 

(c) 

 

Fig. 5 Probability density function of first three stochastic natural frequencies (rad/s) using 

PNN approach for combined variation of ply angle, ply-thickness, longitudinal elastic 

modulus and mass density of angle-ply (45°/-45°/45°) composite cantilever plate 

The probability density function (PDF) is plotted as the benchmark of bottom line 

results in this article. To illustrate the validation of results of the proposed PNN based 

approach with respect to direct MCS, natural frequencies corresponding to first three modes 

are considered. The probability density function plots comparing MCS with PNN and the 

scatter plots verifying the present PNN model corresponding to the first three modes are 

presented in Figure 5 and Figure 6 respectively. It is evident that the results of the proposed 

PNN based approach are in good agreement with that of direct MCS simulations 

corroborating accuracy of the proposed approach. Several new results for stochastic analysis 



  

of composite plates are generated using the PNN based approach as presented in the 

subsequent paragraphs. 

  

(a) (b) 

  

 

(c) 

 
Fig. 6 Scatter plot for first three natural frequencies (rad/s) with respect to PNN model and 

original finite element model for combined variation of ply angle, ply-thickness, longitudinal 

elastic modulus and mass density of angle-ply (45°/-45°/45°) composite cantilever plate.   

 

Fig. 7 Sensitivity of input parameters corresponding to fundamental (FNF), second (SNF) and 

third (TNF) natural frequencies for angle-ply (45°/-45°/45°) composite cantilever plate.   



  

 

As presented in figure 7, the four most sensitive input parameters are identified as ply 

orientation angle, longitudinal elastic modulus, thickness and mass density using variance 

based global sensitivity analysis [47] while, the variation of other input parameters such as 

transverse elastic modulus, shear moduli and Poisson's ratio are found to have very little or 

negligible contribution on stochasticity of first three natural frequencies. For this reason the 

above mentioned four most sensitive input parameters are considered for analyzing combined 

stochasticity in the present analysis. The probability density function with respect to first three 

stochastic natural frequencies are plotted in Figure 8 due to individual and combined variation 

of ply-orientation angle, thickness, elastic modulus and mass density for angle-ply composite 

cantilever plate. The combined variation of input parameters is observed to have the 

maximum influence on stochasticity of natural frequencies compared to individual variation 

of input parameters irrespective of modes. Moreover, this collective plots give a clear idea 

about the volatility in natural frequencies due to stochasticity in different individual 

parameters that in turn  provides a sense of their relative infulences on the responses of 

interest. The effect of degree of orthogonality on stochastic first three natural frequencies 

corresponding to combined variation of angle-ply (45°/-45°/45°) composite cantilever plate is 

shown in Figure 9. It is observed that as the ratio of longitudinal elastic modulus to transverse



  

Table 2 Convergence study of first three natural frequencies (rad/s) due to individual and combined variation of ply-orientation angle, thickness, 

elastic modulus and mass density for angle-ply (45°/-45°/45°) composite cantilever plate  

Input variation Values 
f1 f2 f3 

MCS 

(10,000) 

PNN (Sample run) MCS 

(10,000) 

PNN (Sample run) MCS 

(10,000) 

PNN (Sample run) 

256 512 1024 256 512 1024 256 512 1024 

)(ωθ  

Max 23.7997 23.5643 23.6540 24.0071 65.6675 65.5571 65.5471 65.6788 146.5351 145.0771 144.8005 145.7029 

Min 19.3219 19.4239 19.3018 19.3018 61.5809 61.8885 61.6920 61.6920 120.0259 121.4107 120.5559 120.5559 

Mean 21.4006 21.3656 21.4225 21.4033 63.7467 63.7190 63.7624 63.7468 133.2984 133.1224 133.4215 133.3062 

SD 0.9154 0.9342 0.9553 0.9412 0.8435 0.8522 0.8750 0.8567 5.3979 5.5109 5.6018 5.4922 

 

)(ωst  

Max 23.5059 23.4940 23.5030 23.5057 70.2353 70.2008 70.2268 70.2347 146.4340 146.3612 146.4165 146.4328 

Min 19.2412 19.2529 19.2416 19.2445 57.6165 57.6511 57.6179 57.6263 120.1910 120.2629 120.1938 120.2113 

Mean 21.3736 21.3740 21.3762 21.3710 63.9269 63.9280 63.9347 63.9192 133.3144 133.3168 133.3306 133.2983 

SD 1.2313 1.2332 1.2325 1.2334 3.6434 3.6489 3.6468 3.6495 7.5772 7.5887 7.5843 7.5899 

              

)(1 ωE  

Max 21.7663 21.8053 21.7723 21.8053 65.5082 65.6505 65.5334 65.6505 135.3713 135.5586 135.3602 135.5586 

Min 20.9694 20.9761 20.9342 20.9252 62.2682 62.3001 62.1369 62.1085 131.1839 131.2722 131.0464 130.9809 

Mean 21.3660 21.3623 21.3725 21.3666 63.8962 63.8856 63.9198 63.9002 133.2701 133.2431 133.3110 133.2704 

SD 0.1503 0.1617 0.1637 0.1645 0.5986 0.6491 0.6535 0.6501 0.8332 0.8689 0.8878 0.8793 

              

)(ωρ  

Max 22.3574 22.3099 22.4109 22.4276 66.8698 66.7277 67.0298 67.0797 139.4515 139.1552 139.7852 139.8893 

Min 20.5627 20.4647 20.5257 20.4647 61.5019 61.2089 61.3913 61.2089 128.2573 127.6462 128.0266 127.6462 

Mean 21.3835 21.3857 21.3691 21.3820 63.9570 63.9636 63.9138 63.9524 133.3771 133.3908 133.2871 133.3675 

SD 0.3609 0.3614 0.3601 0.3579 0.9897 1.0810 1.0770 1.0707 2.0639 2.2543 2.2461 2.2328 

              

)(,,, 1 ωρθ Ets  

Max 26.3531 25.8323 26.0243 26.0914 74.7603 72.5097 73.4380 74.2836 162.0763 158.5399 161.3411 161.3409 

Min 16.9109 18.0873 17.3134 17.3031 53.9388 54.7321 54.9025 54.9022 106.2299 112.3293 108.4457 108.4450 

Mean 21.3907 21.4701 21.4453 21.4557 63.7304 63.9235 63.9352 63.9335 133.2458 133.7428 133.6132 133.6546 

SD 1.6029 1.6241 1.5990 1.5759 3.9481 4.0223 4.0245 3.9509 9.6781 9.8289 9.6679 9.5026 

 



    
(a) (b) 

 
(c) 

 

Fig. 8 Probability density function for first three natural frequencies (rad/s) due to individual and combined variation of ply-orientation angle, 

thickness, elastic modulus and mass density for angle-ply (45°/-45°/45°) composite cantilever plate. 



  

  

(a) (b) 

 

(c) 

Fig. 9 Effect of degree of orthogonality on stochastic (a) fundamental (b) second and (c) third 

natural frequencies (rad/s) with respect to PNN model for combined variation of angle-ply 

(45°/-45°/45°) composite cantilever plate. 

 

elastic modulus increases the fluctuation of stochastic natural frequencies also proportionately 

increases irrespective of modes. To ascertain the degree of proportional variation, a 

comparative study is carried out to map the variation of stochastic natural frequencies due to 

variation in input parameters in case of combined variation case. Three cases are considered 

namely, (a) ± 5º for ply orientation angle with subsequent ± 10% tolerance for material 

properties (b) ± 10º for ply orientation angle with subsequent ± 20% tolerance for material 

properties and (c) ± 15º for ply orientation angle with subsequent ± 20% tolerance for 

material properties from respective deterministic mean values as depicted in Figure 10. It is 

evident that as the fluctuation of input parameters increases the sparsity of the stochastic 

output natural frequencies also increases while no notable variation of stochastic mean value 

of respective natural frequencies is identified due to the same.  



  

  

(a) (b) 

  

 

(c) 

Fig. 10 Effect of variation of input parameters on stochastic (a) fundamental (b) second and 

(c) third natural frequencies (rad/s) with respect to PNN model for combined variation of 

angle-ply (45°/-45°/45°) composite cantilever plate. 

 

 

Fig. 11 Relative coefficient of variation (RCV) with respect to first three natural frequencies 

for angle-ply (45°/-45°/45°) composite cantilever plate. 

 

To map the contribution of individual input parameters due to their individual 

variation, the relative coefficient of variation (RCV) for first three modes of frequencies are 



  

evaluated as shown in Figure 11. The thickness of each layer of the laminate is identified as 

the relatively most effective input parameter, followed by ply orientation angle, mass density 

and elastic modulus E1. It can be noted here that the results of RCV are in good agreement 

with figure 7. The effect of noise on PNN based uncertainty quantification algorithm (refer to 

Figure 4) for the case of combined variation of all stochastic input parameters is furnished in 

Figure 12. As the multiplication factor Var increases, the range of variations in the probability 

density function is also found to be increased. The fundamental natural frequency is identified 

to be the maximum noise-sensitive followed by the subsequent second and third natural 

frequencies. This is because of the fact that the range of magnitude increases with the increase 

in mode number and as magnitude of a particular frequency becomes higher the influence of 

same noise level would be lesser on that frequency. 

6. Conclusions 

The novelty of the present study includes incorporation of polynomial neural network 

based uncertainty propagation algorithm in laminated composite plates. Stochastic natural 

frequencies are analyzed considering layer-wise variation of individual as well as combined 

cases for random input parameters. Subsequently, the effect of noise on the proposed 

approach of uncertainty quantification is addressed. In this study, the uncertainty 

quantification of natural frequencies with uniform random input variables (such as ply 

orientation, ply-thickness and material properties) is formulated implicitly using finite 

element method and thereby PNN approach is incorporated to achieve computational 

efficiency. The computational time and cost is reduced by using the present PNN approach 

compared to conventional Monte Carlo simulation method. From the analyses presented in 

this article it is found that, as the percentage of variation of input parameters increases, the 

sparsity of the stochastic output natural frequencies also increases while no notable variation 

of stochastic mean value of respective natural frequencies is identified. The thickness 

parameter is found to be the most sensitive input parameter while longitudinal elastic modulus 
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Fig. 12 Effect of noise on PNN based uncertainty quantification for first three natural frequencies (rad/s) of laminated composite plates due to 

combined variation of ply-orientation angle, thickness, elastic modulus and mass density for angle-ply composite cantilever plate 



  

is observed as the least sensitive parameter. Interestingly, the stochastic fundamental 

frequency is identified to be the maximum noise-sensitive compared to higher natural 

frequencies. The PNN based approach for uncertainty quantification presented in this article 

can be extended to deal with more complex systems in future. 
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