1,055 research outputs found

    Design and construction of a portable force-reflecting manual controller for teleoperation systems

    Get PDF
    A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development

    A study on virtual reality and developing the experience in a gaming simulation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Masters by ResearchVirtual Reality (VR) is an experience where a person is provided with the freedom of viewing and moving in a virtual world [1]. The experience is not constrained to a limited control. Here, it was triggered interactively according to the user’s physical movement [1] [2]. So the user feels as if they are seeing the real world; also, 3D technologies allow the viewer to experience the volume of the object and its prospection in the virtual world [1]. The human brain generates the depth when each eye receives the images in its point of view. For learning for and developing the project using the university’s facilities, some of the core parts of the research have been accomplished, such as designing the VR motion controller and VR HMD (Head Mount Display), using an open source microcontroller. The VR HMD with the VR controller gives an immersive feel and a complete VR system [2]. The motive was to demonstrate a working model to create a VR experience on a mobile platform. Particularly, the VR system uses a micro electro-mechanical system to track motion without a tracking camera. The VR experience has also been developed in a gaming simulation. To produce this, Maya, Unity, Motion Analysis System, MotionBuilder, Arduino and programming have been used. The lessons and codes taken or improvised from [33] [44] [25] and [45] have been studied and implemented

    DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    Full text link

    Touch- and Walkable Virtual Reality to Support Blind and Visually Impaired Peoples‘ Building Exploration in the Context of Orientation and Mobility

    Get PDF
    Der Zugang zu digitalen Inhalten und Informationen wird immer wichtiger fĂŒr eine erfolgreiche Teilnahme an der heutigen, zunehmend digitalisierten Zivilgesellschaft. Solche Informationen werden meist visuell prĂ€sentiert, was den Zugang fĂŒr blinde und sehbehinderte Menschen einschrĂ€nkt. Die grundlegendste Barriere ist oft die elementare Orientierung und MobilitĂ€t (und folglich die soziale MobilitĂ€t), einschließlich der Erlangung von Kenntnissen ĂŒber unbekannte GebĂ€ude vor deren Besuch. Um solche Barrieren zu ĂŒberbrĂŒcken, sollten technische Hilfsmittel entwickelt und eingesetzt werden. Es ist ein Kompromiss zwischen technologisch niedrigschwellig zugĂ€nglichen und verbreitbaren Hilfsmitteln und interaktiv-adaptiven, aber komplexen Systemen erforderlich. Die Anpassung der Technologie der virtuellen RealitĂ€t (VR) umfasst ein breites Spektrum an Entwicklungs- und Entscheidungsoptionen. Die Hauptvorteile der VR-Technologie sind die erhöhte InteraktivitĂ€t, die Aktualisierbarkeit und die Möglichkeit, virtuelle RĂ€ume und Modelle als Abbilder von realen RĂ€umen zu erkunden, ohne dass reale Gefahren und die begrenzte VerfĂŒgbarkeit von sehenden Helfern auftreten. Virtuelle Objekte und Umgebungen haben jedoch keine physische Beschaffenheit. Ziel dieser Arbeit ist es daher zu erforschen, welche VR-Interaktionsformen sinnvoll sind (d.h. ein angemessenes Verbreitungspotenzial bieten), um virtuelle ReprĂ€sentationen realer GebĂ€ude im Kontext von Orientierung und MobilitĂ€t berĂŒhrbar oder begehbar zu machen. Obwohl es bereits inhaltlich und technisch disjunkte Entwicklungen und Evaluationen zur VR-Technologie gibt, fehlt es an empirischer Evidenz. ZusĂ€tzlich bietet diese Arbeit einen Überblick ĂŒber die verschiedenen Interaktionen. Nach einer Betrachtung der menschlichen Physiologie, Hilfsmittel (z.B. taktile Karten) und technologischen Eigenschaften wird der aktuelle Stand der Technik von VR vorgestellt und die Anwendung fĂŒr blinde und sehbehinderte Nutzer und der Weg dorthin durch die EinfĂŒhrung einer neuartigen Taxonomie diskutiert. Neben der Interaktion selbst werden Merkmale des Nutzers und des GerĂ€ts, der Anwendungskontext oder die nutzerzentrierte Entwicklung bzw. Evaluation als Klassifikatoren herangezogen. BegrĂŒndet und motiviert werden die folgenden Kapitel durch explorative AnsĂ€tze, d.h. im Bereich 'small scale' (mit sogenannten Datenhandschuhen) und im Bereich 'large scale' (mit einer avatargesteuerten VR-Fortbewegung). Die folgenden Kapitel fĂŒhren empirische Studien mit blinden und sehbehinderten Nutzern durch und geben einen formativen Einblick, wie virtuelle Objekte in Reichweite der HĂ€nde mit haptischem Feedback erfasst werden können und wie verschiedene Arten der VR-Fortbewegung zur Erkundung virtueller Umgebungen eingesetzt werden können. Daraus werden gerĂ€teunabhĂ€ngige technologische Möglichkeiten und auch Herausforderungen fĂŒr weitere Verbesserungen abgeleitet. Auf der Grundlage dieser Erkenntnisse kann sich die weitere Forschung auf Aspekte wie die spezifische Gestaltung interaktiver Elemente, zeitlich und rĂ€umlich kollaborative Anwendungsszenarien und die Evaluation eines gesamten Anwendungsworkflows (d.h. Scannen der realen Umgebung und virtuelle Erkundung zu Trainingszwecken sowie die Gestaltung der gesamten Anwendung in einer langfristig barrierefreien Weise) konzentrieren.Access to digital content and information is becoming increasingly important for successful participation in today's increasingly digitized civil society. Such information is mostly presented visually, which restricts access for blind and visually impaired people. The most fundamental barrier is often basic orientation and mobility (and consequently, social mobility), including gaining knowledge about unknown buildings before visiting them. To bridge such barriers, technological aids should be developed and deployed. A trade-off is needed between technologically low-threshold accessible and disseminable aids and interactive-adaptive but complex systems. The adaptation of virtual reality (VR) technology spans a wide range of development and decision options. The main benefits of VR technology are increased interactivity, updatability, and the possibility to explore virtual spaces as proxies of real ones without real-world hazards and the limited availability of sighted assistants. However, virtual objects and environments have no physicality. Therefore, this thesis aims to research which VR interaction forms are reasonable (i.e., offering a reasonable dissemination potential) to make virtual representations of real buildings touchable or walkable in the context of orientation and mobility. Although there are already content and technology disjunctive developments and evaluations on VR technology, there is a lack of empirical evidence. Additionally, this thesis provides a survey between different interactions. Having considered the human physiology, assistive media (e.g., tactile maps), and technological characteristics, the current state of the art of VR is introduced, and the application for blind and visually impaired users and the way to get there is discussed by introducing a novel taxonomy. In addition to the interaction itself, characteristics of the user and the device, the application context, or the user-centered development respectively evaluation are used as classifiers. Thus, the following chapters are justified and motivated by explorative approaches, i.e., in the group of 'small scale' (using so-called data gloves) and in the scale of 'large scale' (using an avatar-controlled VR locomotion) approaches. The following chapters conduct empirical studies with blind and visually impaired users and give formative insight into how virtual objects within hands' reach can be grasped using haptic feedback and how different kinds of VR locomotion implementation can be applied to explore virtual environments. Thus, device-independent technological possibilities and also challenges for further improvements are derived. On the basis of this knowledge, subsequent research can be focused on aspects such as the specific design of interactive elements, temporally and spatially collaborative application scenarios, and the evaluation of an entire application workflow (i.e., scanning the real environment and exploring it virtually for training purposes, as well as designing the entire application in a long-term accessible manner)

    A white paper: NASA virtual environment research, applications, and technology

    Get PDF
    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed

    An Augmented Interaction Strategy For Designing Human-Machine Interfaces For Hydraulic Excavators

    Get PDF
    Lack of adequate information feedback and work visibility, and fatigue due to repetition have been identified as the major usability gaps in the human-machine interface (HMI) design of modern hydraulic excavators that subject operators to undue mental and physical workload, resulting in poor performance. To address these gaps, this work proposed an innovative interaction strategy, termed “augmented interaction”, for enhancing the usability of the hydraulic excavator. Augmented interaction involves the embodiment of heads-up display and coordinated control schemes into an efficient, effective and safe HMI. Augmented interaction was demonstrated using a framework consisting of three phases: Design, Implementation/Visualization, and Evaluation (D.IV.E). Guided by this framework, two alternative HMI design concepts (Design A: featuring heads-up display and coordinated control; and Design B: featuring heads-up display and joystick controls) in addition to the existing HMI design (Design C: featuring monitor display and joystick controls) were prototyped. A mixed reality seating buck simulator, named the Hydraulic Excavator Augmented Reality Simulator (H.E.A.R.S), was used to implement the designs and simulate a work environment along with a rock excavation task scenario. A usability evaluation was conducted with twenty participants to characterize the impact of the new HMI types using quantitative (task completion time, TCT; and operating error, OER) and qualitative (subjective workload and user preference) metrics. The results indicated that participants had a shorter TCT with Design A. For OER, there was a lower error probability due to collisions (PER1) with Design A, and lower error probability due to misses (PER2)with Design B. The subjective measures showed a lower overall workload and a high preference for Design B. It was concluded that augmented interaction provides a viable solution for enhancing the usability of the HMI of a hydraulic excavator
    • 

    corecore