1,566 research outputs found

    Lattice dynamical wavelet neural networks implemented using particle swarm optimisation for spatio-temporal system identification

    Get PDF
    Starting from the basic concept of coupled map lattices, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNN), is introduced for spatiotemporal system identification, by combining an efficient wavelet representation with a coupled map lattice model. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimisation (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the orthogonal projection pursuit algorithm, significant wavelet-neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated waveletneurons are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be redundant. In the second stage, an orthogonal least squares (OLS) algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet-neurons from the network. The proposed two-stage hybrid training procedure can generally produce a parsimonious network model, where a ranked list of wavelet-neurons, according to the capability of each neuron to represent the total variance in the system output signal is produced. Two spatio-temporal system identification examples are presented to demonstrate the performance of the proposed new modelling framework

    Elastic net prefiltering for two class classification

    No full text
    A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model’s generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Learning enhancement of radial basis function network with particle swarm optimization

    Get PDF
    Back propagation (BP) algorithm is the most common technique in Artificial Neural Network (ANN) learning, and this includes Radial Basis Function Network. However, major disadvantages of BP are its convergence rate is relatively slow and always being trapped at the local minima. To overcome this problem, Particle Swarm Optimization (PSO) has been implemented to enhance ANN learning to increase the performance of network in terms of convergence rate and accuracy. In Back Propagation Radial Basis Function Network (BP-RBFN), there are many elements to be considered. These include the number of input nodes, hidden nodes, output nodes, learning rate, bias, minimum error and activation/transfer functions. These elements will affect the speed of RBF Network learning. In this study, Particle Swarm Optimization (PSO) is incorporated into RBF Network to enhance the learning performance of the network. Two algorithms have been developed on error optimization for Back Propagation of Radial Basis Function Network (BP-RBFN) and Particle Swarm Optimization of Radial Basis Function Network (PSO-RBFN) to seek and generate better network performance. The results show that PSO-RBFN give promising outputs with faster convergence rate and better classifications compared to BP-RBFN

    Estimation of biochemical variables using quantumbehaved particle swarm optimization (QPSO)-trained radius basis function neural network: A case study of fermentation process of L-glutamic acid

    Get PDF
    Due to the difficulties in the measurement of biochemical variables in fermentation process, softsensing model based on radius basis function neural network had been established for estimating the variables. To generate a more efficient neural network estimator, we employed the previously proposed quantum-behaved particle swarm optimization (QPSO) algorithm for neural network training. The experiment results of L-glutamic acid fermentation process showed that our established estimator could predict variables such as the concentrations of glucose, biomass and glutamic acid with higher accuracy than the estimator trained by the most widely used orthogonal least squares (OLS). According to its global convergence, QPSO generated a group of more proper network parameters than the most popular OLS. Thus, QPSO-RBF estimator was more favorable to the control and fault diagnosis of the fermentation process, and consequently, it increased the yield of fermentation.Key words: Soft-sensing model, quantum-behaved particle swarm optimization algorithm, neural network

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Image Outlier filtering (IOF) : A Machine learning based DWT optimization Approach

    Get PDF
    In this paper an image outlier technique, which is a hybrid model called SVM regression based DWT optimization have been introduced. Outlier filtering of RGB image is using the DWT model such as Optimal-HAAR wavelet changeover (OHC), which optimized by the Least Square Support Vector Machine (LS-SVM) . The LS-SVM regression predicts hyper coefficients obtained by using QPSO model. The mathematical models are discussed in brief in this paper: (i) OHC which results in better performance and reduces the complexity resulting in (Optimized FHT). (ii) QPSO by replacing the least good particle with the new best obtained particle resulting in 201C;Optimized Least Significant Particle based QPSO201D; (OLSP-QPSO). On comparing the proposed cross model of optimizing DWT by LS-SVM to perform oulier filtering with linear and nonlinear noise removal standards

    A simulation data-driven design approach for rapid product optimization

    Get PDF
    Traditional design optimization is an iterative process of design, simulation, and redesign, which requires extensive calculations and analysis. The designer needs to adjust and evaluate the design parameters manually and continually based on the simulation results until a satisfactory design is obtained. However, the expensive computational costs and large resource consumption of complex products hinder the wide application of simulation in industry. It is not an easy task to search the optimal design solution intelligently and efficiently. Therefore, a simulation data-driven design approach which combines dynamic simulation data mining and design optimization is proposed to achieve this purpose in this study. The dynamic simulation data mining algorithm—on-line sequential extreme learning machine with adaptive weights (WadaptiveOS-ELM)—is adopted to train the dynamic prediction model to effectively evaluate the merits of new design solutions in the optimization process. Meanwhile, the prediction model is updated incrementally by combining new “good” data set to reduce the modeling cost and improve the prediction accuracy. Furthermore, the improved heuristic optimization algorithm—adaptive and weighted center particle swarm optimization (AWCPSO)—is introduced to guide the design change direction intelligently to improve the search efficiency. In this way, the optimal design solution can be searched automatically with less actual simulation iterations and higher optimization efficiency, and thus supporting the rapid product optimization effectively. The experimental results demonstrate the feasibility and effectiveness of the proposed approach
    corecore