7,192 research outputs found

    Design of Software Defined Radios Based Platform for Activity Recognition

    Get PDF
    Recently, activity recognition and classification (ARC) of human activity opens new research area in the field health care, security, and privacy of human society. Specifically, the promise of device-free activity recognition platform attracts researchers to develop platform to ensure the correct detection of activity recognition. The technologies, such as Wi-Fi, GSM, and radars, do not require installing cameras or wearable sensors for activity monitoring and recognition. Therefore, this device-free technology has gain popularity in health care and safety measurement systems. Traditional ARC systems depend on wearable sensors such as magic rings and vision technology such as a Microsoft Kinect. In the future, researchers are striving to reduce such devices and targeting a promising device-free sensing system. In this paper, a software-defined radio platform was designed for the detection of human activity. The extensive experiments were performed in the laboratory environment by using two Universal Software Radio Peripheral (USRP) to extract the wireless channel state information (WCSI). The 64-Fast Fourier Transform (FFT) point's Orthogonal frequency division multiplexing (OFDM) signal was used to determine the WCSI. The design of the proposed system can be used for multiple applications due to scalability and flexibility of the software-defined hardware

    Using Technology Enabled Qualitative Research to Develop Products for the Social Good, An Overview

    Get PDF
    This paper discusses the potential benefits of the convergence of three recent trends for the design of socially beneficial products and services: the increasing application of qualitative research techniques in a wide range of disciplines, the rapid mainstreaming of social media and mobile technologies, and the emergence of software as a service. Presented is a scenario facilitating the complex data collection, analysis, storage, and reporting required for the qualitative research recommended for the task of designing relevant solutions to address needs of the underserved. A pilot study is used as a basis for describing the infrastructure and services required to realize this scenario. Implications for innovation of enhanced forms of qualitative research are presented

    Flexible and scalable software defined radio based testbed for large scale body movement

    Get PDF
    Human activity (HA) sensing is becoming one of the key component in future healthcare system. The prevailing detection techniques for IHA uses ambient sensors, cameras and wearable devices that primarily require strenuous deployment overheads and raise privacy concerns as well. This paper proposes a novel, non-invasive, easily-deployable, flexible and scalable test-bed for identifying large-scale body movements based on Software Defined Radios (SDRs). Two Universal Software Radio Peripheral (USRP) models, working as SDR based transceivers, are used to extract the Channel State Information (CSI) from continuous stream of multiple frequency subcarriers. The variances of amplitude information obtained from CSI data stream are used to infer daily life activities. Different machine learning algorithms namely K-Nearest Neighbour, Decision Tree, Discriminant Analysis and Naïve Bayes are used to evaluate the overall performance of the test-bed. The training, validation and testing processes are performed by considering the time-domain statistical features obtained from CSI data. The K-nearest neighbour outperformed all aforementioned classifiers, providing an accuracy of 89.73%. This preliminary non-invasive work will open a new direction for design of scalable framework for future healthcare systems

    Non-invasive RF sensing for detecting breathing abnormalities using software defined radios

    Get PDF
    The non-contact continuous monitoring of biomarkers comprising breathing detection and heart rate are essential vital signs to evaluate the general physical health of a patient. As compared to existing methods that need dedicated equipment (such as wearable sensors), the radio frequency (RF) signals can be synthesised to continuously monitor breathing rate in a contact-less setting. In this paper, we proposed the contact less breathing rate detection using universal software radio peripheral (USRP) platform without any wearable sensor. Our system leverage on the channel state information (CSI) to record the minute movement caused by breathing over orthogonal frequency division multiplexing (OFDM) in multiple sub-carriers. We presented a comparison of our breathing rate detection with wearable sensor (ground truth) results for single human subject. In this paper, we used wireless data to train, validate and test different machine learning (ML) algorithms to classify USRP data into normal, shallow and elevated breathing depending on the breathing rate. Although different ML models were developed using the K-Nearest Neighbor (KNN), Discriminant Analysis (DA), Naive Bayes (NB) and Decision Tree (DT) algorithms, however results showed KNN based model provided the highest accuracy for our data ( 91%) each time the trial was made. DT (17.131%), DA (59.72%) and NB (48.99%). Results presented in this paper showed that USRP based breathing rate is comparable to the wearable sensor demonstrating the potential application of our method to accurately monitor breathing rate of patients in primary or acute setting

    MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices

    Get PDF
    The Internet of Things (IoT) is part of Future Internet and will comprise many billions of Internet Connected Objects (ICO) or `things' where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. Collecting data from these objects is an important task as it allows software systems to understand the environment better. Many different hardware devices may involve in the process of collecting and uploading sensor data to the cloud where complex processing can occur. Further, we cannot expect all these objects to be connected to the computers due to technical and economical reasons. Therefore, we should be able to utilize resource constrained devices to collect data from these ICOs. On the other hand, it is critical to process the collected sensor data before sending them to the cloud to make sure the sustainability of the infrastructure due to energy constraints. This requires to move the sensor data processing tasks towards the resource constrained computational devices (e.g. mobile phones). In this paper, we propose Mobile Sensor Data Processing Engine (MOSDEN), an plug-in-based IoT middleware for mobile devices, that allows to collect and process sensor data without programming efforts. Our architecture also supports sensing as a service model. We present the results of the evaluations that demonstrate its suitability towards real world deployments. Our proposed middleware is built on Android platform

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    Hand-breathe: Non-Contact Monitoring of Breathing Abnormalities from Hand Palm

    Full text link
    In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method

    Cognitive Communications and Networking Technology Infusion Study Report

    Get PDF
    As the envisioned next-generation SCaN Network transitions into an end-to-end system of systems with new enabling capabilities, it is anticipated that the introduction of machine learning, artificial intelligence, and other cognitive strategies into the network infrastructure will result in increased mission science return, improved resource efficiencies, and increased autonomy and reliability. This enhanced set of cognitive capabilities will be implemented via a space cloud concept to achieve a service-oriented architecture with distributed cognition, de-centralized routing, and shared, on-orbit data processing. The enabling cognitive communications and networking capabilities that may facilitate the desired network enhancements are identified in this document, and the associated enablers of these capabilities, such as technologies and standards, are described in detail
    corecore