3,772 research outputs found

    A New Converter Station Topology to Improve the Overall Performance of a Doubly Fed Induction Generator-Based Wind Energy Conversion System

    Get PDF
    This thesis presents a reliable and cost effective technique that calls for reconfiguration of the existing converters of a typical Doubly Fed Induction Generator to include a coil of low internal resistance. A coil within the DC link is the only hardware component required to implement this technique. With a proper control scheme, activated during fault conditions, this coil can provide the same degree of performance as a superconducting magnetic energy storage unit during fault conditions

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    Application of Unified Power Flow Controller to Improve the Performance of Wind Energy Conversion System

    Get PDF
    This research introduces the unified power flow controller (UPFC) as a means to improve the overall performance of wind energy conversion system (WECS) through the development of an appropriate control algorithm. Also, application of the proposed UPFC control algorithm has been extended in this research to overcome some problems associated with the internal faults associated with WECS- voltage source converter (VSC), such as miss-fire, fire-through and dc-link faults

    Modeling and Control of Diesel-Hydrokinetic Microgrids

    Get PDF
    A large number of decentralized communities in Canada and particularly in Québec rely on diesel power generation. The cost of electricity and environmental concerns suggest that hydrokinetic energy is a potential for power generation. Hydrokinetic energy conversion systems (HKECSs) are clean, reliable alternatives, and more beneficial than other renewable energy sources and conventional hydropower generation. However, due to the stochastic nature of river speed and variable load patterns of decentralized communities, the use of a hybrid diesel- hydrokinetic (D-HK) microgrid system has advantages. A large or medium penetration level has a negative effect on the short-term (transient) and long-term (steady-state) performance of such a hybrid system if the HKECS is controlled based on conventional control schemes. The conventional control scheme of the HKECS is the maximum power point tracking (MPPT). In the long-term conditions, the diesel generator set (genset) can operate at a reduced load where the role of the HKECS is to reduce the electrical load on the diesel genset (light loading). In the short-term, the frequency of the microgrid can vary due to the variable nature of water speed and load patterns. This can lead to power quality problems like a high rate of change of frequency or power, frequency fluctuations, etc. Moreover, these problems are magnified in storage-less DHK microgrids where a conventional energy storage system is not available to mitigate power as well as frequency deviations by controlling active power. Therefore, developing sophisticated control strategies for the HKECS to mitigate problems as mentioned above are necessary. Another challenging issue is a hardware-in-the-loop (HIL) platform for testing and developing a D-HK microgrid. A dispatchable power controller for a fixed-pitch cross-flow turbine-based HKECS operating in the low rotational speed (stall) region is presented in this thesis. It delivers a given power requested by an operator provided that the water speed is high enough. If not, it delivers as much as possible, operating with an MPPT algorithm while meeting the basic operating limits (i.e., generator voltage and rotor speed, rated power, and maximum water speed), shutting down automatically if necessary. A supervisory control scheme provides a smooth transition between modes of operation as the water speed and reference power from the operator vary. The performance of the proposed dispatchable power controller and supervisory control algorithm is verified experimentally with an electromechanical-based hydrokinetic turbine (HKT) emulator. The permanent magnet synchronous generator (PMSG) is preferred in small HKECSs. So, a converter-based PMSG emulator as a testbed for designing, analyzing, and testing of the generator’s power electronic interface and its control system is developed. A 6-switch voltage source converter (VSC) is used as a power amplifier to mimic the behaviour of the PMSG supplying linear and non-linear loads. Technical challenges of the PMSG emulator are considered, and proper solutions are suggested. Finally, an active power sharing control strategy for a storage-less D-HK microgrid with medium and high penetration of hydrokinetic power to mitigate: 1) the effect of the grid frequency fluctuation due to instantaneous variation in the water speed/load, and 2) light loading operation of the diesel engine is proposed. A supplementary control loop that includes virtual inertia and frequency droop control is added to the conventional control system of HKECS in order to provide load power sharing and frequency support control. The proposed strategy is experimentally verified with diesel engine and HKT emulators controlled via a dSPACE® rapid control prototyping system. The transient and steady-state performance of the system including grid frequency and power balancing control are presented

    L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    Get PDF
    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed wind energy conversion system (WECS). The proposed controller generates the optimal torque command for the vector controlled generator-side converter based on the wind speed estimation. The proposed MPPT control algorithm has a generic structure and can be used for different generator types. In order to verify the efficacy of the proposed L1 adaptive controller for the MPPT of the WECS, a full converter wind turbine with a squirrel cage induction generator is used to carry out case studies using MATLAB/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodelled dynamics and in the presence of parameter uncertainties and unknown disturbances
    • …
    corecore