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PSO-EA Algorithm
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Abstract -- We applied an architecture which automates the
design of simultaneous recurrent network (SRN) using a new
evolutionary learning algorithm. This new evolutionary
learning algorithm is based on a hybrid of particle swarm
optimization (PSO) and evolutionary algorithm (EA). By
combining the searching abilities of these two global
optimization methods, the evolution of individuals is no longer
restricted to be in the same generation, and better performed
individuals may produce offspring to replace those with poor
performance. The novel algorithm is then applied to the
simultaneous recurrent network for the engine data
classification. The experimental results show that our
approach gives solid performance in categorizing the non-
linear car engine data.

I. INTRODUCTION

The traditional gradient-based training algorithms, such as
BPTT [1] and EKF [2], have been known to suffer from
local minima and have heavy computation load for obtaining
the derivative information. Population-based algorithms
provide alternative solutions to applications where
conventional gradient counterparts failed [3]. Designing an
efficient and powerful population-based training algorithm is
thus necessary.

Evolutionary operators like selection and mutation have
been integrated into the conventional particle swarm
optimization (PSO) algorithm. By applying the selection
operation in PSO, the particles with best performance are
copied to next generation. Therefore, PSO can always keep
the best performing particles [4]. The purpose of applying
mutation operation to PSO is to increase the diversity of the
population and thus overcome the local minima problem [5]
in the PSO algorithm. Our approach employs the PSO to
enhance the elites in the evolutionary algorithm (EA). The
novel algorithm is then applied to train the simultaneous
recurrent network on the car engine data classification
problem.

The rest of the paper is organized as follows. Section II
presents the architecture of the simultaneous recurrent
network. Section III describes the PSO, EA and the hybrid
PSO-EA learning algorithms. In Section IV, parameter

selection is presented first, and then experimental results are
provided. Finally, the conclusions are given in Section V.

II. SIMULTANEOUS RECURRENT NETWORK

Simultaneous recurrent network (SRN) is an architecture
used for certain function approximation problems [15], [16].
The SRN uses recurrence to approximate a static
deterministic mapping X(t) -4Y(t) (Fig. 1). This mapping is
computed by iterating the following equation:

y(n+l) (t) = f(y(n) (t), X(t), W) (I)

where f is any feed-forward network or system, and Y(t) is
defined as:

Y(t) = limy(n) (t)
n-oo

(2)

The recurrence in SRN is invoked at each time t, but it is
not visible from the outside of the network. In applications,
the number of iterations n can be limited to a reasonably
large number.

"W) fDelay

X(t) y(j)

Fig. 1. Structure of the simultaneous recurrent network
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For the specific engine data classification problem, the
architecture of SRN is shown in Fig. 2. The simultaneous
recurrence occurs when the hidden layer is copied verbatim
through weight connections, which are equal to 1, and stored
in the context units. The iteration number n is set to 20. The
input layer has 14 neurons (each engine data has 14
elements), the hidden layer has 10 neurons, the context layer
has 10 neurons, and the output layer has 4 neurons,
indicating 4 different classes. Neurons between adjacent
layers are fully connected, as marked by bold arrows in Fig.
2. The transfer functions of the hidden layer and the output
layer are tansig.

Xi(t) X14(t)

Fig. 2 Architecture of SRN, at time t, for engine data classification problem

III. HYBRID PSO-EA LEARNING ALGORITHM

A. Particle Swarm Optimization

Particle swarm optimization (PSO) is a form of
evolutionary computation technique developed by Kennedy
and Eberhart [6], [7]. Similar -to Evolutionary Algorithms
(EA), particle swarm optimization algorithm is a population
based optimization tool, where the system is initialized with
a population of random solutions and the algorithm searches
for optima satisfying some performance index over
generations. It is unlike an EA, however, in that each
potential solution is also assigned a randomized velocity,
and the potential solutions, called particles, are then "flown"
through the problem space.

Each particle has a position represented by a position
vectorii . A swarm of particles moves through the problem
space, with the velocity of each particle represented by a
vector i151. At each time step, a function f§ representing a

quality measure is calculated by using xi as input. Each
particle keeps track of its own best position, which is

associated with the best fitness it has achieved so far in a
vector Pi, . Furthermore, the best position among all the
particles obtained so far in the population is kept track of
as Pg.

At each time step t, by using the individual best
position, Pi (t), and global best position, 13g (t) , a new
velocity for particle i is updated by

(1)
(t+1) = wx (t)+ cA (p(t)-xi(t))

+ C202 (fig (t)-xi (t))

where cl and c2 are positive constants, l and 02 are
uniformly distributed random numbers in [0, 1] and w is the
inertia weight. The term i, is limited to the range ± v;.. . If
the velocity violates this limit, it is set at its proper limit.
Changing velocity this way enables the particle i to search
around its individual best position, Pi, , and global best

position, 13g. Based on the updated velocities, each particle
changes its position according to the following:

xii(t+1)= ii (t)+v~i(t+ 1) (2)

Based on (1) and (2), the population of particles tends to
cluster together with each particle moving in a random
direction. The computation of PSO is easy and adds only a
slight computation load when it is incorporated into EA.
Furthermore, the flexibility of PSO to control the balance
between local and global exploration of the problem space
helps to overcome premature convergence of elite strategy in
EA, and also enhances searching ability.
The pseudo code for PSO is summarized as follows [8]:

(1) Initialize a population of particles with random
positions and velocities of d dimensions in the
problem space.

(2) For each particle, evaluate the fitness according to
the given fitness function in d variables.

(3) Compare current particle's fitness with its previous
fitness. If current value is better than the previous,
then set Pi value equal to the current value, and the

P, location equal to the current location in d-
dimensional space.

(4) Compare fitness evaluation with the population's
overall previous best position. If the current value is
better than p1g , then reset pg to the current
particle's array index and value.
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(5) Change the velocity and position of the particle
according to equation (1) and (2), respectively.

(6) Repeat step (2) to (6) until a criterion is met, usually
a sufficiently good fitness or a maximum number of
iterations/epochs.

B. Evolutionary Algorithm

To begin the evolutionary algorithm, a population of n
neural networks, K,, i=1,.., n, defined with weights and bias
for each network, was created at random. Weights and biases
were generated by sampling from a uniform random
distribution over [-1, 1]. Each neural network had an
associated self-adaptive parameter vector 0i, i=1 ,...,
where each component corresponded to a weight or bias and
served to control the step size of the search for new mutated
parameters of the neural network. To be consistent with the
range of initialization, the self-adaptive parameters for
weights and biases were set initially to a constant in [-1, 1].
Each parent generated an offsprings strategy by varying

all of the associated weights and biases. Specifically, for
each parent K,, i=l1,..., n, an offspring K, i=1,..., n, was
created by

resources. On the other hand, individuals in EA compete for
survival, but the winning survivors discard the valuable
searching information of the previous generation when they
almost randomly pick up the search direction of their
offspring for the next generation. Clearly, the advantage of
one algorithm can be the remedy for the other's
shortcoming. It is natural and wise for us to develop a
hybrid algorithm.
Based on the complementary properties of PSO and EA,

we design a novel hybrid algorithm that combines the co-
operative and competitive characteristics of both PSO and
EA. In another word, we apply the PSO to improve the
survival individuals, and maintain the properties of
competition and diversity in EA. In each generation, the
hybrid algorithm selects half of the population as the
winners according the fitness, and discards the rest half as
losers. These elites are enhanced, sharing the information in
the community and benefiting from their learning history, by
standard PSO procedure. The enhanced elites then serve as
parents for an EA mutation procedure to produce same
amount of offspring to fill up the vacuum that the discarded
individuals left. The offspring also inherit the social and
cognitive information from the corresponding parents in case
that they become winners in the next generation. Fig. 3
illustrates this hybrid PSO-EA method.

or, (j) = ai (j) exp(dVj (0,1)), j = 1,..., NW (3)

w,(j)=wi(j)+a,Nj(0j), j=l,...,Nw (4)

where Nw is the number of weights and biases in the

recurrent neural network, T = 1/ 2 Nw, and Nj (0, 1) is
a standard Gaussian random variable resampled for every j
[9].

For the car engine data classification problem, a
population of 40 individuals is competing for the best
prediction. Each individual represents a SRN described in
Section II. The number of weights and biases, i.e., NW, in
such a SRN (size - 14-lOR-5) is 315, and hence T is 0.1678.
Half of population with best fitness is used as parents to
create offspring for next generation.

C. Hybrid ofPSO andEA

Generation N

Rank _.0

Fitness
ranking

Generation
N+l

Old Population

Winners I Losers
4

Elites Discard

|PSO llo EA l
Mutation

Enhanced elites |Offspring

I
New Population

Fig. 3. Flow of hybrid PSO-EA method. Winners are enhanced by PSO
and kept in the population for the new population. Offspring created by
the enhanced elites ofPSO as EA parents replaced the discarded losers

in the old population generation to generation.

IV. RESULTS

The social and cognitive adaptation makes PSO focus
more on the co-operation among the particles. With
memory, each particle tracks the best performance in its own
history, and its neighborhood throughout the entire evolution
when sharing the memory. However, particles of PSO will
never be removed even if they are impossible to be the best
solution, which may waste the limited computational

A. PSO Parameters

The velocity change of a PSO, i.e. equation (1), consists of
three parts. The first part is the momentum part, which
prevents velocity to be changed abruptly. The second part is
the "cognitive" part which represents private thinking of
itself - learning from its own flying experience. The third
part is the "social" part which represents the collaboration
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among particles - learning from group best's flying
experience. The balance among these three parts determines
the balance of the global and local search ability, therefore
the performance of a PSO.
The inertia weight w controls the balance of global and

local search ability. A large w facilitates the global search
while a small one enhances local search. The introduction of
an inertial weight also frees the selection of maximum

velocity vma,x . The i;,, can be reduced to Xmax , the
dynamic range of each variable which is easier to learn; and
the PSO performance is as good or better [10], [11].

Since the search process of a PSO is nonlinear and
complicated, static parameters set, if well selected, can do a
good job, but much better performance can be achieved if a
dynamically changing scheme for the parameters is well
designed, either a linearly decreasing inertia weight [10], a
nonlinearly fuzzy changing [12], or involving a random
component rather than time-decreasing [13]. All intuitively
assume that the PSO should favor global search ability at the
beginning and local search at the end.
Based on previous work [8], the authors have chosen the

following parameters for the engine data classification:

Maximum velocity, Vmax
Inertia weight, W
Acceleration constants, cl, c2
Size ofswarm

2
0.8
2, 2
40

There are 41, 14, 13 and 10 sample vectors for each class
in training set (78 in total), respectively, and 4, 3, 2 and 2 in
the testing set (11 in total).
A population of40 particles, each representing a 14-1 OR-4

SRN, is evolved for 3000 generations. The EA, PSO and
hybrid PSO-EA algorithm are employed for the evolution.
The cumulative RMSE for the best individual using the
hybrid algorithm drops to 0.032 after 3000 generations,
compared to those used EA and PSO down to 0.3. Fig. 4
shows the training error of the best individuals for the whole
process by the EA, PSO and hybrid PSO+EA. After 3000
generations, the best SRN networks trained by EA, PSO and
hybrid achieve 86%, 83% and 100% in the training set
respectively. In the testing set, the SRNs trained by the
above three algorithms identify 4 classes with 82%, 78% and
100% accuracy, respectively (see Table I). The predictions
can be further improved by optimizing the PSO parameters
as explained in [14].

Error history in eWoIutions

'a

-a
'U

02
B. Engine Data Classification

For the car engine data classification problem, there are
four classes in both training and testing data sets, with
different numbers of samples in each class. Each sample
consists of 14 elements obtained from a car engine (factors
in an engine diagnostic experiment). Each element
represents a certain diagnostic parameter from a test run on a
partially assembled engine. Various unknown combinations
of parameter values indicate normal engines, or they may be
indicative of different defects. It is known that the
classification problem (whether the engine is normal or
defective, and if so what kind of defect it is likely to have) is
not linearly separable. A 14-1OR-4 network with bipolar
sigmoid transfer functions in the hidden and output layers is
used. Neurons between different layers are fully connected.
We use batch training method, and the weights are

updated based on a cumulative error function. The process
can be repeated over a number of epochs.
For the convenience, the original data are normalized on [-

1, 1] before training and testing.

C. Results

500 1000 1500
Generations

2000 2500 3000

Fig. 4 Training error for the EA, PSO and hybrid PSO-EA. The errors

reflect the perfornance of the best particle, i.e. the Pg, at each generation

for training data set.

TABLE I SRN ENGINE DATA CLASSIFICATION ON THE TRAINING AND
TESTING SETS

TRAINING SET
I 11 lIt IV ACCURACY

EA 40/41 14/14 13/13 0/10 87%
PSo 41/41 2/14 12/13 10/10 83%

HYBRID 41/41 14/14 13/13 10/10 100%
TESTING SET

I 11 III IV ACCURACY
EA 4/4 3/3 2/2 0/2 82%
PSO 4/4 0/3 2/2 2/2 72%

HYBRID 4/4 3/3 2/2 2/2 100%

2322



V. CONCLUSIONS

We have presented and discussed a novel algorithm,
hybrid PSO-EA. We explored how it combines the search
capabilities of these two global optimization methods. The
purpose of applying mutation in EA to PSO is to increase the
diversity of the population and the ability to have the PSO to
escape the local minima.
The hybrid PSO-EA learning algorithm proved to be

successful in training SRN for the car engine data
classification problem. The hybrid procedure takes
advantage of the complementary properties of PSO and EA,
which makes it more powerful than each of the individual
algorithms in enhancing the survivors of a population and
generating offspring.

The results show that our approach gives a perfect
classification for the linearly inseparable car engine data.
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