623 research outputs found

    Aeronautical Engineering: A special bibliography, supplement 60

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance

    Get PDF
    The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics

    Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB

    Get PDF
    In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator

    Simulator studies of the attack phase of an automatically controlled interceptor

    Get PDF
    The attack phase of the automatically controlled interceptor is studied in two parts. Part I is a limited simulation conducted to specify the lateral and longitudinal control systems for an automatic interceptor. The results are presented as Nyquist plots and time histories of the airplane variables. Part II uses the control systems developed in Part I, together with a dynamically perfect guidance system, to study the effect of the nonlinear terms in the complete equations of motion and nonlinear aerodynamics on the airplane response. The results are presented as time histories of the airplane and control surface motions

    Real Time Flux Control in PM Motors

    Full text link

    Analysis of a thermal system through remote laboratories

    Get PDF
    This paper describes the experiences using remote laboratories for thorough analysis of a thermal system, including disturbances. Remote laboratories for education in subjects of control, is a common resorted method, used by universities. This method is applied to offer a flexible service in schedules so as to obtain greater and better results of available resources. Remote laboratories have been used for controlling physical devices remotely. Furthermore, remote labs have been used for transfer function identification of real equipment. Nevertheless, remote analyses of disturbances have not been done. The aim of this contribution is thereby to apply the experience of remote laboratories in the study of disturbances. Some experiments are carried out to demonstrate the effectiveness in using remote laboratories for complete analysis of a thermal system. Considering the remote access to thermal system, “Sistema de Laboratorios a Distancia” (SLD) was used

    The PHASES Differential Astrometry Data Archive. I. Measurements and Description

    Get PDF
    The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 sub-arcsecond binary systems to determine precision binary orbits, study the geometries of triple and quadruple star systems, and discover previously unknown faint astrometric companions as small as giant planets. PHASES measurements made with the Palomar Testbed Interferometer (PTI) from 2002 until PTI ceased normal operations in late 2008 are presented. Infrared differential photometry of several PHASES targets were measured with Keck Adaptive Optics and are presented.Comment: 33 pages emulateapj, Accepted to A

    Dynamic Discriminant Analysis with Applications in Computational Surgery

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2017. Major: Mechanical Engineering. Advisor: Timothy Kowalewski. 1 computer file (PDF); x, 185 pages.Background: The field of computational surgery involves the use of new technologies to improve surgical safety and patient outcomes. Two open problems in this field include smart surgical tools for identifying tissues via backend sensing, and classifying surgical skill level using laparoscopic tool motion. Prior work in these fields has been impeded by the lack of a dynamic discriminant analysis technique capable of classifying data given systems with overwhelming similarity. Methods: Four new machine learning algorithms were developed (DLS, DPP, RELIEF-RBF, and Intent Vectors). These algorithms were then applied to the open problems within computational surgery. These algorithms are designed with the specific goal of finding regions of data with maximum discriminating information while ignoring regions of similarity or data scarcity. The results of these techniques are contrasted with current machine learning algorithms found in the literature. Results: For the tissue identification problem, results indicate that the proposed DLS algorithm provides better classification than existing methods. For the surgical skill evaluation problem, results indicate that the Intent Vectors approach provides equivalent or better classification accuracy when compared to prior art. Interpretation: The algorithms presented in this work provide a novel approach to the classification of time-series data for systems with overwhelming similarity by focusing on separability maximization while maintaining a tractable training routine and real-time classification for unseen data

    Aeronautical Engineering: A special bibliography with indexes, supplement 91, January 1978

    Get PDF
    This bibliography lists 359 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1977
    corecore