44 research outputs found

    Design and analysis of a novel tri-band flower-shaped planar antenna for GPS and WiMAX applications

    Get PDF
    This paper presents the design of a tri-band flower-shaped planar monopole antenna operating at three frequencies i.e. 1.576 GHz (GPS), 2.668 GHz and 3.636 GHz (Mobile WiMAX). The radiating element of the antenna is backed by a 1.6 mm thicker FR-4 substrate having a dielectric constant of 4.3. The substrate is backed by a truncated ground plane. The antenna is fed through a 50 ℩ microstrip line. The flower shape of the radiating element is derived from the basic circular shape by introducing in it rounded slots of various radii. The upper part of the antenna is flower-shaped while the lower part comprises a microstrip feed line and two branches, each having two ‘leaves’ at the end. The leaves and branches contribute in the impedance matching of the lower (1.576 GHz) and middle (2.668 GHz) frequency bands. The antenna gives an acceptable simulated efficiency >70% in the three frequency bands. Suitable gains of 1.63, 2.59 and 3.23dB are obtained at 1.576 GHz, 2.668 GHz and 3.636 GHz, respectively. The antenna matched with a VSWR<1.2 in the three frequency bands. The prototype of the antenna is fabricated and tested in the laboratory, and good agreement in simulated and measured results is achieved. The proposed design is a visually appealing and may find uses as an external antenna in GPS and WiMAX applications

    Bio-Inspired Microstrip Antenna

    Get PDF
    In the last few years, bio‐inspired solutions have attracted the attention of the scientific community. Several world‐renowned institutions have sponsored and created laboratories in order to understand the forms, functions and behavior of living organisms. Some methods can be highlighted in the search for geometric representation of the shapes found in the nature, the fractal geometry, the polar geometry, and the superformula of Gielis. This chapter is focusing on bio‐inspired microstrip antennas, especially on leaf‐shaped antennas from the Gielis superformula that open a vast research field for more compact antennas with low visual impact

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 2: Metamaterials and Many More

    Get PDF
    This two‐part article presents a review of different techniques of mutual coupling (MC) reduction. MC reduction is a primary concern while designing a compact multiple‐input‐multiple‐output (MIMO) antenna where the separation between the antennas is less than λ0/2, that is, half of the free‐space wavelength. The negative permittivity and permeability of artificially created materials/structures (Metamaterials) significantly help reduce MC among narrow‐band compact MIMO antenna design elements. In this part two of the review paper, we will discuss techniques: Metamaterials; Split‐Ring‐Resonator; Complementary‐Split‐Ring‐Resonator; Frequency Selective Surface, Metasurface, Electromagnetic Band Gap structure, Decoupling and Matching network, Neutralization line, Cloaking Structures, Shorting vias and pins and few more

    Split Ring Resonator Inspired Dual-Band Monopole Antenna for ISM, WLAN, WIFI, and WiMAX Application

    Get PDF
    A dual-band antenna is used for several wireless networks like ISM, WLAN, WiMAX, and WiFi. The antenna\u27s uppermost element is a monopole shape with a rectangular protrusion. Antennas are created in CST. Using a 19-millimetre-wide by 31-millimetre-long FR4 substrate, the antenna is created in a design environment. Due to the SRR printing in the ground and the antenna\u27s defective ground structure, the antenna is able to achieve dual resonance. A split ring resonator printed at the base also helps achieve a second resonance. With the help of a parameter analysis, we can pick the optimal proportions for the design. The antenna resonates at both 2.3 and 5.8 GHz. We construct and test the antenna. The results obtained through simulation are equivalent to those obtained from measurements in terms of s11, gain, and directivity, as well as E-plane and H-plane patterns. Because of its compact size, consistent radiation pattern, dual-band use, and excellent impedance matching and bandwidth, the suggested antenna is an excellent choice for use in ISM networks and other wireless applications

    Microwave brain imaging system to detect brain tumor using metamaterial loaded stacked antenna array

    Get PDF
    In this paper, proposes a microwave brain imaging system to detect brain tumors using a metamaterial (MTM) loaded three-dimensional (3D) stacked wideband antenna array. The antenna is comprised of metamaterial-loaded with three substrate layers, including two air gaps. One 1 x 4 MTM array element is used in the top layer and middle layer, and one 3 x 2 MTM array element is used in the bottom layer. The MTM array elements in layers are utilized to enhance the performance concerning antenna's efficiency, bandwidth, realized gain, radiation directionality in free space and near the head model. The antenna is fabricated on cost-effective Rogers RT5880 and RO4350B substrate, and the optimized dimension of the antenna is 50 x 40 x 8.66 mm3. The measured results show that the antenna has a fractional bandwidth of 79.20% (1.37-3.16 GHz), 93% radiation efficiency, 98% high fidelity factor, 6.67 dBi gain, and adequate field penetration in the head tissue with a maximum of 0.0018 W/kg specific absorption rate. In addition, a 3D realistic tissue-mimicking head phantom is fabricated and measured to verify the performance of the antenna. Later, a nine-antenna array-based microwave brain imaging (MBI) system is implemented and investigated by using phantom model. After that, the scattering parameters are collected, analyzed, and then processed by the Iteratively Corrected delay-multiply-and-sum algorithm to detect and reconstruct the brain tumor images. The imaging results demonstrated that the implemented MBI system can successfully detect the target benign and malignant tumors with their locations inside the brain. 2022, The Author(s).This research work is supported by the Universiti Kebangsaan Malaysia (UKM) research Grant DIP-2020-009.Scopu

    Techniques for Compact Planar MIMO Antennas

    Get PDF
    MIMO Technology has promoted the developments of various antennas, then the planar antenna will be one of the main directions to satisfy the future compact requirement of the 5G+/6G communications. This chapter introduces different types of the planar antenna and summarizes the implicit compact techniques, where the related techniques like the diversity and the reconfigurable are not included owing to they are the inherent properties of the MIMO antennas. These antennas contain the patch antenna, slot antenna, dipole/monopole antenna, loop antenna, cavity antenna, Yagi-Uda antenna, fractal antenna, UWB antenna, PIFA etc., and their deformations to the specific purposes. On the contrary, the implicit compact techniques are not so explicit as the antenna configurations, but they are classified to be the close-spacing structure without decoupling, owing to the decoupling is not the necessary requirement of MIMO application, decoupling technique of spacing reduction, meandered line technique, multi-element method, co-radiator/co-location design, fractal antenna, and radiator-cutting antenna. Besides, the corresponding techniques for the compact design are also concluded, including the mode-cutting method, fractal technique, characteristic mode analysis, and the optimization algorithms

    A Four Element mm-Wave MIMO Antenna System with Wide-Band and High Isolation Characteristics for 5G Applications

    Get PDF
    In this article, we propose a light weight, low profile Multiple Input Multiple Output (MIMO) antenna system for compact 5th Generation (5G) mmwave devices. Using a RO5880 substrate that is incredibly thin, the suggested antenna is made up of circular rings stacked vertically and horizontally on top of one another. The single element antenna board has dimensions of 12 × 12 × 0.254 mm3 while the size of the radiating element is 6 × 2 × 0.254 mm3 (0.56λ0 × 0.19λ0 × 0.02λ0). The proposed antenna showed dual band characteristics. The first resonance showed a bandwidth of 10 GHz with a starting frequency of 23 GHz to an ending frequency point of 33 GHz followed by a second resonance bandwidth of 3.25 GHz ranging from 37.75 to 41 GHz, respectively. The proposed antenna is transformed into a four element Linear array system with size of 48 × 12 × 0.254 mm3 (4.48λ0 × 1.12λ0 × 0.02λ0). The isolation levels at both resonance bands were noted to be >20 dB which shows high levels of isolation among radiating elements. The MIMO parameters such as Envelope Correlation Co-efficient (ECC), Mean Effective Gain (MEG) and Diversity Gain (DG) were derived and were found to be in satisfactory limits. The proposed MIMO system model is fabricated and through validation and testing of the prototype, the results were found to be in good agreement with simulations

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide
    corecore