52 research outputs found

    Particulate multivalent presentation of the receptor binding domain induces protective immune responses against MERS-CoV

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) is a WHO priority pathogen for which vaccines are urgently needed. Using an immune-focusing approach, we created self-assembling particles multivalently displaying critical regions of the MERS-CoV spike protein ─fusion peptide, heptad repeat 2, and receptor binding domain (RBD) ─ and tested their immunogenicity and protective capacity in rabbits. Using a "plug-and-display" SpyTag/SpyCatcher system, we coupled RBD to lumazine synthase (LS) particles producing multimeric RBD-presenting particles (RBD-LS). RBD-LS vaccination induced antibody responses of high magnitude and quality (avidity, MERS-CoV neutralizing capacity, and mucosal immunity) with cross-clade neutralization. The antibody responses were associated with blocking viral replication and upper and lower respiratory tract protection against MERS-CoV infection in rabbits. This arrayed multivalent presentation of the viral RBD using the antigen-SpyTag/LS-SpyCatcher is a promising MERS-CoV vaccine candidate and this platform may be applied for the rapid development of vaccines against other emerging vi

    Dressing up artificial viral capsids self-assembled from C-terminal-modified beta-annulus peptides

    Get PDF
    A variety of chemical approaches for the rational design of artificial proteins and peptides have been developed in recent years for the construction of self-assembled nanocapsules. It was previously found that a synthetic 24-mer β-annulus peptide, which participates in the formation of the dodecahedral internal skeleton of the tomato bushy stunt virus capsid, spontaneously self-assembled into artificial viral capsids with a size of 30–50 nm. These artificial viral capsids were established to encapsulate various guest molecules, such as anionic dyes, DNA, quantum dots, and His-tagged proteins. The artificial viral capsids could also be dressed up with gold nanoparticles, single-stranded DNA, coiled-coil spikes, and proteins by modifying with these molecules at the C-terminus of β-annulus peptides. The artificial viral capsids were notably stabilized by dressing up with human serum albumin and acquired enzymatic activity by dressing up with ribonuclease

    Beyond icosahedral symmetry in packings of proteins in spherical shells

    Get PDF
    The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations, and (ii) that optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.Comment: 8 pages, 5 figure

    Protein assemblies: nature-inspired and designed nanostructures

    Get PDF
    Ordered protein assemblies are attracting interest as next-generation biomaterials with a remarkable range of structural and functional properties, leading to potential applications in biocatalysis, materials templating, drug delivery and vaccine development. This Review covers ordered protein assemblies including protein nanowires/nanofibrils, nanorings, nanotubes, designed two- and three-dimensional ordered protein lattices and protein-like cages including polyhedral virus-like cage structures. The main focus is on designed ordered protein assemblies, in which the spatial organization of the proteins is controlled by tailored noncovalent interactions (including metal ion binding interactions, electrostatic interactions and ligand–receptor interactions among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein assemblies including bacterial S-layers and cage-like and rod-like viruses to impart novel function, e.g. enzymatic activity, is also considered. A diversity of structures have been created using distinct approaches, and this Review provides a summary of the state-of-the-art in the development of these systems, which have exceptional potential as advanced bionanomaterials for a diversity of applications

    Elaborating a coiledâ coilâ assembled octahedral protein cage with additional protein domains

    Full text link
    De novo design of protein nanoâ cages has potential applications in medicine, synthetic biology, and materials science. We recently developed a modular, symmetryâ based strategy for protein assembly in which short, coiledâ coil sequences mediate the assembly of a protein building block into a cage. The geometry of the cage is specified by the combination of rotational symmetries associated with the coiledâ coil and protein building block. We have used this approach to design wellâ defined octahedral and tetrahedral cages. Here, we show that the cages can be further elaborated and functionalized by the addition of another protein domain to the free end of the coiledâ coil: in this case by fusing maltoseâ binding protein to an octahedral protein cage to produce a structure with a designed molecular weight of ~1.8 MDa. Importantly, the addition of the maltose binding protein domain dramatically improved the efficiency of assembly, resulting in ~ 60â fold greater yield of purified protein compared to the original cage design. This study shows the potential of using small, coiledâ coil motifs as offâ theâ shelf components to design MDaâ sized protein cages to which additional structural or functional elements can be added in a modular manner.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146469/1/pro3497.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146469/2/pro3497_am.pd

    Virus-like particles and nanoparticles for vaccine development against HCMV

    Get PDF
    Human cytomegalovirus (HCMV) infects more than 70% of the human population worldwide. HCMV is responsible for high morbidity and mortality in immunocompromised patients and remains the leading viral cause of congenital birth defects. Despite considerable efforts in vaccine and therapeutic development, HCMV infection still represents an unmet clinical need and a life-threatening disease in immunocompromised individuals and newborns. Immune repertoire interrogation of HCMV seropositive patients allowed the identification of several potential antigens for vaccine design. However, recent HCMV vaccine clinical trials did not lead to a satisfactory outcome in term of efficacy. Therefore, combining antigens with orthogonal technologies to further increase the induction of neutralizing antibodies could improve the likelihood of a vaccine to reach protective efficacy in humans. Indeed, presentation of multiple copies of an antigen in a repetitive array is known to drive a more robust humoral immune response than its soluble counterpart. Virus-like particles (VLPs) and nanoparticles (NPs) are powerful platforms for multivalent antigen presentation. Several self-assembling proteins have been successfully used as scaffolds to present complex glycoprotein antigens on their surface. In this review, we describe some key aspects of the immune response to HCMV and discuss the scaffolds that were successfully used to increase vaccine efficacy against viruses with unmet medical need
    • …
    corecore