2 research outputs found

    Active and Semi-active Suspension Systems: A Review

    Get PDF
    [ES] El propósito de este artículo es efectuar una revisión del estado del conocimiento en el modelado y control de los sistemas de suspensión activa y semiactiva. Se analizan las principales características de los diferentes tipos de sistemas de suspensión: pasiva, activa y semiactiva. Respecto al modelado y simulación de los sistemas de suspensión, se examinan los distintos enfoques, herramientas y aplicaciones en el contexto de la dinámica vehicular. Además, para el modelo de un cuarto de vehículo, ampliamente utilizado en la literatura, se ofrece su desarrollo mediante ecuaciones diferenciales, función de transferencia, y ecuaciones de estado, incluyendo soluciones y simulaciones en Simulink y SimMechanics. En cuanto al control, se revisan las principales estrategias para la suspensión de vehículos y se apuntan aplicaciones en otros campos de la ingeniería.[EN] This paper reviews the state of the art in modeling and control of active and semi-active suspension systems. Distinctive characteristics are established for the major types of suspension systems: passive, active, and semi-active. Regarding modeling and simulation, different approaches, tools and applications are discussed in the context of vehicle dynamics. Besides, the quarter car model, which is widely used in research, is developed with differential equations, transfer functions, and state-space equations, as well as solutions for simulation in Simulink and SimMechanics. As for control of active and semi-active systems, the major strategies for vehicle suspension are reviewed. Furthermore, the paper outlines suspension control in other engineering applications.Este trabajo ha sido realizado parcialmente gracias al apoyo del proyecto CICYT DPI 2011-22443. La estancia del primer autor en la Universidad de Málaga ha contado con la financiación de la Escuela Superior Politécnica del Litoral.Hurel Ezeta, J.; Mandow, A.; García Cerezo, A. (2013). Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión. Revista Iberoamericana de Automática e Informática industrial. 10(2):121-132. https://doi.org/10.1016/j.riai.2013.03.002OJS121132102Abdel-Rohman, M., John, M. J., & Hassan, M. F. (2010). Compensation of Time Delay Effect in Semi-active Controlled Suspension Bridges. Journal of Vibration and Control, 16(10), 1527-1558. doi:10.1177/1077546309106518Allotta, B., Pugi, L., & Bartolini, F. (2008). Design and Experimental Results of an Active Suspension System for a High-Speed Pantograph. IEEE/ASME Transactions on Mechatronics, 13(5), 548-557. doi:10.1109/tmech.2008.2002145Balike, K. P., Rakheja, S., & Stiharu, I. (2011). Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension. Vehicle System Dynamics, 49(1-2), 107-128. doi:10.1080/00423110903401905Boada, M. J. L., Boada, B. L., Castejon, C., & Diaz, V. (2005). A fuzzy-based suspension vehicle depending on terrain. International Journal of Vehicle Design, 37(4), 311. doi:10.1504/ijvd.2005.006597Boers, Y., Weiland, S., & Damen, A. (2002). Average H 2 control by randomized algorithms. International Journal of Control, 75(9), 637-644. doi:10.1080/00207170210134228Bouazara, M., Gosselin-Brisson, S., & Richard, M. J. (2007). DESIGN OF AN ACTIVE SUSPENSION CONTROL FOR A VEHICLE MODEL USING A GENETIC ALGORITHM. Transactions of the Canadian Society for Mechanical Engineering, 31(3), 317-333. doi:10.1139/tcsme-2007-0021Bronowicki, A. J., Abhyankar, N. S., & Griffin, S. F. (1999). Active vibration control of large optical space structures. Smart Materials and Structures, 8(6), 740-752. doi:10.1088/0964-1726/8/6/304Cao, J., Li, P., & Liu, H. (2010). An Interval Fuzzy Controller for Vehicle Active Suspension Systems. IEEE Transactions on Intelligent Transportation Systems, 11(4), 885-895. doi:10.1109/tits.2010.2053358Jiangtao Cao, Honghai Liu, Ping Li, & Brown, D. J. (2008). State of the Art in Vehicle Active Suspension Adaptive Control Systems Based on Intelligent Methodologies. IEEE Transactions on Intelligent Transportation Systems, 9(3), 392-405. doi:10.1109/tits.2008.928244Chen, Y. (2009). Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement. Engineering, 01(01), 23-32. doi:10.4236/eng.2009.11004Choi, S.-B., Lee, H.-S., & Park, Y.-P. (2002). H8 Control Performance of a Full-Vehicle Suspension Featuring Magnetorheological Dampers. Vehicle System Dynamics, 38(5), 341-360. doi:10.1076/vesd.38.5.341.8283Christenson, R.E., 2001. Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies. Ph.D. thesis, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana.Díaz, I. M., Pereira, E., Hudson, M. J., & Reynolds, P. (2012). Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control. Engineering Structures, 41, 157-166. doi:10.1016/j.engstruct.2012.03.043Dong, X., Yu, M., Liao, C., & Chen, W. (2009). Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dynamics, 59(3), 433-453. doi:10.1007/s11071-009-9550-8Fischer, D., & Isermann, R. (2004). Mechatronic semi-active and active vehicle suspensions. Control Engineering Practice, 12(11), 1353-1367. doi:10.1016/j.conengprac.2003.08.003Fleming, P. ., & Purshouse, R. . (2002). Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10(11), 1223-1241. doi:10.1016/s0967-0661(02)00081-3FRUHAUF, F., KASPER, R., & LÜCKEL, J. (1985). Design of an Active Suspension for a Passenger Vehicle Model Using Input Processes with Time Delays. Vehicle System Dynamics, 14(1-3), 115-120. doi:10.1080/00423118508968811Gao, R. Z., Xu, Z. Q., & Zhang, J. J. (2010). Optimization of Fuzzy Logic Rules Based on Improved Genetic Algorithm. Applied Mechanics and Materials, 44-47, 1496-1499. doi:10.4028/www.scientific.net/amm.44-47.1496Guglielmino, E., & Edge, K. A. (2004). A controlled friction damper for vehicle applications. Control Engineering Practice, 12(4), 431-443. doi:10.1016/s0967-0661(03)00119-9Guo, D. L., Hu, H. Y., & Yi, J. Q. (2004). Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper. Journal of Vibration and Control, 10(3), 461-471. doi:10.1177/1077546304038968Gysen, B. L. J., Janssen, J. L. G., Paulides, J. J. H., & Lomonova, E. A. (2009). Design Aspects of an Active Electromagnetic Suspension System for Automotive Applications. IEEE Transactions on Industry Applications, 45(5), 1589-1597. doi:10.1109/tia.2009.2027097Heath, E.T., 2005. Vehicle active suspension system sensor reduction. Ph.D. thesis, University of Texas, Austin.Hrovat, D. (1990). Optimal active suspension structures for quarter-car vehicle models. Automatica, 26(5), 845-860. doi:10.1016/0005-1098(90)90002-yHrovat, D. (1997). Survey of Advanced Suspension Developments and Related Optimal Control Applications11This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Editor Karl Johan Åström.,22Simple, mostly LQ-based optimal control concepts gave useful insight about performance potentials, bandwidth requirements, and optimal structure of advanced vehicle suspensions. The present paper reviews these optimal control applications and related practical developments. Automatica, 33(10), 1781-1817. doi:10.1016/s0005-1098(97)00101-5Huang, S.-J., & Chen, H.-Y. (2006). Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics, 16(10), 607-622. doi:10.1016/j.mechatronics.2006.06.002Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P. (2003). Autonomous Robots, 14(1), 5-16. doi:10.1023/a:1020962718637Karnopp, D. (1986). Theoretical Limitations in Active Vehicle Suspensions. Vehicle System Dynamics, 15(1), 41-54. doi:10.1080/00423118608968839Karnopp, D., Crosby, M. J., & Harwood, R. A. (1974). Vibration Control Using Semi-Active Force Generators. Journal of Engineering for Industry, 96(2), 619-626. doi:10.1115/1.3438373KARNOPP, D., & SO, S.-G. (1998). Energy Flow in Active Attitude Control Suspensions: A Bond Graph Analysis. Vehicle System Dynamics, 29(2), 69-81. doi:10.1080/00423119808969367Kazerooni, H., Chu, A., & Steger, R. (2007). That Which Does Not Stabilize, Will Only Make Us Stronger. The International Journal of Robotics Research, 26(1), 75-89. doi:10.1177/0278364907074472Kim, C., Ro, P. I., & Kim, H. (1999). Effect of the suspension structure on equivalent suspension parameters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 457-470. doi:10.1243/0954407991527026Donghyun Kim, Sungho Hwang, & Hyunsoo Kim. (2008). Vehicle Stability Enhancement of Four-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control. IEEE Transactions on Vehicular Technology, 57(2), 727-735. doi:10.1109/tvt.2007.907016Koch, G., Fritsch, O., & Lohmann, B. (2010). Potential of low bandwidth active suspension control with continuously variable damper. Control Engineering Practice, 18(11), 1251-1262. doi:10.1016/j.conengprac.2010.03.007Korkmaz, S. (2011). A review of active structural control: challenges for engineering informatics. Computers & Structures, 89(23-24), 2113-2132. doi:10.1016/j.compstruc.2011.07.010Koulocheris D.V., Dertimanis V.K., 2009. Design of a novel hybrid optimization algorithm. In: ICINCO 6th International Conference on Informatics in Control, Automation and Robotics. Vol. 1 ICSO. pp. 129-135.Kowal, J., Pluta, J., Konieczny, J., & Kot, A. (2008). Energy Recovering in Active Vibration Isolation System — Results of Experimental Research. Journal of Vibration and Control, 14(7), 1075-1088. doi:10.1177/1077546308088980Kumar, M.S., 2008. Development of active suspension system for automobiles using PID controller. In: Proceedings of the World Congress on Engineering. Vol. II. London, UK.Lan, K.-J., Yen, J.-Y., & Kramar, J. A. (2004). Sliding mode control for active vibration isolation of a long range scanning tunneling microscope. Review of Scientific Instruments, 75(11), 4367-4373. doi:10.1063/1.1807005Lee, H. (2004). Virtual Test Track. IEEE Transactions on Vehicular Technology, 53(6), 1818-1826. doi:10.1109/tvt.2004.836958Lee, H.-J., Jung, H.-J., Cho, S.-W., & Lee, I.-W. (2008). An Experimental Study of Semiactive Modal Neuro-control Scheme Using MR Damper for Building Structure. Journal of Intelligent Material Systems and Structures, 19(9), 1005-1015. doi:10.1177/1045389x07083024Lee, H.-S., & Choi, S.-B. (2000). Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles. Journal of Intelligent Materials Systems and Structures, 11(1), 80-87. doi:10.1177/104538900772664422Yu-Chen Lin, Chun-Liang Lin, & Niahn-Chung Shieh. (2006). A hybrid evolutionary approach for robust active suspension design of light rail vehicles. IEEE Transactions on Control Systems Technology, 14(4), 695-706. doi:10.1109/tcst.2006.876639Lizarraga, J., Sala, J. A., & Biera, J. (2008). Modelling of friction phenomena in sliding conditions in suspension shock absorbers. Vehicle System Dynamics, 46(sup1), 751-764. doi:10.1080/00423110802037024Lou, Z., Ervin, R. D., & Filisko, F. E. (1994). A Preliminary Parametric Study of Electrorheological Dampers. Journal of Fluids Engineering, 116(3), 570-576. doi:10.1115/1.2910315MALEK, K. M., & HEDRICK, J. K. (1985). Decoupled Active Suspension Design for Improved Automotive Ride Quality/Handling Performance. Vehicle System Dynamics, 14(1-3), 78-81. doi:10.1080/00423118508968802Mántaras, D. A., Luque, P., & Vera, C. (2004). Development and validation of a three-dimensional kinematic model for the McPherson steering and suspension mechanisms. Mechanism and Machine Theory, 39(6), 603-619. doi:10.1016/j.mechmachtheory.2003.12.006Margolis, D., & Shim, T. (2001). A bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety. Journal of the Franklin Institute, 338(1), 21-34. doi:10.1016/s0016-0032(00)00068-5Mei, T., Foo, T., Goodall, R., 2005. Genetic algorithms for optimising active controls in railway vehicles. IEE Colloquium (Digest) 521, 10/1-10/8.Mei, T. X., & Goodall, R. M. (2002). Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(1), 53-63. doi:10.1243/0954409021531683Mudi, R. K., & Pal, N. R. (1999). A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems, 7(1), 2-16. doi:10.1109/91.746295Nagai, M., Moran, A., Tamura, Y., & Koizumi, S. (1997). Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks. Control Engineering Practice, 5(8), 1137-1144. doi:10.1016/s0967-0661(97)00107-xNehl, T. W., Betts, J. A., & Mihalko, L. S. (1996). An integrated relative velocity sensor for real-time damping applications. IEEE Transactions on Industry Applications, 32(4), 873-881. doi:10.1109/28.511644Nguyen, L.H., Park, S., Turnip, A., Hong, K.-S., 2009. Modified skyhook control of a suspension system with hydraulic strut mount. In: ICCAS-SICE, 2009. pp. 1347-1352.Olsson, C. (2006). Active automotive engine vibration isolation using feedback control. Journal of Sound and Vibration, 294(1-2), 162-176. doi:10.1016/j.jsv.2005.10.022Papegay, Y. A., Merlet, J.-P., & Daney, D. (2005). Exact kinematics analysis of Car’s suspension mechanisms using symbolic computation and interval analysis. Mechanism and Machine Theory, 40(4), 395-413. doi:10.1016/j.mechmachtheory.2003.07.003Patil, N. J., Chile, D. R. H., & Waghmare, D. L. M. (2010). Fuzzy Adaptive Controllers for Speed Control of PMSM Drive. International Journal of Computer Applications, 1(11), 91-98. doi:10.5120/233-387POETSCH, G., EVANS, J., MEISINGER, R., KORTÜM, W., BALDAUF, W., VEITL, A., & WALLASCHEK, J. (1997). Pantograph/Catenary Dynamics and Control. Vehicle System Dynamics, 28(2-3), 159-195. doi:10.1080/00423119708969353Potau, X., Comellas, M., Nogués, M., & Roca, J. (2011). Comparison of different bogie configurations for a vehicle operating in rough terrain. Journal of Terramechanics, 48(1), 75-84. doi:10.1016/j.jterra.2010.06.002Rattasiri, W., & Halgamuge, S. K. (2003). Computationally advantageous and stable hierarchical fuzzy systems for active suspension. IEEE Transactions on Industrial Electronics, 50(1), 48-61. doi:10.1109/tie.2002.807676Palupi Rini, D., Mariyam Shamsuddin, S., & Sophiyati Yuhaniz, S. (2011). Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications, 14(1), 19-27. doi:10.5120/1810-2331Rivin, E. I. (1985). Passive Engine Mounts-Some Directions for Further Development. SAE Technical Paper Series. doi:10.4271/850481ROTH, P.-A., & LIZELL, M. (1996). A Lateral Semi-Active Damping System For Trains. Vehicle System Dynamics, 25(sup1), 585-598. doi:10.1080/00423119608969222Samin, J. C., Brüls, O., Collard, J. F., Sass, L., & Fisette, P. (2007). Multiphysics modeling and optimization of mechatronic multibody systems. Multibody System Dynamics, 18(3), 345-373. doi:10.1007/s11044-007-9076-0Sassi, S., Cherif, K., Mezghani, L., Thomas, M., & Kotrane, A. (2005). An innovative magnetorheological damper for automotive suspension: from design to experimental characterization. Smart Materials and Structures, 14(4), 811-822. doi:10.1088/0964-1726/14/4/041Schiehlen, W. (2007). Research trends in multibody system dynamics. Multibody System Dynamics, 18(1), 3-13. doi:10.1007/s11044-007-9064-4Schiehlen, W., Guse, N., & Seifried, R. (2006). Multibody dynamics in computational mechanics and engineering applications. Computer Methods in Applied Mechanics and Engineering, 195(41-43), 5509-5522. doi:10.1016/j.cma.2005.04.024Schoenfeld, K., Hartmut, G., Hesse, 1991. Electronically controlled air suspension (ECAS) for commercial vehicles. SAE Special Publications 892, 15-24.Sharp, R. S., & Hassan, S. A. (1986). The Relative Performance Capabilities of Passive, Active and Semi-Active Car Suspension Systems. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200(3), 219-228. doi:10.1243/pime_proc_1986_200_183_02Yongjun Shen, Shaopu Yang, & Wanjian Yin. (2006). Application of Magnetorheological Damper in Vibration Control of Locomotive. 2006 6th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2006.1713554Shirahatti, A., Prasad, P. S. S., Panzade, P., & Kulkarni, M. M. (2008). Optimal design of passenger car suspension for ride and road holding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30(1), 66-76. doi:10.1590/s1678-58782008000100010Siau, G.R., July 2008. Equivalent spring and damper for conceptual suspension modeling. Master's thesis, Eindhoven University of Technology.Spelta, C., Previdi, F., Savaresi, S. M., Fraternale, G., & Gaudiano, N. (2009). Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics, 19(3), 410-421. doi:10.1016/j.mechatronics.2008.09.006Spencer, B. F., Dyke, S. J., Sain, M. K., & Carlson, J. D. (1997). Phenomenological Model for Magnetorheological Dampers. Journal of Engineering Mechanics, 123(3), 230-238. doi:10.1061/(asce)0733-9399(1997)123:3(230)Tang, X., Zuo, L., 2010. Regenerative semi-active control of tall building vibration with series TMDs. No. 5530485. pp. 5094-5099.Thompson, Davis, B., 1991. A technical note on the lotus suspension patents. Vehicle System Dynamics 20 (6), 381-383.Venugopal, R., Beine, M., & Ruekgauer, A. (2002). Real-time simulation of adaptive suspension control using dSPACE control development tools. International Journal of Vehicle Design, 29(1/2), 128. doi:10.1504/ijvd.2002.002005Waldron, K. J., & Abdallah, M. E. (2007). An Optimal Traction Control Scheme for Off-Road Operation of Robotic Vehicles. IEEE/ASME Transactions on Mechatronics, 12(2), 126-133. doi:10.1109/tmech.2007.892819Wang, J., Fan, Z., Terpenny, J. P., & Goodman, E. D. (2005). Knowledge Interaction With Genetic Programming in Mechatronic Systems Design Using Bond Graphs. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35(2), 172-182. doi:10.1109/tsmcc.2004.841915WANG, Q. (2008). Simultaneous Optimization of Mechanical and Control Parameters for Integrated Control System of Active Suspension and Electric Power Steering. Chinese Journal of Mechanical Engineering, 44(08), 67. doi:10.3901/jme.2008.08.067Yagiz, N., & Yuksek, I. (2001). Sliding mode control of active suspensions for a full vehicle model. International Journal of Vehicle Design, 26(2/3), 264. doi:10.1504/ijvd.2001.001943Yang, Y., Ren, W., Chen, L., Jiang, M., & Yang, Y. (2009). Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics. Applied Mathematical Modelling, 33(1), 11-33. doi:10.1016/j.apm.2007.10.011Yoshimura, T., Nakaminami, K., Kurimoto, M., & Hino, J. (1999). Active suspension of passenger cars using linear and fuzzy-logic controls. Control Engineering Practice, 7(1), 41-47. doi:10.1016/s0967-0661(98)00145-2Zapateiro, M., Karimi, H. R., & Luo, N. (2011). Semiactive vibration control of nonlinear structures through adaptive backstepping techniques withH∞performance. International Journal of Systems Science, 42(5), 853-861. doi:10.1080/00207721.2010.50226
    corecore