17 research outputs found

    Performances of Hybrid Amplitude Shape Modulation for UWB Communications Systems over AWGN Channel in a Single and Multi-User Environment

    Get PDF
    This paper analyzes the performance of the hybrid Amplitude Shape Modulation (h-ASM) scheme for the time-hopping ultra-wideband (TH-UWB) communication systems in the single and multi-user environment. h-ASM is the combination of Pulse Amplitude Modulation (PAM) and Pulse Shape Modulation (PSM) based on modified Hermite pulses (MHP). This scheme is suitable for high rate data transmission applications because b = log2(MN) bits can be mapped with one waveform. The channel capacity and error probability over AWGN channel are derived and compared with other modulation schemes

    Design of Waveform Set for Multiuser Ultra-Wideband Communications

    Get PDF
    The thesis investigates the design of analogue waveform sets for multiuser and UWB communications using suitably chosen Hermite-Rodriguez basis functions. The non-linear non-convex optimization problem with time and frequency domains constraints has been transformed into suitable forms and then solved using a standard optimization package. The proposed approach is more flexible and efficient than existing approaches in the literature. Numerical results show that orthogonal waveform sets with high spectral efficiency can be produced

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201

    Performance Analysis of Ultra Wideband Multiple Access Time Hopping – Pulse Shape Modulation in Presence of Timing Jitter

    Get PDF
    In short-range networks such as wireless personal area networks (WPAN), multiple user wireless connectivity for surveillance would require a wireless technology that supports multiple streams of high-speed data and consumes very little power. Ultra wideband (UWB) technology enables wireless connectivity across multiple devices (users) addressing the need for high-speed WPAN. Apart from having a distinct advantage of higher data rate over Bluetooth v4.0 (24 Mbps), the UWB technology is also found to be tolerant to frequency-selective multipath fading. In this paper authors discuss a time-hopping pulse shape modulation UWB signalling scheme for ad-hoc high bit rate wireless connectivity for defence applications. Authors analyse multiple access interference for both Gaussian channel and frequency selective multipath fading channel to compare the effects of timing jitter on two types of pulse shapes, namely modified Hermite pulse (MHP) and prolate spheroidal wave functions (PSWF). Authors make a comparative analysis of the system performance with respect to PSWF and MHP to ascertain robustness to timing jitter. In the process, authors introduced a new metric of decision factor in timing jitter analysis.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.464-470, DOI:http://dx.doi.org/10.14429/dsj.64.578

    UWB System Based on Energy Detection of Derivatives of The Gaussian Pulse

    Get PDF
    A new method for energy detection ultra-wideband systems is proposed. The transmitter of this method uses two pulses that are different-order derivatives of the Gaussian pulse to transmit bit 0 or 1. These pulses are appropriately chosen to separate their spectra in the frequency domain. The receiver is composed of two energydetection branches. Each branch has a filter which captures the signal energy of either bit 0 or 1. The outputs of the two branches are subtracted from each other to generate the decision statistic. The value of this decision statistic is compared to the threshold to determine the transmitted bit. This new method has the same bit error rate (BER) performance as energy detection-based pulse position modulation (PPM) in additive white Gaussian noise channels. In multipath channels, its performance surpasses PPM and it also exhibits better BER performance in the presence of synchronization errors

    An Inverse Problem for Localization Operators

    Full text link
    A classical result of time-frequency analysis, obtained by I. Daubechies in 1988, states that the eigenfunctions of a time-frequency localization operator with circular localization domain and Gaussian analysis window are the Hermite functions. In this contribution, a converse of Daubechies' theorem is proved. More precisely, it is shown that, for simply connected localization domains, if one of the eigenfunctions of a time-frequency localization operator with Gaussian window is a Hermite function, then its localization domain is a disc. The general problem of obtaining, from some knowledge of its eigenfunctions, information about the symbol of a time-frequency localization operator, is denoted as the inverse problem, and the problem studied by Daubechies as the direct problem of time-frequency analysis. Here, we also solve the corresponding problem for wavelet localization, providing the inverse problem analogue of the direct problem studied by Daubechies and Paul.Comment: 18 pages, 1 figur

    Contribution Ă  la conception d'un systĂšme de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face Ă  une demande sans cesse croissante de haut dĂ©bit et d’adaptabilitĂ© des systĂšmes existants, qui Ă  son tour se traduit par l’encombrement du spectre, le dĂ©veloppement de nouvelles solutions dans le domaine des communications sans fil devient nĂ©cessaire afin de rĂ©pondre aux exigences des applications Ă©mergentes. Parmi les innovations rĂ©centes dans ce domaine, l’ultra large bande (UWB) a suscitĂ© un vif intĂ©rĂȘt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intĂ©ressante pour rĂ©aliser des systĂšmes UWB, est caractĂ©risĂ©e par la transmission des impulsions de trĂšs courte durĂ©e, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densitĂ© spectrale de puissance extrĂȘmement faible. Cette largeur de bande importante permet de rĂ©aliser plusieurs fonctionnalitĂ©s intĂ©ressantes, telles que l’implĂ©mentation Ă  faible complexitĂ© et Ă  coĂ»t rĂ©duit, la possibilitĂ© de se superposer aux systĂšmes Ă  bande Ă©troite, la diversitĂ© spatiale et la localisation trĂšs prĂ©cise de l’ordre centimĂ©trique, en raison de la rĂ©solution temporelle trĂšs fine.Dans cette thĂšse, nous examinons certains Ă©lĂ©ments clĂ©s dans la rĂ©alisation d'un systĂšme IR-UWB intelligent. Nous avons tout d’abord proposĂ© le concept de radio UWB cognitive Ă  partir des similaritĂ©s existantes entre l'IR-UWB et la radio cognitive. Dans sa dĂ©finition la plus simple, un tel systĂšme est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisĂ© notre recherchĂ© sur l’analyse de la disponibilitĂ© des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considĂ©rĂ©es comme deux Ă©tapes importantes dans la rĂ©alisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et dĂ©tecter rapidement les utilisateurs primaires. Nous avons donc dĂ©veloppĂ© de tels algorithmes utilisant des rĂ©sultats rĂ©cents sur la thĂ©orie des matrices alĂ©atoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'Ă©chantillons. Ensuite, nous avons proposĂ© une mĂ©thode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondĂ©ration sont optimisĂ©s par des algorithmes gĂ©nĂ©tiques. Il en rĂ©sulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intĂ©grer les contraintes liĂ©es Ă  la radio cognitive. Dans la 2Ăšme partie de cette thĂšse, nous nous sommes attaquĂ©s Ă  deux autres problĂ©matiques importantes pour le fonctionnement des systĂšmes UWB, Ă  savoir la synchronisation et l’estimation du canal UWB, qui est trĂšs dense en trajets multiples. Ainsi, nous avons proposĂ© plusieurs algorithmes de synchronisation, de faible complexitĂ© et sans sĂ©quence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalitĂ© des formes d'onde UWB ou la cyclostationnaritĂ© inhĂ©rente Ă  la signalisation IR-UWB. Enfin, nous avons travaillĂ© sur l'estimation du canal UWB, qui est un Ă©lĂ©ment critique pour les rĂ©cepteurs Rake cohĂ©rents. Ainsi, nous avons proposĂ© une mĂ©thode d’estimation du canal basĂ©e sur une combinaison de deux approches complĂ©mentaires, le maximum de vraisemblance et la dĂ©composition en sous-espaces orthogonaux,d’amĂ©liorer globalement les performances

    Space Shift Keying (SSK-) MIMO with Practical Channel Estimates

    No full text
    International audienceIn this paper, we study the performance of space modulation for Multiple-Input-Multiple-Output (MIMO) wireless systems with imperfect channel knowledge at the receiver. We focus our attention on two transmission technologies, which are the building blocks of space modulation: i) Space Shift Keying (SSK) modulation; and ii) Time-Orthogonal-Signal-Design (TOSD-) SSK modulation, which is an improved version of SSK modulation providing transmit-diversity. We develop a single- integral closed-form analytical framework to compute the Average Bit Error Probability (ABEP) of a mismatched detector for both SSK and TOSD-SSK modulations. The framework exploits the theory of quadratic-forms in conditional complex Gaussian Random Variables (RVs) along with the Gil-Pelaez inversion theorem. The analytical model is very general and can be used for arbitrary transmit- and receive-antennas, fading distributions, fading spatial correlations, and training pilots. The analytical derivation is substantiated through Monte Carlo simulations, and it is shown, over independent and identically distributed (i.i.d.) Rayleigh fading channels, that SSK modulation is as robust as single-antenna systems to imperfect channel knowledge, and that TOSD-SSK modulation is more robust to channel estimation errors than the Alamouti scheme. Furthermore, it is pointed out that only few training pilots are needed to get reliable enough channel estimates for data detection, and that transmit- and receive-diversity of SSK and TOSD-SSK modulations are preserved even with imperfect channel knowledge

    Novel solutions to classical signal processing problems in optimization framework

    Get PDF
    Cataloged from PDF version of article.Novel approaches for three classical signal processing problems in optimization framework are proposed to provide further flexibility and performance improvement. In the first part, a new technique, which uses Hermite-Gaussian (HG) functions, is developed for analysis of signals, whose components have non-overlapping compact time-frequency supports. Once the support of each signal component is properly transformed, HG functions provide optimal representations. Conducted experiments show that proposed method provides reliable identification and extraction of signal components even under severe noise cases. In the second part, three different approaches are proposed for designing a set of orthogonal pulse shapes for ultra-wideband communication systems with wideband antennas. Each pulse shape is modelled as a linear combination of time shifted and scaled HG functions. By solving the constructed optimization problems, high energy pulse shapes, which maintain orthogonality at the receiver with desired timefrequency characteristics are obtained. Moreover, by showing that, derivatives of HG functions can be represented as a linear combination of HGs, a simple optimal correlating receiver structure is proposed. In the third part, two different methods for phase-only control of array antennas based on semidefinite modelling are proposed. First, antenna pattern design problem is formulated as a non-convex quadratically constraint quadratic problem (QCQP). Then, by relaxing the QCQP formulation, a convex semidefinite problem (SDP) is obtained. For moderate size arrays, a novel iterative rank refinement algorithm is proposed to achieve a rank-1 solution for the obtained SDP, which is the solution to the original QCQP formulation. For large arrays an alternating direction method of multipliers (ADMM) based solution is developed. Conducted experiments show that both methods provide effective phase settings, which generate beam patterns under highly flexible constraints.Alp, YaƟar KemalPh.D
    corecore