327 research outputs found

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    A Case Study in CMOS Design Scaling for Analog Applications: The Ringamp LDO

    Get PDF
    As CMOS process nodes scale to smaller feature sizes, process optimizations are made to achieve improvements in digital circuit performance, such as increasing speed and memory, while decreasing power consumption. Unfortunately for analog design, these optimizations usually come at the expense of poorer transistor performance, such as reduced small signal output resistance and increased channel length modulation. The ring amplifier has been proposed as a digital solution to the analog scaling problem, by configuring digital inverters to function as analog amplifiers through deadzone biasing. As digital inverters naturally scale, the ring amplifier is a promising area of exploration for analog design. This work presents a ring amplifier scaling study by demonstration of scaling an output capacitor-less, ring amplifier based low-dropout voltage regulator designed in a standard 180 nm CMOS process down to a standard 90 nm CMOS process

    A Flexible, Highly Integrated, Low Power pH Readout

    Get PDF
    Medical devices are widely employed in everyday life as wearable and implantable technologies make more and more technological breakthroughs. Implantable biosensors can be implanted into the human body for monitoring of relevant physiological parameters, such as pH value, glucose, lactate, CO2 [carbon dioxide], etc. For these applications the implantable unit needs a whole functional set of blocks such as micro- or nano-sensors, sensor signal processing and data generation units, wireless data transmitters etc., which require a well-designed implantable unit.Microelectronics technology with biosensors has caused more and more interest from both academic and industrial areas. With the advancement of microelectronics and microfabrication, it makes possible to fabricate a complete solution on an integrated chip with miniaturized size and low power consumption.This work presents a monolithic pH measurement system with power conditioning system for supply power derived from harvested energy. The proposed system includes a low-power, high linearity pH readout circuits with wide pH values (0-14) and a power conditioning unit based on low drop-out (LDO) voltage regulator. The readout circuit provides square-wave output with frequency being highly linear corresponding to the input pH values. To overcome the process variations, a simple calibration method is employed in the design which makes the output frequency stay constant over process, supply voltage and temperature variations. The prototype circuit is designed and fabricated in a standard 0.13-ฮผm [micro-meter] CMOS process and shows good linearity to cover the entire pH value range from 0-14 while the voltage regulator provides a stable supply voltage for the system

    A Ringamp-Assisted, Output Capacitor-less Analog CMOS Low-Dropout Voltage Regulator

    Get PDF
    Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) Voltage Regulators, leading to a presented design methodology and implementation of a state-of-the-art Ringamp-Assisted, Output Capacitor-less Analog CMOS LDO Voltage Regulator capable of both power scaling and process node scaling for general SoC applications

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ยฑ0.5V. The proposed CCII- has wide input voltage range (ยฑ0.24V), wide output voltage (ยฑ0.24V) and wide output current range (ยฑ24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18ฮผm CMOS processes and it occupies 1189.91 x 1178.43ฮผm2 (include PADs). It can also be validated by low voltage CCII filters

    Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    Full text link
    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3 x 10^34 cm^-2 s^-1 with an integrated luminosity over the IBL lifetime of 300 fb^-1 corresponding to a design lifetime fluence of 5 x 10^15 n_eq cm^-2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these results, is described. Preliminary wafer to wafer distributions as well as yield calculations are given

    Improvement On Rectification And Regulation Of Power Conditioning Circuit For RF Energy Harvesting

    Get PDF
    Power management is one of critical issues in most of integrated circuit (IC) applications as it determines the ability of a device to maintain its operating time. Power management system can be divided into two parts, energy harvesting and low dropout (LDO) voltage regulator circuits. Due to the increase of radio frequency (RF) sources around the globe, RF energy harvesting system which mainly composes of a rectifier becomes promising solution to power the low-powered electronic devices as it offers low power density and smaller size of energy converter make it easily to be integrated into a chip. The sensitivity, efficiency, and output voltage play an important role in the design of rectifier for energy harvesting. High efficiency conventional rectifiers typically provide either high sensitivity or high output voltage characteristics. Due to the limitation in rectifier architectures and the physical structure of transistor that causing large voltage drop across the rectifier over a wide range of sensitivity and output voltage, improving one of the characteristics trades off the other. The objective of this research is to design a high efficiency rectifier that operates at high sensitivity, targeting urban and rural areas and producing large output voltage that is sufficient to supply low-power electronic devices. The proposed rectifier comprises bulk-to-source BTMOS differential-drive based rectifier to produce a high efficiency RF energy harvesting system. Low-pass upward matching network is applied at the rectifier input to minimize the power loss between antenna and the rectifier hence increasing the sensitivity and output voltage. Dual-oxide-thickness transistors are used in the rectifier circuit to optimize the power efficiency at each of the rectifierโ€™s stage over a wide range of output voltage and sensitivity. The system is designed using 0.18ฮผm Silterra RF in deep n-well process technology and produces 3.997V output at -15dBm sensitivity without the need of complex auxiliary control circuit and DC โ€“ DC charge-pump circuit. Meanwhile, technology scaling in modern IC industries causing the ripple noise from power supply become dominant for analogue and RF circuits. RF circuit demands for voltage regulator that has high power supply rejection ratio (PSRR) and low temperature coefficient as this circuit is very sensitive to noise. Small changes in its supply voltage may cause the circuit not functioning properly. Conventional regulators provide high PSRR, but it typically focuses on low frequency application. Due to this reason, LDO with high PSRR at high frequency and low temperature coefficient over a wide range of temperature is proposed. The proposed LDO uses rail-to-rail folded cascode amplifier to achieve high PSRR while obtaining good open-loop gain and stability. Large 1ฮผF off-chip load capacitor is used to further increase the PSRR. The LDO uses transistors operating in weak and strong inversions at the voltage reference circuit to achieve 2nd order voltage-temperature characteristic hence reducing the temperature coefficient. The LDO is designed using 0.18ฮผm Silterra thick-oxide technology and produces a constant 1.8V output voltage for input voltage between 3.2V to 5V and load current up to a 128mA at temperature between -40ยฐC to 125ยฐC. The LDO achieves more than 100dB PSRR for frequency greater than 900MHz and obtained temperature coefficient of lower than 5ppm/ยฐC within the desired temperature range

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    12.8 kHz Energy-Efficient Read-Out IC for High Precision Bridge Sensor Sensing System

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๊น€์ˆ˜ํ™˜.In the thesis, a high energy-efficient read-out integrated circuit (read-out IC) for a high-precision bridge sensor sensing system is proposed. A low-noise capacitively-coupled chopper instrumentation amplifier (CCIA) followed by a high-resolution incremental discrete-time delta-sigma modulator (DTฮ”ฮฃฮœ) analog-to-digital converter (ADC) is implemented. To increase energy-efficiency, CCIA is chosen, which has the highest energy-efficiency among IA types. CCIA has a programmable gain of 1 to 128 that can amplify the small output of the bridge sensor. Impedance boosting loop (IBL) is applied to compensate for the low input impedance, which is a disadvantage of a CCIA. Also, the sensor offset cancellation technique was applied to CCIA to eliminate the offset resulting from the resistance mismatch of the bridge sensor, and the bridge sensor offset from -350 mV to 350 mV can be eliminated. In addition, the output data rate of the read-out IC is designed to be 12.8 kHz to quickly capture data and to reduce the power consumption of the sensor by turning off the sensor and read-out IC for the rest of the time. Generally, bridge sensor system is much slower than 12.8 kHz. To suppress 1/f noise, system level chopping and correlated double sampling (CDS) techniques are used. Implemented in a standard 0.13-ฮผm CMOS process, the ROICโ€™s effective resolution is 17.0 bits at gain 1 and that of 14.6 bits at gain 128. The analog part draws the average current of 139.4 ฮผA from 3-V supply, and 60.2 ฮผA from a 1.8 V supply.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ์ •๋ฐ€ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๋†’์€ Read-out Integrated Circuit (read-out IC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ € ์žก์Œ Capacitively-Coupled Instrumentation Amplifier (CCIA)์— ์ด์€ ๊ณ ํ•ด์ƒ๋„ Discrete-time Delta-Sigma ๋ณ€์กฐ๊ธฐ(DTฮ”ฮฃฮœ) ์•„๋‚ ๋กœ๊ทธ-๋””์ง€ํ„ธ ๋ณ€ํ™˜๊ธฐ(ADC)๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์—๋„ˆ์ง€ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด IA ์œ ํ˜• ์ค‘ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๊ฐ€์žฅ ๋†’์€ CCIA๋ฅผ ์„ ํƒํ•˜์˜€๋‹ค. CCIA๋Š” ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ์˜ ์ž‘์€ ์ถœ๋ ฅ์„ ์ฆํญํ•  ์ˆ˜ ์žˆ๋Š” 1 ์—์„œ 128์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ์ „์•• ์ด๋“์„ ๊ฐ€์ง„๋‹ค. CCIA์˜ ๋‹จ์ ์ธ ๋‚ฎ์€ ์ž…๋ ฅ ์ž„ํ”ผ๋˜์Šค๋ฅผ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด Impedance Boosting Loop (IBL)์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ CCIA์— ์„ผ์„œ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๊ธฐ์ˆ ์„ ์ ์šฉํ•˜์—ฌ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ์˜ ์ €ํ•ญ ๋ฏธ์Šค๋งค์น˜๋กœ ์ธํ•œ ์˜คํ”„์…‹์„ ์ œ๊ฑฐ ๊ธฐ๋Šฅ์„ ํƒ‘์žฌํ•˜์˜€์œผ๋ฉฐ -350mV์—์„œ 350mV๊นŒ์ง€ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. Read-out IC์˜ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์€ 12.8kHz๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฑ„๊ณ  ๋‚˜๋จธ์ง€ ์‹œ๊ฐ„ ๋™์•ˆ ์„ผ์„œ์™€ read-out IC๋ฅผ ๊บผ์„œ ์„ผ์„œ์˜ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์‹œ์Šคํ…œ์€ 12.8kHz๋ณด๋‹ค ๋Š๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์— ์ด๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์ธ CCIA๋Š” ์ž…๋ ฅ ์ž„ํ”ผ๋˜์Šค ๋•Œ๋ฌธ์— ๋น ๋ฅธ ์†๋„์—์„œ ์„ค๊ณ„๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด demodulate ์ฐจํ•‘์„ ์•ฐํ”„ ๋‚ด๋ถ€๊ฐ€ ์•„๋‹Œ ์‹œ์Šคํ…œ ์ฐจํ•‘์„ ์ด์šฉํ•ด ํ•ด๊ฒฐํ•˜์˜€๋‹ค. 1/f ๋…ธ์ด์ฆˆ๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์ฐจํ•‘ ๋ฐ ์ƒ๊ด€ ์ด์ค‘ ์ƒ˜ํ”Œ๋ง(CDS) ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 0.13ฮผm CMOS ๊ณต์ •์—์„œ ๊ตฌํ˜„๋œ read-out IC์˜ Effective Resolution (ER)์€ ์ „์•• ์ด๋“ 1์—์„œ 17.0๋น„ํŠธ์ด๊ณ  ์ „์•• ์ด๋“ 128์—์„œ 14.6๋น„ํŠธ๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์•„๋‚ ๋กœ๊ทธ ํšŒ๋กœ๋Š” 3 V ์ „์›์—์„œ 139.4ฮผA์˜ ํ‰๊ท  ์ „๋ฅ˜๋ฅผ, ๋””์ง€ํ„ธ ํšŒ๋กœ๋Š” 1.8 V ์ „์›์—์„œ 60.2ฮผA์˜ ํ‰๊ท  ์ „๋ฅ˜๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 SMART DEVICES 1 1.2 SMART SENSOR SYSTEMS 4 1.3 WHEATSTONE BRIDGE SENSOR 5 1.4 MOTIVATION 8 1.5 PREVIOUS WORKS 10 1.6 INTRODUCTION OF THE PROPOSED SYSTEM 14 1.7 THESIS ORGANIZATION 16 CHAPTER 2 SYSTEM OVERVIEW 17 2.1 SYSTEM ARCHITECTURE 17 CHAPTER 3 IMPLEMENTATION OF THE CCIA 19 3.1 CAPACITIVELY-COUPLED CHOPPER INSTRUMENTATION AMPLIFIER 19 3.2 IMPEDANCE BOOSTING 22 3.3 SENSOR OFFSET CANCELLATION 25 3.4 AMPLIFIER OFFSET CANCELLATION 29 3.5 AMPLIFIER IMPLEMENTATION 32 3.6 IMPLEMENTATION OF THE CCIA 35 CHAPTER 4 INCREMENTAL ฮ”ฮฃ ADC 37 4.1 INTRODUCTION OF INCREMENTAL ฮ”ฮฃ ADC 37 4.2 IMPLEMENTATION OF INCREMENTAL ฮ”ฮฃ MODULATOR 40 CHAPTER 5 SYSTEM-LEVEL DESIGN 43 5.1 DIGITAL FILTER 43 5.2 SYSTEM-LEVEL CHOPPING & TIMING 46 CHAPTER 5 MEASUREMENT RESULTS 48 6.1 MEASUREMENT SUMMARY 48 6.2 LINEARITY & NOISE MEASUREMENT 51 6.3 SENSOR OFFSET CANCELLATION MEASUREMENT 57 6.4 INPUT IMPEDANCE MEASUREMENT 59 6.5 TEMPERATURE VARIATION MEASUREMENT 63 6.6 PERFORMANCE SUMMARY 66 CHAPTER 7 CONCLUSION 68 APPENDIX A. 69 ENERGY-EFFICIENT READ-OUT IC FOR HIGH-PRECISION DC MEASUREMENT SYSTEM WITH IA POWER REDUCTION TECHNIQUE 69 BIBLIOGRAPHY 83 ํ•œ๊ธ€์ดˆ๋ก 87๋ฐ•
    • โ€ฆ
    corecore