14 research outputs found

    An Enhanced IUPQC Controller to Provide Grid Voltage Regulation

    Get PDF
    This paper shows an enhanced controller for the double topology of the brought unified power quality conditioner (iUPQC) developing its materialness in power-quality remuneration, and additionally in smaller scale network applications. By utilizing this controller, past the traditional UPQC control quality components, including voltage list/swell remuneration, the iUPQC will likewise give responsive power support to manage the load-bus voltage as well as the voltage at the matrix side bus.A FUZZY controller is executed in this venture in the place of PI controller. IUPQC will fill in as a static synchronous compensator (STATCOM) at the network side, while giving likewise the routine UPQC pay at the heap or small scale framework reproduction results are given to check the new usefulness of the hardware. Reenactment results are introduced to confirm the practicality of the proposed approach in MATLAB/SIMULINK condition.

    Five-Level Flying Capacitor Converter used as a Static Compensator for Current Unbalances in Three-Phase Distribution Systems

    Get PDF
    This thesis presents and evaluates a solution for unbalanced current loading in three-phase distribution systems. The proposed solution uses the flying capacitor multilevel converter as its main topology for an application known as Unbalanced Current Static Compensator. The fundamental theory, controller design and prototype construction will be presented along with the experimental results. The Unbalanced Current Static Compensator main objective is the balancing of the up-stream currents from the installation point to eliminate the negative- and zero-sequence currents originated by unbalanced single-phase loads. Three separate single-phase flying capacitor converters are controlled independently using a d-q rotating reference frame algorithm to allow easier compensation of reactive power. Simulations of the system were developed in MATLAB/SIMULINKâ„Ē in order to validate the design parameters; then, testing of the UCSC prototype was performed to confirm the control algorithm functionality. Finally, experimental result are presented and analyzed

    PoboljÅĄanje kvalitete snage za Åūeljezničke sustave - pregled istraÅūivanja

    Get PDF
    Railway traction is a more stochastic heavy load connected system. Due to the usage of ac-dc converters and ac-ac converters, the various power quality issues become the major problems in the electric system. This paper presents a review on power quality conditioners suitable for Railway traction based on the configuration, components involved and on the technical and economic considerations. More than 120 publications are listed in the reference for quick review.Å―eljeznički električni sustav je prilično stohastički sustav s velikim opterečenjem. Zbog koriÅĄtenja AC/DC i AC/AC pretvarača, problemi s kvalitetom isporučene energije predstavljaju glavne probleme električnih sustava. U ovome radu predstavljen je pregled područja vezano uz poboljÅĄanje kvalitete energije za Åūeljezničke sustave ovisno o konfiguraciji, komponentama uključenim te o tehničkim i ekonomskim aspektima. ViÅĄe od 120 radova navedeno je u popisu literature

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    The Performance Enhancement of Control Strategy for Unified Power Quality Conditioner

    Get PDF
    āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāļĻāļēāļŠāļ•āļĢāļĄāļŦāļēāļšāļąāļ“āļ‘āļīāļ• (āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāđ„āļŸāļŸāđ‰āļē), 2565This thesis proposes power quality improvement using a unified power quality conditioner (UPQC) in a balanced three-phase system. To improve the calculation of reference voltage and current, the harmonic identification by the power angle control method (PAC) has been developed with sliding window Fourier analysis (SWFA). In this thesis, the enhanced PAC algorithm is designed based on the apparent power control (UPQC-S). This approach is adopted to handle such as source voltage and load current problems. The unit vector template generation (UVTG) with PWM technique is applied to control the compensating voltage of the UPQC. In this work, the predictive controller is applied for the compensating current control on the dq-axis. This control is operated with the SVPWM technique to generate the switching state for the shunt active power filter. The predictive control with the SVPWM can provide good performance for the compensating current injection. The PI controller is used for the DC voltage bus control. The parameters of the PI controller are designed by using the root-locus technique in the z-plane. The proposed control strategy of UPQC is simulated using the processor in the loop (PIL) technique. For this technique, the MATLAB & Simulink program on the host computer is cooperated with the Code Composer StudioTM program for the eZdspTM F23885 board. The simulation results show that the proposed control strategy can mitigate the harmonic current, improve the power factor, and compensate for the voltage variations (sag and swell) in test cases. The performance indices for the power quality improvement are defined in the IEEE standard 519-2014. In addition, the predictive current control is tested to compare the performance of the harmonic current elimination with the SVPWM controller and the PI controller. After compensation, the predictive current control can provide better performance compared with those controllers even though the voltage source and the loads are changed. For the comparison study, the performance index is the percent of the current tracking error between the compensating current and the reference current.āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ§āļīāļ—āļĒāļēāļ™āļīāļžāļ™āļ˜āđŒāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļ„āļļāļ“āļ āļēāļžāļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļ”āđ‰āļ§āļĒāļ§āļ‡āļˆāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļ„āļļāļ“āļ āļēāļžāļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļĢāļ§āļĄāļŠāļģāļŦāļĢāļąāļšāļĢāļ°āļšāļšāđ„āļŸāļŸāđ‰āļēāļŠāļēāļĄāđ€āļŸāļŠāļŠāļĄāļ”āļļāļĨ āļāļēāļĢāļĢāļ°āļšāļļāđ€āļ­āļāļĨāļąāļāļĐāļ“āđŒāļŪāļēāļĢāđŒāļĄāļ­āļ™āļīāļāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ„āļ§āļšāļ„āļļāļĄāļĄāļļāļĄāļāļģāļĨāļąāļ‡āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļąāļ’āļ™āļēāļĢāđˆāļ§āļĄāļāļąāļšāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļšāļšāļŸāļđāļĢāļīāđ€āļĒāļĢāđŒāļ§āļīāļ™āđ‚āļ”āļ§āđŒāđ€āļĨāļ·āđˆāļ­āļ™ āđ€āļžāļ·āđˆāļ­āļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļ„āļģāļ™āļ§āļ“āļ„āđˆāļēāđāļĢāļ‡āļ”āļąāļ™āļ­āđ‰āļēāļ‡āļ­āļīāļ‡āđāļĨāļ°āļāļĢāļ°āđāļŠāļ­āđ‰āļēāļ‡āļ­āļīāļ‡ āļ§āļīāļ˜āļĩāļ„āļ§āļšāļ„āļļāļĄāļĄāļļāļĄāļāļģāļĨāļąāļ‡āļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļąāļ’āļ™āļēāļ–āļđāļāļ­āļ­āļāđāļšāļšāļšāļ™āļžāļ·āđ‰āļ™āļāļēāļ™āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļ„āđˆāļēāļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļ›āļĢāļēāļāļ āđāļ™āļ§āļ—āļēāļ‡āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļŠāļēāļĄāļēāļĢāļ–āđāļāđ‰āļ›āļąāļāļŦāļēāđāļĢāļ‡āļ”āļąāļ™āļ—āļĩāđˆāđāļŦāļĨāđˆāļ‡āļˆāđˆāļēāļĒāđāļĨāļ°āļāļĢāļ°āđāļŠāļ—āļĩāđˆāđ‚āļŦāļĨāļ”āđ„āļ”āđ‰ āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđāļĢāļ‡āļ”āļąāļ™āļŠāļ”āđ€āļŠāļĒāļ­āļēāļĻāļąāļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāļŦāļ™āļķāđˆāļ‡āļŦāļ™āđˆāļ§āļĒāļ—āļģāļ‡āļēāļ™āļĢāđˆāļ§āļĄāļāļąāļšāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļŠāļ§āļīāļ•āļŠāđŒāļ§āļīāļ˜āļĩāļžāļĩāļ”āļąāļšāđ€āļšāļīāļĨāļĒāļđāđ€āļ­āđ‡āļĄ āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļāļĢāļ°āđāļŠāļŠāļ”āđ€āļŠāļĒāđƒāļ™āļ‡āļēāļ™āļ™āļĩāđ‰āļžāļīāļˆāļēāļĢāļ“āļēāđƒāļŠāđ‰āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ—āļģāļ™āļēāļĒāļšāļ™āđāļāļ™āļ”āļĩāļ„āļīāļ§ āļāļēāļĢāļ­āļ­āļāđāļšāļšāļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļžāļķāđˆāļ‡āļžāļēāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āļ§āļ‡āļˆāļĢāļāļĢāļ­āļ‡āļāļģāļĨāļąāļ‡āđāļ­āļāļ—āļĩāļŸāđāļšāļšāļ‚āļ™āļēāļ™āļšāļ™āđāļāļ™āļ”āļĩāļ„āļīāļ§ āļĢāļ°āļšāļšāļ„āļ§āļšāļ„āļļāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ—āļģāļ‡āļēāļ™āļĢāđˆāļ§āļĄāļāļąāļšāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļŠāļ§āļīāļ•āļŠāđŒāļ§āļīāļ˜āļĩāļŠāđ€āļ›āļ‹ āđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāļžāļĩāļ”āļąāļšāđ€āļšāļīāļĨāļĒāļđāđ€āļ­āđ‡āļĄ āđ€āļžāļ·āđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļŠāļ§āļīāļ•āļŠāđŒāļŠāļģāļŦāļĢāļąāļšāļ§āļ‡āļˆāļĢāļāļĢāļ­āļ‡āļāļģāļĨāļąāļ‡āđāļ­āļāļ—āļĩāļŸāđāļšāļšāļ‚āļ™āļēāļ™ āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđāļĢāļ‡āļ”āļąāļ™āļšāļąāļŠāđ„āļŸāļ•āļĢāļ‡āđƒāļŠāđ‰āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāļžāļĩāđ„āļ­ āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ­āļ­āļāđāļšāļšāđƒāļ™āđ‚āļ”āđ€āļĄāļ™āđ€āļ§āļĨāļēāđ„āļĄāđˆāļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āļ—āļēāļ‡āđ€āļ”āļīāļ™āļĢāļēāļāļšāļ™āļĢāļ°āļ™āļēāļšāļ‹āļĩ āļāļĨāļĒāļļāļ—āļ˜āđŒāļ„āļ§āļšāļ„āļļāļĄāļŠāļģāļŦāļĢāļąāļšāļ§āļ‡āļˆāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļ„āļļāļ“āļ āļēāļžāļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļĢāļ§āļĄāļ–āļđāļāļˆāļģāļĨāļ­āļ‡āļŠāļ–āļēāļ™āļāļēāļĢāļ“āđŒāļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āđ‚āļ›āļĢāđ€āļ‹āļŠāđ€āļ‹āļ­āļĢāđŒāđƒāļ™āļĨāļđāļ› āļ‹āļķāđˆāļ‡āđ€āļ—āļ„āļ™āļīāļ„āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļ”āđ‰āļ§āļĒāđ‚āļ›āļĢāđāļāļĢāļĄ MATLAB/Simulink āđ‚āļ›āļĢāđāļāļĢāļĄ Code Composer Studio āđāļĨāļ°āļšāļ­āļĢāđŒāļ” eZdspTM F23885 āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļš āļžāļšāļ§āđˆāļē āļāļĨāļĒāļļāļ—āļ˜āđŒāļ„āļ§āļšāļ„āļļāļĄāļ—āļĩāđˆāđ„āļ”āđ‰āļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āļŠāļēāļĄāļēāļĢāļ–āļāļģāļˆāļąāļ”āļāļĢāļ°āđāļŠāļŪāļēāļĢāđŒāļĄāļ­āļ™āļīāļ āļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļ„āđˆāļēāļ•āļąāļ§āļ›āļĢāļ°āļāļ­āļšāļāļģāļĨāļąāļ‡ āđāļĨāļ°āļŠāļ”āđ€āļŠāļĒāđāļĢāļ‡āļ”āļąāļ™āļ—āļēāļ‡āļ”āđ‰āļēāļ™āđ‚āļŦāļĨāļ”āļāļĢāļ“āļĩāđāļĢāļ‡āļ”āļąāļ™āļ•āļāļŠāļąāđˆāļ§āļ‚āļ“āļ°āđāļĨāļ°āđ€āļāļīāļ™āļŠāļąāđˆāļ§āļ‚āļ“āļ° āđƒāļ™āļ—āļļāļāļŠāļ āļēāļ§āļ°āđ‚āļŦāļĨāļ”āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļ—āļ”āļŠāļ­āļš āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļŠāļĩāđ‰āļ§āļąāļ”āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļ­āđ‰āļēāļ‡āļ­āļīāļ‡āļ•āļēāļĄāļāļĢāļ­āļšāļĄāļēāļ•āļĢāļāļēāļ™āļ‚āļ­āļ‡ IEEE standard 519-2014 āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ—āļģāļ™āļēāļĒāļĒāļąāļ‡āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļāļģāļˆāļąāļ”āļāļĢāļ°āđāļŠāļŪāļēāļĢāđŒāļĄāļ­āļ™āļīāļāļāļąāļšāļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ§āļīāļ˜āļĩāļŠāđ€āļ›āļ‹āđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāļžāļĩāļ”āļąāļšāđ€āļšāļīāļĨāļĒāļđāđ€āļ­āđ‡āļĄ āđāļĨāļ°āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāļžāļĩāđ„āļ­ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļ›āļĢāļēāļāļāļ§āđˆāļē āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāļāļĢāļ°āđāļŠāđāļšāļšāļ—āļģāļ™āļēāļĒāļŠāļēāļĄāļēāļĢāļ–āļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ‰āļĩāļ”āļāļĢāļ°āđāļŠāļŠāļ”āđ€āļŠāļĒāđ„āļ”āđ‰āļ”āļĩāļāļ§āđˆāļē āđ‚āļ”āļĒāļžāļīāļˆāļēāļĢāļ“āļēāļˆāļēāļāļ„āđˆāļēāļ„āļ§āļēāļĄāļ„āļĨāļēāļ”āđ€āļ„āļĨāļ·āđˆāļ­āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļĢāļ°āđāļŠāļ­āđ‰āļēāļ‡āļ­āļīāļ‡āđāļĨāļ°āļāļĢāļ°āđāļŠāļŠāļ”āđ€āļŠāļĒ āļ‹āļķāđˆāļ‡āļ āļēāļĒāļŦāļĨāļąāļ‡āļāļēāļĢāļŠāļ”āđ€āļŠāļĒ āļžāļšāļ§āđˆāļē āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ—āļģāļ™āļēāļĒāđƒāļŦāđ‰āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļāļģāļˆāļąāļ”āļāļĢāļ°āđāļŠāļŪāļēāļĢāđŒāļĄāļ­āļ™āļīāļāļ—āļĩāđˆāļ”āļĩāļāļ§āđˆāļēāļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ§āļīāļ˜āļĩāļŠāđ€āļ›āļ‹āđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāļžāļĩāļ”āļąāļšāđ€āļšāļīāļĨāļĒāļđāđ€āļ­āđ‡āļĄ āđāļĨāļ°āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāļžāļĩāđ„āļ­ āļ–āļķāļ‡āđāļĄāđ‰āļ§āđˆāļēāđāļŦāļĨāđˆāļ‡āļˆāđˆāļēāļĒāđāļĢāļ‡āļ”āļąāļ™āđāļĨāļ°āđ‚āļŦāļĨāļ”āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ—āļ”āļŠāļ­āļšāļˆāļ°āļĄāļĩāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨ

    A Passive LC Filter Based Harmonic Compensation for Multilevel Cascaded Inverters under Unbalanced DC Sources Using NVM Control Technique

    Get PDF
    This work proposes passive lc filter network based multilevel cascaded inverters with beating width-modulation action to accomplish counterbalanced line-to-line achievement voltages and to aerate the modulation basis in the beeline modulation ambit area the achievement voltage can be linearly adapted in the multilevel cascaded inverter (MLCI) operating beneath asymmetric dc-link conditions. A neural voltage modulation action is proposed to accomplish achievement voltage acclimation as able-bodied as to extend the beeline modulation ambit up to the best attainable point in theory. In the proposed method, too ample of a dc-link alterity precludes the acclimation of the achievement voltages. The simulations for a seven-level phase-shifted articulate MLCI for electric car absorption motor drive appearance that the proposed adjustment is able to antithesis line-to-line achievement voltages as able-bodied as to aerate the beeline modulation ambit beneath the asymmetric dc-link conditions

    Design of controllers for electrical power systems using a complex root locus method

    Get PDF
    ÂĐ 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A large class of three-phase electrical power systems possess symmetry conditions that make it possible to describe their behavior using single-input single-output transfer functions with complex coefficients. In such cases, an extended root locus method can be used to design control laws, even though the actual systems are multi-input multi-output. In this paper, the symmetric conditions for a large class of power systems are analyzed. Then, the root locus method is revisited for systems with complex coeffcients and used for the analysis and control design of power systems. To demonstrate the benefits of the approach, this paper includes two examples: 1) a doubly fed induction machine and 2) a three-phase LCL inverter.Postprint (author's final draft

    A Survey on Multi-Active Bridge DC-DC Converters: Power Flow Decoupling Techniques, Applications, and Challenges

    Get PDF
    Multi-port DC-DC converters are a promising solution for a wide range of applications involving multiple DC sources, storage elements, and loads. Multi-active bridge (MAB) converters have attracted the interest of researchers over the past two decades due to their potential advantages such as high power density, high transfer ratio, and galvanic isolation, for example, compared to other solutions. However, the coupled power flow nature of MAB converters makes their control implementation difficult, and due to the multi-input, multi-output (MIMO) structure of their control systems, a decoupling control strategy must be designed. Various control and topology-level strategies are proposed to mitigate the coupling effect. This paper discusses the operating principles, applications, methods for analyzing power flow, advanced modulation techniques, and small signal modelling of the MAB converter. Having explained the origin of cross-coupling, the existing power flow decoupling methods are reviewed, categorized, and compared in terms of effectiveness and implementation complexity
    corecore