38 research outputs found

    Integrated interface electronics for capacitive MEMS inertial sensors

    Get PDF
    This thesis is composed of 13 publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis concentrates on integrated circuits for the realization of interface electronics for capacitive MEMS (micro-electro-mechanical system) inertial sensors, i.e. accelerometers and gyroscopes. The research focuses on circuit techniques for capacitive detection and actuation and on high-voltage and clock generation within the sensor interface. Characteristics of capacitive accelerometers and gyroscopes and the electronic circuits for accessing the capacitive information in open- and closed-loop configurations are introduced in the thesis. One part of the experimental work, an accelerometer, is realized as a continuous-time closed-loop sensor, and is capable of achieving sub-micro-g resolution. The interface electronics is implemented in a 0.7-µm high-voltage technology. It consists of a force feedback loop, clock generation circuits, and a digitizer. Another part of the experimental work, an analog 2-axis gyroscope, is optimized not only for noise, but predominantly for low power consumption and a small chip area. The implementation includes a pseudo-continuous-time sense readout, analog continuous-time drive loop, phase-locked loop (PLL) for clock generation, and high-voltage circuits for electrostatic excitation and high-voltage detection. The interface is implemented in a 0.35-µm high-voltage technology within an active area of 2.5 mm². The gyroscope achieves a spot noise of 0.015 °/s/√H̅z̅ for the x-axis and 0.041 °/s/√H̅z̅ for the y-axis. Coherent demodulation and discrete-time signal processing are often an important part of the sensors and also typical examples that require clock signals. Thus, clock generation within the sensor interfaces is also reviewed. The related experimental work includes two integrated charge pump PLLs, which are optimized for compact realization but also considered with regard to their noise performance. Finally, this thesis discusses fully integrated high-voltage generation, which allows a higher electrostatic force and signal current in capacitive sensors. Open- and closed-loop Dickson charge pumps and high-voltage amplifiers have been realized fully on-chip, with the focus being on optimizing the chip area and on generating precise spurious free high-voltage signals up to 27 V

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    System design of a low-power three-axis underdamped MEMS accelerometer with simultaneous electrostatic damping control

    Get PDF
    Recently, consumer electronics industry has known a spectacular growth that would have not been possible without pushing the integration barrier further and further. Micro Electro Mechanical Systems (MEMS) inertial sensors (e.g. accelerometers, gyroscopes) provide high performance, low power, low die cost solutions and are, nowadays, embedded in most consumer applications. In addition, the sensors fusion has become a new trend and combo sensors are gaining growing popularity since the co-integration of a three-axis MEMS accelerometer and a three-axis MEMS gyroscope provides complete navigation information. The resulting device is an Inertial measurement unit (IMU) able to sense multiple Degrees of Freedom (DoF). Nevertheless, the performances of the accelerometers and the gyroscopes are conditioned by the MEMS cavity pressure: the accelerometer is usually a damped system functioning under an atmospheric pressure while the gyroscope is a highly resonant system. Thus, to conceive a combo sensor, aunique low cavity pressure is required. The integration of both transducers within the same low pressure cavity necessitates a method to control and reduce the ringing phenomena by increasing the damping factor of the MEMS accelerometer. Consequently, the aim of the thesis is the design of an analog front-end interface able to sense and control an underdamped three-axis MEMSaccelerometer. This work proposes a novel closed-loop accelerometer interface achieving low power consumption The design challenge consists in finding a trade-off between the sampling frequency, the settling time and the circuit complexity since the sensor excitation plates are multiplexed between the measurement and the damping phases. In this context, a patenteddamping sequence (simultaneous damping) has been conceived to improve the damping efficiency over the state of the art approach performances (successive damping). To investigate the feasibility of the novel electrostatic damping control architecture, several mathematical models have been developed and the settling time method is used to assess the damping efficiency. Moreover, a new method that uses the multirate signal processing theory and allows the system stability study has been developed. This very method is used to conclude on the loop stability for a certain sampling frequency and loop gain value. Next, a 0.18μm CMOS implementation of the entire accelerometer signal chain is designed and validated

    Single-Chip Scanning Probe Microscopes

    Get PDF
    Scanning probe microscopes (SPMs) are the highest resolution imaging instruments available today and are among the most important tools in nanoscience. Conventional SPMs suffer from several drawbacks owing to their large and bulky construction and to the use of piezoelectric materials. Large scanners have low resonant frequencies that limit their achievable imaging bandwidth and render them susceptible to disturbance from ambient vibrations. Array approaches have been used to alleviate the bandwidth bottleneck; however as arrays are scaled upwards, the scanning speed must decline to accommodate larger payloads. In addition, the long mechanical path from the tip to the sample contributes thermal drift. Furthermore, intrinsic properties of piezoelectric materials result in creep and hysteresis, which contribute to image distortion. The tip-sample interaction signals are often measured with optical configurations that require large free-space paths, are cumbersome to align, and add to the high cost of state-of-the-art SPM systems. These shortcomings have stifled the widespread adoption of SPMs by the nanometrology community. Tiny, inexpensive, fast, stable and independent SPMs that do not incur bandwidth penalties upon array scaling would therefore be most welcome. The present research demonstrates, for the first time, that all of the mechanical and electrical components that are required for the SPM to capture an image can be scaled and integrated onto a single CMOS chip. Principles of microsystem design are applied to produce single-chip instruments that acquire images of underlying samples on their own, without the need for off-chip scanners or sensors. Furthermore, it is shown that the instruments enjoy a multitude of performance benefits that stem from CMOS-MEMS integration and volumetric scaling of scanners by a factor of 1 million. This dissertation details the design, fabrication and imaging results of the first single-chip contact-mode AFMs, with integrated piezoresistive strain sensing cantilevers and scanning in three degrees-of-freedom (DOFs). Static AFMs and quasi-static AFMs are both reported. This work also includes the development, fabrication and imaging results of the first single-chip dynamic AFMs, with integrated flexural resonant cantilevers and 3 DOF scanning. Single-chip Amplitude Modulation AFMs (AM-AFMs) and Frequency Modulation AFMs (FM-AFMs) are both shown to be capable of imaging samples without the need for any off-chip sensors or actuators. A method to increase the quality factor (Q-factor) of flexural resonators is introduced. The method relies on an internal energy pumping mechanism that is based on the interplay between electrical, mechanical, and thermal effects. To the best of the author’s knowledge, the devices that are designed to harness these effects possess the highest electromechanical Qs reported for flexural resonators operating in air; electrically measured Q is enhanced from ~50 to ~50,000 in one exemplary device. A physical explanation for the underlying mechanism is proposed. The design, fabrication, imaging, and tip-based lithographic patterning with the first single-chip Scanning Thermal Microscopes (SThMs) are also presented. In addition to 3 DOF scanning, these devices possess integrated, thermally isolated temperature sensors to detect heat transfer in the tip-sample region. Imaging is reported with thermocouple-based devices and patterning is reported with resistive heater/sensors. An “isothermal electrothermal scanner” is designed and fabricated, and a method to operate it is detailed. The mechanism, based on electrothermal actuation, maintains a constant temperature in a central location while positioning a payload over a range of >35μm, thereby suppressing the deleterious thermal crosstalk effects that have thus far plagued thermally actuated devices with integrated sensors. In the thesis, models are developed to guide the design of single-chip SPMs and to provide an interpretation of experimental results. The modelling efforts include lumped element model development for each component of single-chip SPMs in the electrical, thermal and mechanical domains. In addition, noise models are developed for various components of the instruments, including temperature-based position sensors, piezoresistive cantilevers, and digitally controlled positioning devices

    Phase-advanced attitude sensing and control for fixed-wing micro aerial vehicles in turbulence

    Get PDF
    The scale of fixed-wing Micro Aerial Vehicles (MAVs) lend them to many unique applications. These applications often require low speed flights close to the ground, in the vicinity of large obstacles and in the wake of buildings. A particular challenge for MAVs is attitude control in the presence of high turbulence. Such flights pose a challenging operational environment for MAVs, and in particular, ensuring sufficient attitude control in the presence of significant turbulence. Low-level flight in the atmospheric boundary layer without sufficient attitude control is hazardous, mainly due to the high levels of turbulence intensity close to the ground. MAV accidents have occurred due to the lack of a reliable attitude control system in turbulent conditions as reported in the literature. Challenges associated with flight control of fixed-wing MAVs operating in complex environments are significantly different to any larger scale vehicle. The scale of MAVs makes them particularly sensitive to atmospheric disturbances thus limiting their operation. A review of the literature revealed that rolling inputs from turbulence were the most challenging whereby conventional inertial-based attitude control systems lack the responsiveness for roll control in high turbulence environments. The solution might lie with flying animals, which have adapted to flight within turbulence. The literature survey identified bio-inspired phase-advanced sensors as a promising sensory solution for complementing current reactive attitude sensors. The development of a novel bio-inspired phase-advanced sensor and associated control system, which can sense the flow disturbances before an attitude perturbation, is the focus of this research. The development of such a system required an in-depth understanding of the features of the disturbing phenomena; turbulence. Correlation studies were conducted between the oncoming turbulence and wing-surface pressure variations. It was found that the highest correlation exists between upstream flow pitch angle variation and the wing-surface pressure fluctuations. However, due to the insufficient time-forward advantage, surface pressure sensing was not used for attitude control. A second sensing approach was explored to cater for the control system’s time-lags. Multi-hole pressure probes were embedded in the wings of the MAV to sense flow pitch angle and magnitude variation upstream of the wing. The sensors provide an estimate of the disturbing turbulence. This approach caters for the time-lags of the system providing sufficient time to counteract the gust before it results in an inertial response. Statistical analysis was used to assess the disturbance rejection performance of the phase-advanced sensory system, which was benchmarked against a conventional inertial-based sensory system in a range of turbulence conditions. Unconstrained but controlled test flights were conducted inside the turbulence environment of two wind-tunnels, in addition to outdoor flight testing in the atmosphere. These three different turbulence conditions enabled testing of a wide range of turbulence spectra believed to be most detrimental to the MAV. A significant improvement in disturbance rejection performance was observed in relation to conventional inertial-based sensory systems. It can be concluded that sensory systems providing time-forward estimates of turbulence can complement conventional inertial-based sensors to improve the attitude stability performance

    Scanning evanescent wave lithography for sub-22nm generations

    Get PDF
    Current assumptions for the limits of immersion optical lithography include NA values at 1.35, largely based on the lack of high-index materials. In this research we have been working with ultra-high NA evanescent wave lithography (EWL) where the NA of the projection system is allowed to exceed the corresponding acceptance angle of one or more materials of the system. This approach is made possible by frustrating the total internal reflection (TIR) evanescent field into propagation. With photoresist as the frustrating media, the allowable gap for adequate exposure latitude is in the sub-100 nm range. Through static imaging, we have demonstrated the ability to resolve 26 nm half-pitch features at 193 nm and 1.85 NA using existing materials. Such imaging could lead to the attainment of 13 nm half-pitch through double patterning. In addition, a scanning EWL imaging system was designed, prototyped with a two-stage gap control imaging head including a DC noise canceling carrying air-bearing, and a AC noise canceling piezoelectric transducer with real-time closed-loop feedback from gap detection. Various design aspects of the system including gap detection, feedback actuation, prism design and fabrication, software integration, and scanning scheme have been carefully considered to ensure sub-100 nm scanning. Experiments performed showed successful gap gauging at sub-100 nm scanning height. Scanning EWL results using a two-beam interference imaging approach achieved pattern resolution comparable to static EWL imaging results. With this scanning EWL approach and the imaging head developed, optical lithography becomes extendable to sub-22 nm generations

    Scanning micro interferometer with tunable diffraction grating for low noise parallel operation

    Get PDF
    Large area high throughput metrology plays an important role in several technologies like MEMS. In current metrology systems the parallel operation of multiple metrology probes in a tool has been hindered by their bulky sizes. This study approaches this problem by developing a metrology technique based on miniaturized scanning grating interferometers (μSGIs). Miniaturization of the interferometer is realized by novel micromachined tunable gratings fabricated using SOI substrates. These stress free flat gratings show sufficient motion (~500nm), bandwidth (~50 kHz) and low damping ratio (~0.05). Optical setups have been developed for testing the performance of μSGIs and preliminary results show 6.6 μm lateral resolution and sub-angstrom vertical resolution. To achieve high resolution and to reduce the effect of ambient vibrations, the study has developed a novel control algorithm, implemented on FPGA. It has shown significant reduction of vibration noise in 6.5 kHz bandwidth achieving 6x10-5 nmrms/√Hz noise resolution. Modifications of this control scheme enable long range displacement measurements, parallel operation and scanning samples for their dynamic profile. To analyze and simulate similar optical metrology system with active micro-components, separate tools are developed for mechanical, control and optical sub-systems. The results of these programs enable better design optimization for different applications.Ph.D.Committee Chair: Degertekin, Levent; Committee Co-Chair: Kurfess, Thomas; Committee Member: Adibi, Ali; Committee Member: Danyluk, Steven; Committee Member: Hesketh, Pete

    Fabrication of high aspect ratio vibrating cylinder microgyroscope structures by use of the LIGA process

    Get PDF
    Inertial grade microgyroscopes are of great importance to improve and augment inertial navigation systems based on GPS for industrial, automotive, and military applications. The efforts by various research groups worldwide to develop inertial grade microgyroscopes have not been successful to date. In 1994, the Department of Mechanical Engineering at Louisiana State University and SatCon Technology Corporation (Boston, Massachusetts) proposed a series of shock tolerant micromachined vibrating cylinder rate gyroscopes with aspect ratios of up to 250:1 to meet the needs of inertial navigation systems based on existing conventional vibrating cylinder gyroscopes. Each microgyroscope consisted of a tall thin shell metallic cylinder attached to a substrate at one end and surrounded by four drive- and four sense-electrodes. The proposed drive- and sense-mechanisms were capacitive-force and capacitance-change, respectively. Since the high aspect ratio metallic microgyroscope structures could not be fabricated by using traditional silicon-based MEMS processes, a LIGA-based two layer fabrication process was developed. A wiring layer was constructed by using a combination of thick film photolithography and electroplating (nickel and gold) on a silicon substrate covered with silicon nitride and a tri-layer plating base; aligned X-ray lithography and nickel electroplating were used to build the high aspect ratio cylinders and electrodes. Deficiencies in the LIGA process were also addressed in this research. Three types of X-ray mask fabrication processes for multi-level LIGA were developed on graphite, borosilicate glass and silicon nitride substrates. Stable and reliable gold electroplating methods for X-ray masks were also established. The plating rate and internal stress of deposits were thoroughly characterized for two brands of commercially available sulfite-based gold electroplating solutions, Techni Gold 25E and NEUTRONEX 309. The gaps between the cylinders and electrodes, which are defined by thin PMMA walls during electroplating, were found to be smaller than designed and deformed in many of the microgyroscope structures. The lateral dimensional loss (LDL) and deformation were identified to be related to the overall thickness and lateral aspect ratio (LAR) of the thin PMMA walls

    BioMEMS for cardiac tissue monitoring and maturation

    Get PDF
    Diseases of the heart have been the most common cause of death in the United States since the middle of the 20th century. The development of engineered cardiac tissue over the last three decades has yielded human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes (CMs), microscale “heart-on-a-chip” platforms, optical interrogation techniques, and more. Having spawned its own scientific field, ongoing research promises lofty goals to address the heart disease burden around the world, such as patient-specific disease models, and clinical trials on chip-based platforms. The greatest academic pursuit for engineered cardiac tissues is to increase their maturity, thereby increasing relevance to native adult tissue. Investigation of cardiomyocyte maturity necessitates the development of 3D-tissue compatible techniques for measuring and perturbing cardiac biology with enhanced precision. This dissertation focuses on the development of biological microelectromechanical systems (BioMEMS) for precision measurement and perturbation of cardiac tissue. We discuss three unique approaches to interfacing MEMS-based tools with cardiac biology. The first is a high resolution magnetic sensor, which directly measures the spatial gradient of a magnetic field. This has an ideal application in magnetocardiography (MCG), as the flux of ions during cardiac contractions produces measurable magnetic signals around the tissue and can be leveraged for noncontact diagnosis. The second is a highly functionalized heart-on-a-chip platform, wherein the mechanical contractions of cardiac microtissues can be simultaneously recorded and actuated. Contractile dynamics are leading indicators of maturity in engineered cardiac tissue and mechanical conditioning has shown recent promise as a critical component of cardiac maturation. The third is the imaging of contractile nanostructures in engineered cardiomyocytes at depth in a 3D microtissue. We use small angle X-ray scattering (SAXS) to discern the periodic arrangement of myofilaments in their native 3D environment. We enable a significant structural analysis to provide insight for functional maturation. Enabling these three thrusts required developing two supporting technologies. The first is the engineered control of dynamic second order systems, a foundational element of all our MEMS and magnetic techniques. We demonstrate numerous algorithms to improve settling time or decrease dead-time such that samples with fast temporal effects can be measured. The second is a microscale gluing technique for integrating myriad of materials with MEMS devices, yielding unique sensors and actuators.2022-05-15T00:00:00
    corecore