334 research outputs found

    TriG - A GNSS Precise Orbit and Radio Occultation Space Receiver

    Get PDF
    The GPS radio occultation (RO) technique [1] produces measurements in the ionosphere and neutral atmosphere [2] that contribute to monitoring space weather and climate change; and improving operational weather prediction. The high accuracy of RO soundings, traceable to SI standards, makes them ideal climate benchmark observations. For weather applications, RO observations improve the accuracy of weather forecasts by providing temperature and moisture profiles of sub-km vertical resolution, over land and ocean and in the presence of clouds. JPL is currently flying a handful of RO instruments [3] on various satellites in Low Earth Orbit (LEO). Although these receivers have served to pioneer occultation measurements, various advances in technology and understanding of the RO technique along with availability of new signals from GPS and other GNSS satellites allow us to design an improved next generation space-based Precise Orbit Determination (POD) and RO receiver, the TriG receiver. The paper describes the architecture and implementation of the JPL TriG receiver as well as results obtained with a prototype receiver demonstrating key technologies necessary for a next-generation space science receiver

    Multi GNSS IRNSS L5 IRNSS S1 and GPS L1 Hybrid Simulator A Reconfigurable Low cost Solution for Research and Defence Applications

    Get PDF
    Satellite-based positioning field of research is growing rapidly as there is an increase in demand for precise position requirements in various civil and commercial applications. There are many errors that affect the GNSS signals while propagation from satellite to receiver, which eventually induces errors in pseudo-range measurements. In order to assess the receiver characteristics for a specific error condition, the real-time signals may not be appropriate, and it is challenging to perform repeated experiments with the same error condition. The advantage of the GNSS simulator is that users can model the different scenarios for any given location on the globe, which are repeatable at any point of time. The conventional hardware simulators are expensive and have few limitations. In this paper, a reconfigurable hybrid simulator is proposed with some advantages over traditional hardware simulators, such as low cost, reconfigurability, and controllability over fundamental parameters. It can be able to record intermediate stage data, which makes it more suitable for the GNSS research field. The proposed multi-GNSS simulator considered implementing IRNSS-L5, IRNSS-S1, and GPS-L1 band signals. A general-purpose computer can perform the necessary calculations for signal generation. The hybrid simulator can be able to generate the digital I/Q data, which can be stored as I/Q data or can be connected to a general-purpose SDR (Software Defined Radio) for RF signal generation (bladeRF in this case). The I/Q data can be used with the software receiver to analyse the receiver performance concerning the specific error. The generated GNSS signals are validated with software and hardware receivers, and the obtained position is observed as expected.&nbsp

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    A 10-b Fourth-Order Quadrature Bandpass Continuous-Time ΣΔ Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver

    Get PDF
    This document is the Accepted Manuscript version of the following article: Junfeng Zhang, Yang Xu, Zehong Zhang, Yichuang Sun, Zhihua Wang, and Baoyong Chi, ‘A 10-b Fourth-Order Quadrature Bandpass Continuous-Time ΣΔ Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver’, IEEE Transactions on Microwave Theory and Practice, Vol. 65 (4): 1303-1314, first published online 16 February 2017. The version of record is available online at DOI: 10.1109/TMTT.2017.266237, Published by IEEE. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A fourth-order quadrature bandpass continuous-time sigma-delta modulator for a dual-channel global navigation satellite system (GNSS) receiver is presented. With a bandwidth (BW) of 33 MHz, the modulator is able to digitalize the downconverted GNSS signals in two adjacent signal bands simultaneously, realizing dual-channel GNSS reception with one receiver channel instead of two independent receiver channels. To maintain the loop-stability of the high-order architecture, any extra loop phase shifting should be minimized. In the system architecture, a feedback and feedforward hybrid architecture is used to implement the fourth-order loop-filter, and a return-to-zero (RZ) feedback after the discrete-time differential operation is introduced into the input of the final integrator to realize the excess loop delay compensation, saving a spare summing amplifier. In the circuit implementation, power-efficient amplifiers with high-frequency active feedforward and antipole-splitting techniques are employed in the active RC integrators, and self-calibrated comparators are used to implement the low-power 3-b quantizers. These power saving techniques help achieve superior figure of merit for the presented modulator. With a sampling rate of 460 MHz, current-steering digital-analog converters are chosen to guarantee high conversion speed. Implemented in only 180-nm CMOS, the modulator achieves 62.1-dB peak signal to noise and distortion ratio, 64-dB dynamic range, and 59.3-dB image rejection ratio, with a BW of 33 MHz, and consumes 54.4 mW from a 1.8 V power supply.Peer reviewe

    Getting better all the time - The Continued Evolution of the GNSS Software-Defined Radio

    Get PDF
    Software Defined Radio (SDR) has an infinite number of interpretations depending on the context in which it is designed and used. By way of a starting definition the authors choose to use that of ‘a reconfigurable radio system whose characteristics are partially or fully defined via software or firmware’. In various forms, SDR has permeated a wide range of user groups, from military, business, academia and to the amateur radio enthusiast

    GPS Receiver Simplification for Low cost Applications and Multipath Mitigation Analysis on SDR based Re configurable Software Receiver

    Get PDF
    Many modern position-based applications rely heavily on the Global Navigation Satellite System (GNSS). Most applications require precise position data obtained through sophisticated hardware with a high computational capacity in the receiver. Some cost-effective applications may not require precise position data and require less complex signal processing. The use of efficient hardware and signal processing techniques to reduce the overall cost of a GNSS receiver is an active research topic. This paper considers Global Positioning System (GPS) constellation and proposes two factors to reduce the receiver complexity: sampling frequency and the number of tracking channels. A Keysight GNSS signal generator to record GPS signals, a Software Defined Radio board and a software-based GPS receiver are used in the experimentation. The sampling frequencies are 40, 20, 10 and 5 MHz considered, and tracking channels are reduced from 12 to 6 and then 4. The increase of error in the receiver position with 6 and 4 satellites is considerably small, but the number of tracking channels and signal processing requirements are reduced considerably. The GPS signals are affected by many errors; one of the significant sources of error is multipath propagation. Three distinct GPS multipath scenarios are generated for four satellite signal combinations with the GNSS simulator for the receiver performance analysis. Three multipath mitigation techniques, namely Early Minus Late (EML), Narrow correlator (NC) and strobe correlator (SC) methods, are considered because of their simple structure and fewer signal processing requirements. The error reductions of three multipath scenarios are compared, and the SC method performs better in all three multipath scenarios

    Software-Defined Radio Technologies forGNSS Receivers: A Tutorial Approach to a SimpleDesign and Implementation

    Get PDF
    The field of satellite navigation has witnessed the advent of a number of new systems and technologies: after the landmark design and development of the Global Positioning System (GPS), a number of new independent Global Navigation Satellite Systems (GNSSs) were or are being developed all over the world: Russia's GLONASS, Europe's GALILEO, and China's BEIDOU-2, to mention a few. In this ever-changing context, the availability of reliable and flexible receivers is becoming a priority for a host of applications, including research, commercial, civil, and military. Flexible means here both easily upgradeable for future needs and/or on-the-fly reprogrammable to adapt to different signal formats. An effective approach to meet these design goals is the software-defined radio (SDR) paradigm. In the last few years, the availability of new processors with high computational power enabled the development of (fully) software receivers whose performance is comparable to or better than that of conventional hardware devices, while providing all the advantages of a flexible and fully configurable architecture. The aim of this tutorial paper is surveying the issue of the general architecture and design rules of a GNSS software receiver, through a comprehensive discussion of some techniques and algorithms, typically applied in simple PC-based receiver implementations

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature
    corecore