436 research outputs found

    Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot

    Get PDF
    Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient\u27s torso and the force is transmitted through a Bowden cable mechanism. Since the actuators\u27 mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented

    Assessment of joint parameters in a Kinect sensor based rehabilitation game

    Get PDF
    Copyright © 2019 ASME. A Kinect sensor based basketball game is developed for delivering post-stroke exercises in association with a newly developed elbow exoskeleton. Few interesting features such as audio-visual feedback and scoring have been added to the game platform to enhance patient’s engagement during exercises. After playing the game, the performance score has been calculated based on their reachable points and reaching time to measure their current health conditions. During exercises, joint parameters are measured using the motion capture technique of Kinect sensor. The measurement accuracy of Kinect sensor is validated by two comparative studies where two healthy subjects were asked to move elbow joint in front of Kinect sensor wearing the developed elbow exoskeleton. In the first study, the joint information collected from Kinect sensor was compared with the exoskeleton based sensor. In the next study, the length of upperarm and forearm measured by Kinect were compared with the standard anthropometric data. The measurement errors between Kinect and exoskeleton are turned out to be in the acceptable range; 1% for subject 1 and 0.44% for subject 2 in case of joint angle; 5.55% and 3.58% for subject 1 and subject 2 respectively in case of joint torque. The average errors of Kinect measurement as compared to the anthropometric data of the two subjects are 16.52% for upperarm length and 9.87% for forearm length. It shows that Kinect sensor can measure the activity of joint movement with a minimum margin of error

    A Fuzzy Logic Architecture for Rehabilitation Robotic Systems

    Get PDF
    Robots are highly incorporated in rehabilitation in the last decade to compensate lost functions in disabled individuals. By controlling the rehabilitation robots from far, many benefits are achieved. These benefits include but not restricted to minimum hospital stays, decreasing cost, and increasing the level of care. The main goal of this work is to have an effective solution to take care of patients from far. Tackling the problem of the remote control of rehabilitation robots is undergoing and highly challenging. In this paper, a remote wrist rehabilitation system is presented. The developed system is a sophisticated robot ensuring the two wrist movements (Flexion /extension and abduction/adduction). Additionally, the proposed system provides a software interface enabling the physiotherapists to control the rehabilitation process remotely. The patient’s safety during the therapy is achieved through the integration of a fuzzy controller in the system control architecture. The fuzzy controller is employed to control the robot action according to the pain felt by the patient. By using fuzzy logic approach, the system can adapt effectively according to the patients’ conditions. The Queue Telemetry Transport Protocol (MQTT) is considered to overcome the latency during the human robot interaction. Based on a Kinect camera, the control technique is made gestural. The physiotherapist gestures are detected and transmitted to the software interface to be processed and be sent to the robot. The acquired measurements are recorded in a database that can be used later to monitor patient progress during the treatment protocol. The obtained experimental results show the effectiveness of the developed remote rehabilitation system

    A compact robotic device for upper-limb reaching rehabilitation

    Get PDF
    This paper presents a compact linear-motion robotic device for upper-extremity reaching rehabilitation. Starting from conceptual design, the paper describes electronic circuit design and program development. The work develops a prototype that provides active and passive rehabilitation training. In active training, subjects actively move their arm with assistive or resistive force from the device to finish predefined displacement and force profiles. In passive training, subjects remain passive while the device moves the limb following the pre-defined displacement profile. Engineering specifications with adequate safety factor are determined and standard electronic and readily available mechanical components are exploited to keep the total cost low

    Home-based rehabilitation of the shoulder using auxiliary systems and artificial intelligence: an overview

    Get PDF
    Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.info:eu-repo/semantics/publishedVersio

    Design and Development of a Twisted String Exoskeleton Robot for the Upper Limb

    Get PDF
    High-intensity and task-specific upper-limb treatment of active, highly repetitive movements are the effective approaches for patients with motor disorders. However, with the severe shortage of medical service in the United States and the fact that post-stroke survivors can continue to incur significant financial costs, patients often choose not to return to the hospital or clinic for complete recovery. Therefore, robot-assisted therapy can be considered as an alternative rehabilitation approach because the similar or better results as the patients who receive intensive conventional therapy offered by professional physicians.;The primary objective of this study was to design and fabricate an effective mobile assistive robotic system that can provide stroke patients shoulder and elbow assistance. To reduce the size of actuators and to minimize the weight that needs to be carried by users, two sets of dual twisted-string actuators, each with 7 strands (1 neutral and 6 effective) were used to extend/contract the adopted strings to drive the rotational movements of shoulder and elbow joints through a Bowden cable mechanism. Furthermore, movements of non-disabled people were captured as templates of training trajectories to provide effective rehabilitation.;The specific aims of this study included the development of a two-degree-of-freedom prototype for the elbow and shoulder joints, an adaptive robust control algorithm with cross-coupling dynamics that can compensate for both nonlinear factors of the system and asynchronization between individual actuators as well as an approach for extracting the reference trajectories for the assistive robotic from non-disabled people based on Microsoft Kinect sensor and Dynamic time warping algorithm. Finally, the data acquisition and control system of the robot was implemented by Intel Galileo and XILINX FPGA embedded system

    Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic

    Get PDF
    During the COVID-19 pandemic, the higher susceptibility of post-stroke patients to infection calls for extra safety precautions. Despite the imposed restrictions, early neurorehabilitation cannot be postponed due to its paramount importance for improving motor and functional recovery chances. Utilizing accessible state-of-the-art technologies, home-based rehabilitation devices are proposed as a sustainable solution in the current crisis. In this paper, a comprehensive review on developed home-based rehabilitation technologies of the last 10 years (2011–2020), categorizing them into upper and lower limb devices and considering both commercialized and state-of-the-art realms. Mechatronic, control, and software aspects of the system are discussed to provide a classified roadmap for home-based systems development. Subsequently, a conceptual framework on the development of smart and intelligent community-based home rehabilitation systems based on novel mechatronic technologies is proposed. In this framework, each rehabilitation device acts as an agent in the network, using the internet of things (IoT) technologies, which facilitates learning from the recorded data of the other agents, as well as the tele-supervision of the treatment by an expert. The presented design paradigm based on the above-mentioned leading technologies could lead to the development of promising home rehabilitation systems, which encourage stroke survivors to engage in under-supervised or unsupervised therapeutic activities

    Development and implementation of technologies for physical telerehabilitation in Latin America:

    Get PDF
    La telerehabilitation ha surgido debido a la inclusión de tecnologías emergentes para la captura, transmisión, análisis y visualización de patrones de movimiento asociados a pacientes con trastornos músculo-esqueléticos. Esta estrategia permite llevar a cabo procesos de diagnóstico y tratamientos de rehabilitación a distancia. Este artículo presenta una revisión sistemática del desarrollo e implementación actual de las tecnologías de telerehabilitación en la región latinoamericana. El objetivo principal es explorar, a partir de la literatura científica reportada y fuentes divulgativas, si las tecnologías de telerehabilitación han logrado ser introducidas en esta región. Asimismo, este trabajo revela los prototipos actuales o sistemas que están en desarrollo o que ya están siendo usados. Se llevó a cabo una revisión sistemática, mediante dos búsquedas diferentes. La primera implicó una búsqueda bibliográfica rigurosa en los repositorios digitales científicos más relevantes en el área y la segunda incluyó proyectos y programas de telerehabilitación implementados en la región, encontrados a partir de una búsqueda avanzada en Google. Se encontró un total de 53 documentos de seis países (Colombia, Brasil, México, Ecuador, Chile y Argentina); la mayoría de ellos estaban enfocados en iniciativas académicas y de investigación para el desarrollo de prototipos tecnológicos para telerehabilitación de pacientes pediátricos y adultos mayores, afectados por deficiencias motoras o funcionales, parálisis cerebral, enfermedades neurocognitivas y accidente cerebrovascular. El análisis de estos documentos reveló la necesidad de un extenso enfoque integrado de salud y sistema social para aumentar la disponibilidad actual de iniciativas de telerehabilitación en la región latinoamericana.Telerehabilitation has arised by the inclusion of emerging technologies for capturing, transmitting, analyzing and visualizing movement patterns associated to musculoskeletal disorders. This therapeutic strategy enables to carry out diagnosis processes and provide rehabilitation treatments. This paper presents a systematic review of the current development and implementation of telerehabilitation technologies in Latin America. The main goal is to explore the scientific literature and dissemination sources to establish if such technologies have been introduced in this region. Likewise, this work highlights existing prototypes or systems that are to being used or that are still under development. A systematic search strategy was conducted by two different searches: the first one involves a rigorous literature search from the most relevant scientific digital repositories; the second one included telerehabilitation projects and programs retrieved by an advanced Google search. A total of 53 documents from six countries (Colombia, Brazil, Mexico, Ecuador, Chile and Argentina) were found. Most of them were focused on academic and research initiatives to develop in-home telerehabilitation technologies for pediatric and elderly populations affected by motor and functional impairment, cerebral palsy, neurocognitive disorders and stroke. The analysis of the findings revealed the need for a comprehensive approach that integrates health care and the social system to increase the current availability of telerehabilitation initiatives in Latin America
    • …
    corecore