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Abstract

This paper presents the quantification of uncertain natural frequency for laminated composite
plates by using a novel surrogate model. A group method of data handling in conjunction to
polynomial neural network (PNN) is employed as surrogate for numerical model and is
trained by using Latin hypercube sampling. Subsequently the effect of noise on a PNN based
uncertainty quantification algorithm is explored in this study. The convergence of the
proposed algorithm for stochastic natural frequency analysis of composite plates is verified
and validated with original finite element method (FEM). Both individual and combined
variation of stochastic input parameters are considered to address the influence on the output
of interest. The sample size and computational cost are reduced by employing the present

approach compared to direct Monte Carlo simulation (MCS).

Keywords. uncertainty quantification; polynomial neural network; stochastic natural

frequency; Latin hypercube; composite plate




1. Introduction

Laminated composite plates are extensively used in aerospace, civil, marine and many
other engineering applications due to the benefit of light-weightiness without compromising
its strength and stiffness requirement. As modern weight-sensitive structures made of
composite materials require more critical and complex design, the need for an accurate
approach to assess the underlying uncertainties in the model, geometry, material properties,
manufacturing process and operational environments has increased significantly. In the
conventional deterministic analysis of structures, the variations in the system parameters are
neglected and mean values of system parameters are used in the analysis with some factor of
safety that may often lead to a conservative design. Due to.the dependency on a large number
of parameters in complex production and fabrication processes of laminated composite plate,
the system properties can be random in nature resulting in uncertainty in the response of the
laminated composite plate. Therefore, to well define the original problems and enable a better
understanding and characterization of the actual behavior of the laminated composite
structures, it is of prime importance that the inherent randomness in system parameters is
incorporated in the analysis. To establish the reliability of such structures, application of
computational power has favored the development of high-fidelity finite element models to
deal with industrial problems. In spite of advances in capacity and speed of computer, the
enormous computational cost of running complex, high fidelity scientific and engineering
simulations makes it impractical to rely exclusively on simulation codes for the purpose of
uncertainty quantification. Hence these high-fidelity models however own the drawback that
they can be very time consuming so that only a few runs of the model can be affordable. Thus
these models are practically unusable in computationally intensive methods such as traditional
Monte Carlo simulation based approach, which needs thousands of finite element simulations.
To overcome this lacuna generally surrogate based approach is utilized for uncertainty

quantification of computationally intensive models.



Considerable researches based on deterministic analysis have been carried out on free
vibration analysis of composite plates using classical laminated plate theory (CLPT) [1], first
order shear deformation theory (FSDT) [2], higher order shear deformation theory (HSDT)
[3] and three-dimensional (3-D) elasticity theory [4]. A considerable volume of literature is
available on different analyses of laminated composites considering both deterministic [5-8]
and stochastic [9-12] approaches. Based on higher-order theory, Naveenthraj et al. [13]
studied the linear static response of graphite-epoxy composite laminates with randomness in
material properties by using combination of finite element analysis and Monte Carlo
simulation (MCS). Further Salim et al. [14] examined the effect of randomness in material
properties such as elastic modulus Poisson’s ratios etc.. on the response statistics of a
composite plate subjected to static loading using CLPT in conjunction with first order
perturbation techniques (FOPT). Onkar and Yadav [15] investigated the nonlinear response
statistics of composite-laminated flat panels with random material properties subjected to
transverse random loading based on CLPT in conjunction with FOPT. Giunta et al. [16]
studied the free vibration of ‘composite plates using refined theories accounting for
uncertainties. The random vibration problem deals with big data of several stochastic input
parameters wherein the dimension of stiffness matrix and number of iteration reduces the
computational efficacy. The curse of dimensionality is a potential challenge related with the
fact that the convergence of any estimator to the true value of a smooth function defined on a
space -of high dimension is very slow. This means that, a priori, an ample amount of
observations are required to obtain a good estimated function of the parameter of interest.
This problem can be solved by using suitable reduced order model (ROM). Many researchers
used ROM in different applications such as high dimensional model representation (HDMR)
[17-18], Kriging [19-20], artificial neural network [21-22], polynomial regression model [23-
25]. Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos

expansion is reported recently [26]. Relatively little efforts have been made in the past by the



researchers and investigators on using polynomial neural network (PNN) model for the
prediction of random system properties. Zjavka [27] employed the polynomial neural network
model for forecasting the correct wind speed while Gémez-Ramirez et al. [28] investigated on
forecasting time series with a new architecture for polynomial artificial neural network. Zhang
et al. [29] studied the cross-validation based weights and structural analysis by Chebyshev-
polynomial neural networks. Xin et al. [30, 31] investigated on monotonicity and convergence
of asynchronous update gradient method and with penalty using ridge polynomial neural
network while Roh et al. [32, 33] studied on fuzzy linear regression and radial basis function
based on PNN. Recently, Huang et al. [34], Oh et al. [35] and Fazel Zarandi et al. [36] also
studied the fuzzy polynomial neural networks with respective applications. Maric [37]
introduced the self-organizing polynomial neural networks for solving the optimization
problem while Dorn et al. [38] studied on group method of data handling (GMDH) -
polynomial neural network-based method to predict approximate three-dimensional structures
of polypeptides. To the best of the authors’ knowledge, there is no literature covering the
uncertainty quantification of natural frequencies in laminated composite structures using the
polynomial neural network model. Moreover, the analysis of noise on such surrogate based
uncertainty quantification algorithms is first attempted in this study.

In the present study, stochastic natural frequencies of laminated composite plates are
analyzed in the presence of small random variation in the systems input variables. A
polynomial neural network model is developed to reduce the computational time with
adequate level of accuracy. The finite element formulation in conjunction with PNN model is
thereby utilized to map the variation of responses of interest for randomness in layer-wise

input parameters with different level of noise.



Fig. 1 Laminated composite cantilever plate

2. Mathematical formulation

Consider a rectangular composite laminated cantilever plate of uniform length L, width b,
and thickness #, which consists of three plies located in athree-dimensional Cartesian
coordinate system (X, y, z), where the x—y plane passes through the middle of the plate
thickness with its origin placed at the corner of the cantilever plate as shown in Figure 1. The
composite plate is considered with uniform thickness with the principal material axes of each
layer being arbitrarily oriented with respect to mid-plane. If the mid-plane forms the x-y plane

of the reference plane, then the displacements can be computed as

u(x, y,Z) =u0(xv )’)—Zex(x, )’)
v(x,y,2)=v"(x, ) —26,(x, y) (1)
w(x,y,2) =w’(x,y) = w(x, y),

Assuming u, v and w are the displacement components in x-, y- and z-directions, respectively
and uo, v and w° are the mid-plane displacements, and 6, and 6, are rotations of cross-
sections along the x- and y-axes. The strain-displacement relationships for small deformations

can be expressed as

e = ou’ 3 Zazw" e = v’ 3 *w’
T oox x> Y 9y ¢ dy’
2
and u’ N’ _ 29%w° )

=T+
Ve oy ox “Tox dy

which in matrix form can be expressed as
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where €!, 83 , ;/fy are the strains in the reference plane and k,,k, .k, are the curvatures of

y 0 Nxy

reference plane of the plate. The random in-plane forces and moments acting on small

element and the transverse shear forces (per unit length) are

(@) 1,(@) 1, (@)

N (@)= j c.dz, N/(@= j o, dz | N, @)= |7 dz
1, (@) 4, (@) ~1,(@)
(@) (@) (@)
M @)= [z0,dz, M @)= [z0,d: | M,@)= [z7,dz 4
1, (@) 1, (@) 1, (@)
1, 1,
V(@)= [z dz and V,(@)=]z, dz
-1, -,
The stress-strain relationship for each ply can be expressed in matrix form
O-X 8X
o, b= [0,@) e, )
Txy ;/xy

where [Q, ;(@)]is the stiffness matrix of the ply in X-y co-ordinate system and expressed as

m* n' 2m*n’ 4m’n®
n m* 2m’n’ 4m’n®
[0.(@)]= m’n® m’n® (m* +n*) —4m*n* [Q ]
v - mn m’n —2m*n’ (m* —n*) i (6)
m’n mn’ (mn® — m’n) 2(mn’ — m’n)
| mn m’n (m’n— mn?) 2(m’n— mnS)_

Here m =sin (@) and n=cos@(@), wherein 8(@) is the random fibre orientation angle.
However, laminate consists of a number of laminae wherein [Q;;] and [Q.j(ﬁ)] denotes the

on-axis elastic constant matrix and the off-axis elastic constant matrix, respectively. In matrix



form, the in-plane stress resultant {/V}, the moment resultant {M}, and the transverse shear

resultants {Q} can be expressed as

{N}=[A1{e"} + [Bl{k} and {M}=[Bl{€’} + [D1{k}

{0} =14%1{»} (7

(@)
[A;-]= IQU dz wherei,j=4,5

—t, (@)
The elasticity matrix of the laminated composite plate is given by,
Aj(@)  By(w) 0
[D'(w)]z B,'j(w) D,'j(w) 0 (8)
0 0 S,j(w)
where

[A,@). B,@). D,@)]=Y [[0@IMW = 21dz ij=12.6  (9)

k=l 24

n ¢

[S,(@)] = j o [0,(@)], dz  i,j=45 (10)

k=1 zi

where o is the shear correction factor and is assumed as 5/6. Now, the mass per unit area is

denoted by P and is given by

P(E):Zn: fp(w) dz (11
k=1

The element mass matrix is expressed as

[M,@))= [[N][P@)][N]d(vol) (12)

Vol

The element stiffness matrix is given by

(K, @)1= [[[B@)]" [D@)] [B@)]d¢dn (13)

-1-1

The Hamilton’s principle [39] is employed to study the dynamic nature of the composite

structure. The principle wused for the Lagrangian which is defined as



L,=T — U — Wwhere T, U and W are total kinetic energy, total strain energy and total

potential of the applied load, respectively. The Hamilton’s principle applicable to non-

conservative system can be expressed as,

Iy
SH = [[6F — 8U — oW 1dt =0 (14)
The energy functional for Hamilton’s principle is the Lagrangian (Ls) which includes kinetic
energy (7) in addition to potential strain energy (U) of an elastic body. The expression for

kinetic energy of an element is given by

| _
T=§{5e} M, (@)] + [C.(@)]{3,} (15)

The potential strain energy for an element of a plate can be expressed as,
1 -
U=U, + U, = {5} K (@S} (16)

The Langrange’s equation of motion is given by

d|oL, oL,

— =L |- |=L|={(F 1

d:{wj {a@ tF (1n
where {F.} is the applied external element force vector of an element and Ly is the Lagrangian
function. SubstitutingLy = T — U, and the corresponding expressions for 7 and U in

Lagrange’s equation; one obtains the dynamic equilibrium equation for free vibration of each
element in the following form [40]

M @)13,} + [K.(@)] {,}=0 (18)
After assembling all the element matrices and the force vectors with respect to the common
global coordinates, the resulting equilibrium equation is obtained. For the purpose of this
study, the finite element model is developed for different element types and finite element
discretization and nodal positions of the driving point and measurement point. Considering

randomness of input parameters like ply-orientation angle, thickness, elastic modulus and



mass density etc., the equation of motion of a linear free vibration system with n degrees of
freedom can expressed as

[M (@)]16()+ [K(@)]5(t) =0 (19)

nxn

where K(@ ) € R"*" is the elastic stiffness matrix, M(& ) € R"*" is the mass matrix and J(f)
¢ R" is the vector of generalized coordinates. The governing equations are derived based on
Mindlin’s theory incorporating rotary inertia, transverse shear deformation [41] using an eight
noded isoparametric plate bending element [42]. The composite cantilever plate is assumed to

be under free vibration and the natural frequencies of the system are obtained as:

0 @)= (20)

where j=1,...,n,

A.(@)

J

Here A ;(@) is the j-th eigenvalue of matrix A=K “(@)M (@) and n, indicates the number

of modes retained in this analysis.

3. Polynomial neural network

In general, the Polynomial Neural Network (PNN) algorithm [43-45] is the advanced
succession of Group Method of Data Handling (GMDH) method wherein different linear,
modified quadratic, cubic polynomials are used. By choosing the most significant input
variables-and polynomial order among various types of forms available, the best partial
description (PD) can be obtained based on selection of nodes of each layer and generation of
additional layers until the best performance is reached. Such methodology leads to an optimal

PNN structure wherein the input—output data set can be expressed as

(X,.Y)=(x,;, Xy, , X35 - ... .X,;,y,) Where i=1,23.......n 21

1

By computing the polynomial regression equations for each pair of input variable x; and x;

and output Y of the object system which desires to modeling



Y =A+ Bx, + Cx; + Dx/ + Ex; + Fxx;, wherei,j=1,23......n (22)

where A, B, C, D, E, F are the coefficients of the polynomial equation. This provides
n(n—1)/2 high-order variables for predicting the output Y in place of the original n
variables (x;, X, ,........ ,x,). After finding these regression equations from a set of input-output
observations, we then find out which ones to save. This gives the best predicted collection of
quadratic regression models. We now use each of the quadratic equations that we have just
computed and generate new independent observations that will replace the original

observations of the variables (x,, x,,........ ,x,). From these new independent variables we will

combine them exactly as we did before. That is, we compute all of the quadratic regression
equations of Y versus these new variables. This: will provide a new collection of
n(n—1)/2regression equation for predicting Y from the new variables, which in turn are
estimates of Y from above equations. Now the best of new estimates is selected to generate
new independent variables from selected equations to replace the old, and combine all pair of
these new variables. This process is continued until the regression equations begin to have a

poorer predictability power than did the previous ones. In other words, it is the time when the

model starts to become overfitted. The estimated output ﬁ can be further expressed as

Y :f(xl,xz,x3,......xn)
n n n n n n
=4 "‘ZB,-X,- + ZZC,-,»X,-)C/ + ZZZD,jkxixjxk + o,
i=1 =1 j=1 =1 j=1 k=l (23)

where i, j,k=12,3........n

. D.

19 Dy oeeneen ) is vector of

where X (x,,x,,......,x,) is the input variables vector and P(A,,B,,C

coefficients or weight of the Ivakhnenko polynomials. Components of the input vector X can
be independent variables, functional forms or finite difference terms. This algorithm allows to

find simultaneously the structure of model and model system output on the values of most



significant inputs of the system. The following steps are to be performed for the framework of

the design procedure of PNN:

Stepl: Determination of input variables: Define the input variables as x, =1,2,3,.....n related

to output variable Y. If required, the normalization of input data is also completed.

Step 2: Create training and testing data: Create the input—output data set (n)and divide into

two parts, namely, training data (n, . )and testing data (n,,) where n=n,,. + n,, . The

train test train test *
training data set is employed to construct the PNN model including an estimation of the
coefficients of the partial description of nodes situated in each layer of the PNN. Next, the

testing data set is used to evaluate the estimated PNN model.

Step 3: Selection of structure: The structure of PNN is selected based on the number of input
variables and the order of PD in each layer. Two kinds of PNN structures, namely a basic
PNN and a modified PNN structure are distinguished. The basic taxonomy for the

architectures of PNN structure is furnished in Figure 2.

X

i Partial

Description
x, ——|_ Deserd

qZ:f(XI,XJ)

Fig. 2 Taxonomy for architectures of PNN

Step 4: Determination of number of input variables and order of the polynomial: Determine
the regression polynomial structure of a PD related to PNN structure. The input variables of a
node from n input variables x,,x,,x,,......x, are selected. The total number of PDs
located at the current layer differs according to the number of the selected input variables

from the nodes of the preceding layer. This results in k =n!/(n!- r!) r! nodes, where r is the



number of the chosen input variables. The choice of the input variables and the order of a PD
itself help to select the best model with respect to the characteristics of the data, model design

strategy, nonlinearity and predictive capability.

Step 5: Estimation of coefficients of PD: The vector of coefficients A, is derived by

minimizing the mean squared error between Y; and Y.

i i
train i=1 (24)
where PI represents a criterion which uses the mean squared differences between the output

data of original system and the output data of the model. Using the training data subset, this

gives rise to the set of linear equations

Y=> X, A
; i N (25)
The coefficients of the PD of the processing nodes in each layer are derived in the form

A=[XxXxT"X'Y

(26)
where, Y =[y,, vy, Y, s Yy 1"
X, =[x X5 X550 X oo oo oo X i 1
X = [0y Xy o oo X Xy e 17
A =[A,AA,.......A,T

with the following notations i as the node number, k as the data number, n as the number of

train
the training data subset, n as the number of the selected input variables, m as the maximum
order, and n’as the number of estimated coefficients. This procedure is implemented
repeatedly for all nodes of the layer and also for all layers of PNN starting from the input

layer and moving to the output layer.
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Fig. 3 Flowchart of stochastic natural frequency analysis using PNN model

Step 6: Selection of PDs with the best predictive capability: Each PD is estimated and
evaluated using both the training and testing data sets. Then we compare these values and
choose several PDs, which give the best predictive performance for the output variable.

Usually a predetermined number W of PDs is utilized.

Step 7: Check the stopping criterion: The stopping condition indicates that a sufficiently good

PNN model is accomplished at the previous layer, and the modelling can be terminated. This



condition reads as PI; > PI* where PI; is a minimal identification error of the current layer

whereas PI* denotes a minimal identification error that occurred at the previous layer.

Step 8: Determination of new input variables for the next layer: If PI ;(the minimum value in

the current layer) has not been satisfied (so the stopping criterion is not satisfied), the model

has to be expanded. The outputs of the preserved PDs serve as new inputs to the next layer.

4. Stochastic approach using PNN model

Layer-wise stochasticity in material and geometric properties are considered as input
parameters for stochastic natural frequency analysis of composite plates. The individual and

combined cases of layer-wise random variations considered in the present analysis are as

follows:

(a) Variation of ply-orientation angle only: 6(w)=1{6, 0, é,........ 6.0}

(b) Variation of thickness only: Hw)={t t, t;....... L))

(c) Variation of elastic modulus only: E (@)={E\y E\,) E e E B}
(d) Variation of mass density only: P@)={p, P, Py P}

(e) Combined variation of ply orientation angle, thickness, elastic modulus (longitudinal)
and mass density:
g{0(@),t (@), E(@), p(@)} ={ D,(6,..6)), D,(1,..1)).D5(E\,..E ), Py (p,..0))}

where 6, , ti , Eiq and p; are the ply orientation angle, thickness, elastic modulus along
longitudinal direction and mass density, respectively and ‘I’ denotes the number of layer in
the laminate. In the present study it is assumed that the distribution for randomness of input
parameters exists within a certain band of tolerance with their deterministic values. +5° for
ply orientation angle and #10% tolerance for material properties and thickness from
deterministic values are considered. The flowchart of the proposed stochastic natural

frequency analysis using PNN model is shown in Figure 3. Latin hypercube sampling [43] is



Identification and definition of input parameters i.e.

sources of uncertainty

FE formulation to evaluate output quantity of interest

Selection of design points by Latin hypercube sampling

Obtain output responses of interest corresponding to each of
the design points and construct design dataset consisting of
design points and corresponding responses

Introduce simulated random noise in the responses keeping the
design points unaltered and thereby create 1000 such noisy datasets

l

Construct surrogate model using PNN approach for
each of the noisy datasets

MCS using the surrogates corresponding to each
of the noisy datasets

Statistical analysis

Fig. 4 Flowchart for analyzing the effect of noise on uncertainty quantification algorithm
based on PNN

employed for generating sample points to ensure the representation of all portions of the
vector space. In Latin hypercube sampling, the interval of each dimension is divided into m
non-overlapping intervals having equal probability considering a uniform distribution, so the
intervals should have equal size. Moreover, the sample is chosen randomly from a uniform

distribution with a point in each interval, in each dimension and the random pair is selected



considering equal likely combinations for the point from each dimension. Subsequently to
portray the effect of noise on the proposed PNN based uncertainty quantification algorithm,
different levels of noise is introduced as described in Figure 4.
In the proposed approach, a Gaussian white noise with a specific multiplication factor
(Var) is introduced in the set of output responses, which is used for PNN model formation
fin=fij+ Var X &, (28)
where f denotes natural frequency with the subscript i and j as frequency number and sample

number, respectively. & is a function that generates normally distributed random numbers.

Subscript ‘N’ is used here to indicate the noisy frequency. Physical quantities that are
expected to be the sum of many independent processes often have distributions that are nearly
normal [46]. Therefore, Gaussian distribution has been adopted in this study to explore the
effect of random noise. Thus, simulated noisy dataset (i.e. the sampling matrix for PNN
model formation) is formed by introducing pseudo random noise in the responses, while the
input design points are kept unaltered. Subsequently for each dataset, PNN based MCS is
carried out to quantify the uncertainty of composite plates as described in Figure 4. Effects of
noise are found to be accounted in several other studies in available literature [47-49] dealing
with deterministic analysis. Recently noise is found to be accounted in uncertainty
propagation using Kriging [50]. Assessment of PNN based uncertainty propagation algorithm
under the effect of noise is the first attempt of its kind to the best of the authors’ knowledge.
The effect of such simulated noise can be regarded as considering other sources of uncertainty
(except the commonly considered stochasticity in material and geometric parameters) such as
error in measurement of responses, error in modelling and computer simulation and various
other epistemic uncertainties involved with the system. It is difficult to quantitatively account

the above mentioned sources of uncertainty and therefore, often ignored in most of the



available literature. Thus, the kind of analysis carried out here will provide a comprehensive

idea about the robustness of PNN based uncertainty quantification algorithm under noisy data.

5. Results and Discussion

In this study, three layered graphite-epoxy symmetric angle-ply laminated composite
cantilever plates are considered. The length, width and thickness of the composite laminate
considered in the present analysis are 1 m, 1 m and 5 mm, respectively. Material properties of
graphite—epoxy composite [51] considered with deterministic mean value as Ej = 138.0 GPa,
E; = 8.96 GPa, G, = 7.1 GPa, Gi3 = 7.1 GPa, Ga3 = 2.84 GPa, 4 = 0.3, p=1600 kg/m’. A
discretization of (6 x 6) mesh on plan area with 36 elements 133 nodes with natural
coordinates of an isoparametric quadratic plate bending element are considered for the present
FEM approach. The finite element mesh size is finalized using a convegence study as shown
in Table 1. For full scale MCS, the number of original finite element analysis is same as the
sampling size. In general for complex composite structures, the performance function is not
available as an explicit function of the random variables. The random response in terms of
natural frequencies of the composite structure can only be evaluated numerically at the end of
a structural analysis procedure such as the finite element method which is often time-
consuming and computationally expensive. The present PNN method is employed to develop
a predictive and representative surrogate model relating each natural frequency to a number of
input variables. Thus the PNN model represents the result of structural analysis encompassing
every possible combination of all stochastic input variables. From this mathematical model,
thousands of combinations of all design variables can be created and performed using a

pseudo analysis for each variable set, by adopting the corresponding predictive values.



Table 1 Convergence study for non-dimensional fundamental natural frequencies [w=0, L’
\(p/E\f)] of three layered (8°/-6°/6°) graphite-epoxy composite plates, a/b=1, b/t=100,
considering E, = 138 GPa, E; = 8.96 GPa, G2 ="7.1 GPa, = 0.3.

Ply angle, | Present FEM | Present FEM | Present FEM | Present FEM Qatu and
0 (4 x4 (6 X 6) 8 x8) (10 x 10) Leissa [52]
0° 1.0112 1.0133 1.0107 1.004 1.0175
45° 0.4591 0.4603 0.4603 0.4604 0.4613
90° 0.2553 0.2567 0.2547 0.2542 0.2590

A convergence study of sample size for PNN model formation with respect to direct
MCS is shown in Table 2 for the first three stochastic natural frequencies due to individual
and combined variation of ply-orientation angle, thickness, elastic modulus and mass density.
It is a common practice to choose the sample size as 2", where N is a positive integer. In the
present article we have shown typical results of convergence study for N = 8, 9 and 10 due to
paucity of space. By analysing the statistical parameters presented in the Table 2 it is evident
that sample size of 256 and 512 are adequate to form PNN model for individual and combined

variation cases respectively.
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Fig. 5 Probability density function of first three stochastic natural frequencies (rad/s) using
PNN approach for combined variation of ply angle, ply-thickness, longitudinal elastic
modulus and mass density of angle-ply (45°/-45°/45°) composite cantilever plate

The probability density function (PDF) is plotted as the benchmark of bottom line
results/in this article. To illustrate the validation of results of the proposed PNN based
approach with respect to direct MCS, natural frequencies corresponding to first three modes
are considered. The probability density function plots comparing MCS with PNN and the
scatter plots verifying the present PNN model corresponding to the first three modes are
presented in Figure 5 and Figure 6 respectively. It is evident that the results of the proposed
PNN based approach are in good agreement with that of direct MCS simulations

corroborating accuracy of the proposed approach. Several new results for stochastic analysis



of composite plates are generated using the PNN based approach as presented in the

subsequent paragraphs.
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Fig. 6 Scatter plot forfirst three natural frequencies (rad/s) with respect to PNN model and
original finite element model for combined variation of ply angle, ply-thickness, longitudinal
elastic modulus-and mass density of angle-ply (45°/-45°/45°) composite cantilever plate.
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Fig. 7 Sensitivity of input parameters corresponding to fundamental (FNF), second (SNF) and
third (TNF) natural frequencies for angle-ply (45°/-45°/45°) composite cantilever plate.



As presented in figure 7, the four most sensitive input parameters are identified as ply
orientation angle, longitudinal elastic modulus, thickness and mass density using variance
based global sensitivity analysis [47] while, the variation of other input parameters such as
transverse elastic modulus, shear moduli and Poisson's ratio are found to have very little or
negligible contribution on stochasticity of first three natural frequencies. For this reason the
above mentioned four most sensitive input parameters are considered for analyzing combined
stochasticity in the present analysis. The probability density function with respect to first three
stochastic natural frequencies are plotted in Figure 8 due to individual-and combined variation
of ply-orientation angle, thickness, elastic modulus and mass density for angle-ply composite
cantilever plate. The combined variation of input parameters is observed to have the
maximum influence on stochasticity of natural frequencies compared to individual variation
of input parameters irrespective of modes. Moreover, this collective plots give a clear idea
about the volatility in natural frequencies due to stochasticity in different individual
parameters that in turn provides a sense of their relative infulences on the responses of
interest. The effect of degree of orthogonality on stochastic first three natural frequencies
corresponding to combined variation of angle-ply (45°/-45°/45°) composite cantilever plate is

shown in Figure 9. It is observed that as the ratio of longitudinal elastic modulus to transverse



Table 2 Convergence study of first three natural frequencies (rad/s) due to individual and combined variation of |
elastic modulus and mass density for angle-ply (45°/-45°/45°) composite cantilever plate

f f
Input variation | Values [y1g PNN (Sample run) MCS PNN (Sample run) MC:
(10,000) | 256 | 512 | 1024 |(10,000)| 256 | 512 | 1024 | (10,0¢
Max | 23.7997 | 23.5643 | 23.6540 | 24.0071 | 65.6675 | 65.5571 | 65.5471 | 65.6788 | 14652
0(@) Min | 193219 | 19.4239 | 19.3018 | 19.3018 | 61.5809 | 61.8885 | 61.6920 | 61.6920 | 120.02
Mean | 21.4006 | 21.3656 | 21.4225 | 21.4033 | 63.7467 | 63.7190 | 63.7624 | 63.7468 | 133.2S
SD | 09154 | 09342 | 09553 | 0.9412 | 0.8435 | 0.8522 | 0.8750 | 0.8567 | 5.397
Max | 23.5059 | 23.4940 | 23.5030 | 23.5057 | 70.2353 | 70.2008 | 70.2268 | 70.2347 | 146.43
L (@) Min | 192412 | 19.2529 | 19.2416 | 19.2445 | 57.6165 | 57.6511 | 57.6179 | 57.6263 | 120.1¢
Mean | 21.3736 | 21.3740 | 21.3762 | 21.3710 | 63.9269 | 63.9280 | 63.9347 | 63.9192 | 13331
SD | 12313 | 12332 | 12325 | 12334 | 3.6434 | 3.6489.| 3.6468 | 3.6495 | 7.577
Max | 217663 | 21.8053 | 21.7723 | 21.8053 | 65.5082 | 65.6505 | 65.5334 | 65.6505 | 135.37
E (@) Min | 20.9694 | 20.9761 | 20.9342 | 20.9252 | 62.2682 | 62.3001 | 62.1369 | 62.1085 | 131.1¢
Mean | 21.3660 | 21.3623 | 21.3725 | 21.3666 | 63.8962 | 63.8856 | 63.9198 | 63.9002 | 133.27
SD | 0.1503 | 0.1617 | 0.1637 | 0.1645 | 0.5986 | 0.6491 | 0.6535 | 0.6501 | 0.833
Max | 223574 | 223099 | 22.4109 | 22.4276 | 66.8698 | 66.7277 | 67.0298 | 67.0797 | 139.45
(@) Min | 20.5627 | 20.4647 | 20.5257 | 20.4647 | 61.5019 | 61.2089 | 61.3913 | 61.2089 | 128.23
Mean | 21.3835 | 21.3857 | 21.3691 | 21.3820 | 63.9570 | 63.9636 | 63.9138 | 63.9524 | 133.37
SD | 03609 | 03614 | 0.3601 | 03579 | 0.9897 | 1.0810 | 1.0770 | 1.0707 | 2.063
Max | 263531 | 25.8323 | 26.0243 | 26,0014 | 74.7603 | 72.5097 | 73.4380 | 74.2836 | 162.07
0.1 E.p@) | Min | 169109 | 18.0873 | 173134 | 17.3031 | 53.9388 | 54.7321 | 54.9025 | 549022 | 106.22
Mean | 21.3907 | 21.4701 | 21.4453 | 21.4557 | 63.7304 | 63.9235 | 63.9352 | 63.9335 | 133.24
SD | 1.6029 | 1.6241 | 15990 | 1.5759 | 3.9481 | 4.0223 | 4.0245 | 3.9500 | 9.678
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Fig. 8 Probability density function for first three natural frequencies (rad/s) due to individual and combined variat
thickness, elastic modulus and mass density for angle-ply (45°/-45°/45°) composite cantilever plate.
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Fig. 9 Effect of degree of orthogonality on stochastic (a) fundamental (b) second and (c) third
natural frequencies (rad/s) with respect to. PNN model for combined variation of angle-ply
(45°/-45°/45°) composite cantilever plate.

elastic modulus increases the fluctuation of stochastic natural frequencies also proportionately
increases irrespective of 'modes. To ascertain the degree of proportional variation, a
comparative study is-carried out to map the variation of stochastic natural frequencies due to
variation in input parameters in case of combined variation case. Three cases are considered
namely, (a) *5° for ply orientation angle with subsequent * 10% tolerance for material
properties (b) + 10° for ply orientation angle with subsequent +20% tolerance for material
properties and (c) *15° for ply orientation angle with subsequent *20% tolerance for
material properties from respective deterministic mean values as depicted in Figure 10. It is
evident that as the fluctuation of input parameters increases the sparsity of the stochastic
output natural frequencies also increases while no notable variation of stochastic mean value

of respective natural frequencies is identified due to the same.
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Fig. 11 Relative coefficient of variation (RCV) with respect to first three natural frequencies

for angle-ply (45°/-45°/45°) composite cantilever plate.

To map the contribution of individual input parameters due to their individual

variation, the relative coefficient of variation (RCV) for first three modes of frequencies are



evaluated as shown in Figure 11. The thickness of each layer of the laminate is identified as
the relatively most effective input parameter, followed by ply orientation angle, mass density
and elastic modulus E;. It can be noted here that the results of RCV are in good agreement
with figure 7. The effect of noise on PNN based uncertainty quantification algorithm (refer to
Figure 4) for the case of combined variation of all stochastic input parameters is furnished in
Figure 12. As the multiplication factor Var increases, the range of variations in the probability
density function is also found to be increased. The fundamental natural frequency is identified
to be the maximum noise-sensitive followed by the subsequent second and third natural
frequencies. This is because of the fact that the range of magnitude increases with the increase
in mode number and as magnitude of a particular frequency.becomes higher the influence of

same noise level would be lesser on that frequency.

6. Conclusions

The novelty of the present study includes incorporation of polynomial neural network
based uncertainty propagation algorithm in laminated composite plates. Stochastic natural
frequencies are analyzed considering layer-wise variation of individual as well as combined
cases for random input parameters. Subsequently, the effect of noise on the proposed
approach of uncertainty quantification is addressed. In this study, the uncertainty
quantification of natural frequencies with uniform random input variables (such as ply
orientation, ply-thickness and material properties) is formulated implicitly using finite
element method and thereby PNN approach is incorporated to achieve computational
efficiency. The computational time and cost is reduced by using the present PNN approach
compared to conventional Monte Carlo simulation method. From the analyses presented in
this article it is found that, as the percentage of variation of input parameters increases, the
sparsity of the stochastic output natural frequencies also increases while no notable variation
of stochastic mean value of respective natural frequencies is identified. The thickness

parameter is found to be the most sensitive input parameter while longitudinal elastic modulus
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Fig. 12 Effect of noise on PNN based uncertainty quantification for first three natural frequencies (rad/s) of laminate
combined variation of ply-orientation angle, thickness, elastic modulus and mass density for angle-ply composite can



is observed as the least sensitive parameter. Interestingly, the stochastic fundamental
frequency is identified to be the maximum noise-sensitive compared to higher natural
frequencies. The PNN based approach for uncertainty quantification presented in this article

can be extended to deal with more complex systems in future.
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