18 research outputs found

    Multi-Objective Design Optimization of the Leg Mechanism for a Piping Inspection Robot

    Get PDF
    This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.Comment: Proceedings of the ASME 2014 International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Buffalo : United States (2014

    Technology of swallowable capsule for medical applications

    Get PDF
    Medical technology has undergone major breakthroughs in recent years, especially in the area of the examination tools for diagnostic purposes. This paper reviews the swallowable capsule technology in the examination of the gastrointestinal system for various diseases. The wireless camera pill has created a more advanced method than many traditional examination methods for the diagnosis of gastrointestinal diseases such as gastroscopy by the use of an endoscope. After years of great innovation, commercial swallowable pills have been produced and applied in clinical practice. These smart pills can cover the examination of the gastrointestinal system and not only provide to the physicians a lot more useful data that is not available from the traditional methods, but also eliminates the use of the painful endoscopy procedure. In this paper, the key state-of-the-art technologies in the existing Wireless Capsule Endoscopy (WCE) systems are fully reported and the recent research progresses related to these technologies are reviewed. The paper ends by further discussion on the current technical bottlenecks and future research in this area

    Flexible Over-the-Tube Device for Soft-Tethered Colonoscopy

    Get PDF
    Soft-tethered colonoscopes were proposed for safe and effective colon navigation, yet the deployment of front-wheel actuated colonoscopes is hindered by contact interactions with the lumen along the entire soft tether. To mitigate this problem, this study introduces an over-the-tube flexible device aimed to assist colonoscope deployment. The device is composed of three pneumatically driven actuators devised to repeatedly perform a two-phase operation: (phase I) to advance along the tether up to a working position relatively close to the colonoscope’s tip; (phase II) to clamp and drag the tether forward, upon anchoring to colonic wall. This way, a distal tether portion is freed, thus reducing the aforementioned limitations and fostering effective front-wheel navigation. Considering anatomical/clinical constraints and a 2N resistive force, we designed and prototyped a system with an inner and outer diameter of 12 and 26 mm, respectively, a length of 91 mm, and operating pressures equal to 150, 50 and 15 kPa for clamping the tether, elongating the device and safely anchoring to the colonic wall, respectively. The device was successfully tested, achieving locomotion speeds up to 4.9 and 2.2 mm/s, and tether freeing rates up to 2.9 and 1.8 mm/s, in tabletop conditions and in a colon phantom, respectively

    Endorobots for Colonoscopy:Design Challenges and Available Technologies

    Get PDF
    Colorectal cancer (CRC) is the second most common cause of cancer death worldwide, after lung cancer (Sung et al., 2021). Early stage detection is key to increase the survival rate. Colonoscopy remains to be the gold standard procedure due to its dual capability to optically inspect the entire colonic mucosa and to perform interventional procedures at the same time. However, this causes pain and discomfort, whereby it requires sedation or anaesthesia of the patient. It is a difficult procedure to perform that can cause damage to the colonic wall in some cases. Development of new technologies aims to overcome the current limitations on colonoscopy by using advancements in endorobotics research. The design of these advanced medical devices is challenging because of the limited space of the lumen, the contorted shape, and the long tract of the large bowel. The force applied to the colonic wall needs to be controlled to avoid collateral effects such as injuries to the colonic mucosa and pain during the procedure. This article discusses the current challenges in the colonoscopy procedure, the available locomotion technologies for endorobots used in colonoscopy at a prototype level and the commercial products available

    A Review of Locomotion Systems for Capsule Endoscopy

    Get PDF
    Wireless capsule endoscopy for gastrointestinal (GI) tract is a modern technology that has the potential to replace conventional endoscopy techniques. Capsule endoscopy is a pill-shaped device embedded with a camera, a coin battery, and a data transfer. Without a locomotion system, this capsule endoscopy can only passively travel inside the GI tract via natural peristalsis, thus causing several disadvantages such as inability to control and stop, and risk of capsule retention. Therefore, a locomotion system needs to be added to optimize the current capsule endoscopy. This review summarizes the state-of-the-art locomotion methods along with the desired locomotion features such as size, speed, power, and temperature and compares the properties of different methods. In addition, properties and motility mechanisms of the GI tract are described. The main purpose of this review is to understand the features of GI tract and diverse locomotion methods in order to create a future capsule endoscopy compatible with GI tract properties

    Capsule endoscopy of the future: What's on the horizon?

    Get PDF
    Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today's standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years

    Design of a pill-sized 12-legged endoscopic capsule robot

    No full text

    Studio, progettazione e realizzazione del sistema di controllo wireless per capsule endoscopiche con locomozione attiva

    Get PDF
    Il lavoro di tesi sviluppato consiste nello studio, progettazione e realizzazione del sistema di controllo wireless per capsule endoscopiche con locomozione attiva. E' stata implementata l'archietettura firmware per la gestione della comunicazione wireless, è stata realizzata un'interfaccia utente per il controllo del dispositivo ed è stato condotto uno studio approfondito sulla tipologia di gait, al fine di ottimizzare l'efficienza di locomozione del dispositivo
    corecore