5,350 research outputs found

    Using Artificial Intelligence for the Automation of Knitting Patterns

    Full text link
    Knitting patterns are a crucial component in the creation and design of knitted materials. Traditionally, these patterns were taught informally, but thanks to advancements in technology, anyone interested in knitting can use the patterns as a guide to start knitting. Perhaps because knitting is mostly a hobby, with the exception of industrial manufacturing utilising specialised knitting machines, the use of Al in knitting is less widespread than its application in other fields. However, it is important to determine whether knitted pattern classification using an automated system is viable. In order to recognise and classify knitting patterns. Using data augmentation and a transfer learning technique, this study proposes a deep learning model. The Inception ResNet-V2 is the main feature extraction and classification algorithm used in the model. Metrics like accuracy, logarithmic loss, F1-score, precision, and recall score were used to evaluate the model. The model evaluation's findings demonstrate high model accuracy, precision, recall, and F1 score. In addition, the AUC score for majority of the classes was in the range (0.7-0.9). A comparative analysis was done using other pretrained models and a ResNet-50 model with transfer learning and the proposed model evaluation results surpassed all others. The major limitation for this project is time, as with more time, there might have been better accuracy over a larger number of epochs

    State of AI-based monitoring in smart manufacturing and introduction to focused section

    Get PDF
    Over the past few decades, intelligentization, supported by artificial intelligence (AI) technologies, has become an important trend for industrial manufacturing, accelerating the development of smart manufacturing. In modern industries, standard AI has been endowed with additional attributes, yielding the so-called industrial artificial intelligence (IAI) that has become the technical core of smart manufacturing. AI-powered manufacturing brings remarkable improvements in many aspects of closed-loop production chains from manufacturing processes to end product logistics. In particular, IAI incorporating domain knowledge has benefited the area of production monitoring considerably. Advanced AI methods such as deep neural networks, adversarial training, and transfer learning have been widely used to support both diagnostics and predictive maintenance of the entire production process. It is generally believed that IAI is the critical technologies needed to drive the future evolution of industrial manufacturing. This article offers a comprehensive overview of AI-powered manufacturing and its applications in monitoring. More specifically, it summarizes the key technologies of IAI and discusses their typical application scenarios with respect to three major aspects of production monitoring: fault diagnosis, remaining useful life prediction, and quality inspection. In addition, the existing problems and future research directions of IAI are also discussed. This article further introduces the papers in this focused section on AI-based monitoring in smart manufacturing by weaving them into the overview, highlighting how they contribute to and extend the body of literature in this area

    A framework for flexible and reconfigurable vision inspection systems

    Get PDF
    Reconfiguration activities remain a significant challenge for automated Vision Inspection Systems (VIS), which are characterized by hardware rigidity and time-consuming software programming tasks. This work contributes to overcoming the current gap in VIS reconfigurability by proposing a novel framework based on the design of Flexible Vision Inspection Systems (FVIS), enabling a Reconfiguration Support System (RSS). FVIS is achieved using reprogrammable hardware components that allow for easy setup based on software commands. The RSS facilitates offline software programming by extracting parameters from real images, Computer-Aided Design (CAD) data, and rendered images using Automatic Feature Recognition (AFR). The RSS offers a user-friendly interface that guides non-expert users through the reconfiguration process for new part types, eliminating the need for low-level coding. The proposed framework has been practically validated during a 4-year collaboration with a global leading automotive half shaft manufacturer. A fully automated FVIS and the related RSS have been designed following the proposed framework and are currently implemented in 7 plants of GKN global automotive supplier, checking 60 defect types on thousands of parts per day, covering more than 200 individual part types and 12 part families

    Artificial intelligence for advanced manufacturing quality

    Get PDF
    100 p.This Thesis addresses the challenge of AI-based image quality control systems applied to manufacturing industry, aiming to improve this field through the use of advanced techniques for data acquisition and processing, in order to obtain robust, reliable and optimal systems. This Thesis presents contributions onthe use of complex data acquisition techniques, the application and design of specialised neural networks for the defect detection, and the integration and validation of these systems in production processes. It has been developed in the context of several applied research projects that provided a practical feedback of the usefulness of the proposed computational advances as well as real life data for experimental validation

    A global survey on the current state of practice in Zero Defect Manufacturing and its impact on production performance

    Get PDF
    To be competitive in dynamic and global markets, manufacturing companies are continuously seeking to apply innovative production strategies and methods combined with advanced digital technologies to improve their flexibility, productivity, quality, environmental impact, and cost performance. Zero Defect Manufacturing is a disruptive concept providing production strategies and methods with underlying advanced digital technologies to fill the gap. While scientific knowledge within this area has increased exponentially, the current practices and impact of Zero Defect Manufacturing on companies over time are still unknown. Therefore, this survey aims to map the current state of practice in Zero Defect Manufacturing and identify its impact on production performance. The results show that although Zero Defect Manufacturing strategies and methods are widely applied and can have a strong positive impact on production performance, this has not always been the case. The findings also indicate that digital technologies are increasingly used, however, the potential of artificial intelligence and extended reality is still less exploited. We contribute to theory by detailing the research needs of Zero Defect Manufacturing from the practitioner’s perspective and suggesting actions to enhance Zero Defect Manufacturing strategies and methods. Further, we provide practical and managerial suggestions to improve production performances and move towards sustainable development and zero waste.publishedVersio

    Enhancing remanufacturing automation using deep learning approach

    Get PDF
    In recent years, remanufacturing has significant interest from researchers and practitioners to improve efficiency through maximum value recovery of products at end-of-life (EoL). It is a process of returning used products, known as EoL products, to as-new condition with matching or higher warranty than the new products. However, these remanufacturing processes are complex and time-consuming to implement manually, causing reduced productivity and posing dangers to personnel. These challenges require automating the various remanufacturing process stages to achieve higher throughput, reduced lead time, cost and environmental impact while maximising economic gains. Besides, as highlighted by various research groups, there is currently a shortage of adequate remanufacturing-specific technologies to achieve full automation. -- This research explores automating remanufacturing processes to improve competitiveness by analysing and developing deep learning-based models for automating different stages of the remanufacturing processes. Analysing deep learning algorithms represents a viable option to investigate and develop technologies with capabilities to overcome the outlined challenges. Deep learning involves using artificial neural networks to learn high-level abstractions in data. Deep learning (DL) models are inspired by human brains and have produced state-of-the-art results in pattern recognition, object detection and other applications. The research further investigates the empirical data of torque converter components recorded from a remanufacturing facility in Glasgow, UK, using the in-case and cross-case analysis to evaluate the remanufacturing inspection, sorting, and process control applications. -- Nevertheless, the developed algorithm helped capture, pre-process, train, deploy and evaluate the performance of the respective processes. The experimental evaluation of the in-case and cross-case analysis using model prediction accuracy, misclassification rate, and model loss highlights that the developed models achieved a high prediction accuracy of above 99.9% across the sorting, inspection and process control applications. Furthermore, a low model loss between 3x10-3 and 1.3x10-5 was obtained alongside a misclassification rate that lies between 0.01% to 0.08% across the three applications investigated, thereby highlighting the capability of the developed deep learning algorithms to perform the sorting, process control and inspection in remanufacturing. The results demonstrate the viability of adopting deep learning-based algorithms in automating remanufacturing processes, achieving safer and more efficient remanufacturing. -- Finally, this research is unique because it is the first to investigate using deep learning and qualitative torque-converter image data for modelling remanufacturing sorting, inspection and process control applications. It also delivers a custom computational model that has the potential to enhance remanufacturing automation when utilised. The findings and publications also benefit both academics and industrial practitioners. Furthermore, the model is easily adaptable to other remanufacturing applications with minor modifications to enhance process efficiency in today's workplaces.In recent years, remanufacturing has significant interest from researchers and practitioners to improve efficiency through maximum value recovery of products at end-of-life (EoL). It is a process of returning used products, known as EoL products, to as-new condition with matching or higher warranty than the new products. However, these remanufacturing processes are complex and time-consuming to implement manually, causing reduced productivity and posing dangers to personnel. These challenges require automating the various remanufacturing process stages to achieve higher throughput, reduced lead time, cost and environmental impact while maximising economic gains. Besides, as highlighted by various research groups, there is currently a shortage of adequate remanufacturing-specific technologies to achieve full automation. -- This research explores automating remanufacturing processes to improve competitiveness by analysing and developing deep learning-based models for automating different stages of the remanufacturing processes. Analysing deep learning algorithms represents a viable option to investigate and develop technologies with capabilities to overcome the outlined challenges. Deep learning involves using artificial neural networks to learn high-level abstractions in data. Deep learning (DL) models are inspired by human brains and have produced state-of-the-art results in pattern recognition, object detection and other applications. The research further investigates the empirical data of torque converter components recorded from a remanufacturing facility in Glasgow, UK, using the in-case and cross-case analysis to evaluate the remanufacturing inspection, sorting, and process control applications. -- Nevertheless, the developed algorithm helped capture, pre-process, train, deploy and evaluate the performance of the respective processes. The experimental evaluation of the in-case and cross-case analysis using model prediction accuracy, misclassification rate, and model loss highlights that the developed models achieved a high prediction accuracy of above 99.9% across the sorting, inspection and process control applications. Furthermore, a low model loss between 3x10-3 and 1.3x10-5 was obtained alongside a misclassification rate that lies between 0.01% to 0.08% across the three applications investigated, thereby highlighting the capability of the developed deep learning algorithms to perform the sorting, process control and inspection in remanufacturing. The results demonstrate the viability of adopting deep learning-based algorithms in automating remanufacturing processes, achieving safer and more efficient remanufacturing. -- Finally, this research is unique because it is the first to investigate using deep learning and qualitative torque-converter image data for modelling remanufacturing sorting, inspection and process control applications. It also delivers a custom computational model that has the potential to enhance remanufacturing automation when utilised. The findings and publications also benefit both academics and industrial practitioners. Furthermore, the model is easily adaptable to other remanufacturing applications with minor modifications to enhance process efficiency in today's workplaces

    A Review on the Classification of Partial Discharges in Medium-Voltage Cables : Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques

    Get PDF
    Medium-voltage (MV) cables often experience a shortened lifespan attributed to insulation breakdown resulting from accelerated aging and anomalous operational and environmental stresses. While partial discharge (PD) measurements serve as valuable tools for assessing the insulation state, complexity arises from the presence of diverse discharge sources, making the evaluation of PD data challenging. The reliability of diagnostics for MV cables hinges on the precise interpretation of PD activity. To streamline the repair and maintenance of cables, it becomes crucial to discern and categorize PD types accurately. This paper presents a comprehensive review encompassing the realms of detection, feature extraction, artificial intelligence, and optimization techniques employed in the classification of PD signals/sources. Its exploration encompasses a variety of sensors utilized for PD detection, data processing methodologies for efficient feature extraction, optimization techniques dedicated to selecting optimal features, and artificial intelligence-based approaches for the classification of PD sources. This synthesized review not only serves as a valuable reference for researchers engaged in the application of methods for PD signal classification but also sheds light on potential avenues for future developments of techniques within the context of MV cables.© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Recent Advances and Applications of Machine Learning in Metal Forming Processes

    Get PDF
    Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics related to metal forming processes, such as: Classification, detection and prediction of forming defects; Material parameters identification; Material modelling; Process classification and selection; Process design and optimization. The purpose of this Special Issue is to disseminate state-of-the-art ML applications in metal forming processes, covering 10 papers about the abovementioned and related topics
    corecore