6,654 research outputs found

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    Disseny i construcció d'una sonda atmosfèrica

    Get PDF
    The project consists of the construction of a functional meteorological probe, controlled by an Arduino microcontroller. This probe was design to measure pressure and temperature as functions of the altitude. This device is the first of its kind built at the EETAC, thus a considerable effort of requirement definition has been done. In the present report we describe how all the probesystems were designed, and all the necessary components as well as the reason why they were chosen are described. The resulting design is modular in order to facilitate future improvements/expansions.The steps necessary for the assembly of all the components in a common structure are detailed, as well as the choice of tools and materials. All the systems developed were tested simulating conditions similar to those expected in the real mission.Finally, after the construction and validation processes, all the materials and the tasks needed to launch the probe up to at an altitude of 35 km are detailed.The present report is intended to serve as a guide for futuresimilar projects in EETAC. The resulting device from this work is named FourCast after our surnames

    Beta: Bioprinting engineering technology for academia

    Get PDF
    Higher STEM education is a field of growing potential, but too many middle school and high school students are not testing proficiently in STEM subjects. The BETA team worked to improve biology classroom engagement through the development of technologies for high school biology experiments. The BETA project team expanded functionality of an existing product line to allow for better student and teacher user experience and the execution of more interesting experiments. The BETA project’s first goal was to create a modular incubating Box for the high school classroom. This Box, called the BETA Box was designed with a variety of sensors to allow for custom temperature and lighting environments for each experiment. It was completed with a clear interface to control the settings and an automatic image capture system. The team also conducted a feasibility study on auto calibration and dual-extrusion for SE3D’s existing 3D bioprinter. The findings of this study led to the incorporation of a force sensor for auto calibration and the evidence to support the feasibility of dual extrusion, although further work is needed. These additions to the current SE3D educational product line will increase effectiveness in the classroom and allow the target audience, high school students, to better engage in STEM education activities

    Power-Assist Wheelchair Attachment

    Get PDF
    This senior design project sought to combine the best characteristics of manual and power wheelchairs by creating a battery-powered attachment to propel a manual wheelchair. The primary customer needs were determined to be affordability, portability, and travel on uneven surfaces. After the initial prototype, using a hub motor proved unsuccessful, so a second design was developed that consisted of a gear reduction motor and drive wheel connected to the back of the wheelchair by a trailing arm that could be easily attached/detached from the frame. The prototype of the second design succeeded in meeting most of the project goals related to cost, off-road capability, inclines, and range. Improvements can be made by reducing the attachment weight and improving user control of the device

    Snowboard, Ski, and Skateboard Sensor System Application

    Get PDF
    The goal of this project was develop a sensor for the commercial market for skiers, snowboarders, and skateboarders that can give them the data such as speed, elevation, pressure, temperature, flex, acceleration, position, and other performance data such as trick characterization. This was done by using a variety of sensors, including a GPS, flex sensors, accelerometer, and others to provide data such as speed, position, position, and temperature. The sensors were placed in an external polycarbonate casing attached to the ski or board by using an adhesive pad on the bottom of the casing. These sensors then transmit the data via a microcontroller to either an LCD screen displaying a simple application or a memory system. The user can then access and analyze this data using Matlab code to interpret its relevancy. Using this system, performance data was recorded to analyze tricks such as spins and jumps

    The Seedling Sanctuary: Automated Cold Frame for Gardner Elementary

    Get PDF
    The purpose of this report is to provide the details of the Seedling Sanctuary, a mechanical engineering senior design project. The project in question is an automated cold frame designed specifically for Gardner Academy, a local elementary school in San Jose. A cold frame is a miniature greenhouse that opens like a chest and is made from clear plastic. Automated ventilation and watering systems create a microclimate within this greenhouse structure to create the ideal growing conditions for seeds. The main purposes of the cold frame are to lengthen the growing season, be maintenance free, and enhance garden education. From testing, the project goals were verified to have been achieved through several performance metrics. First, the system’s ability to lengthen the growing season is dependent on germinating seedlings that can be planted earlier in the season. The automated system maintained the seedlings at the proper soil moisture levels to grow. The system also implemented passive temperature control systems to maintain the plants in ideal conditions. With the ventilation and thermal mass, the system is able to be cooler at the hottest times of day and warmer at night than unprotected plants. The system has also successfully automated the care of the seedlings, achieving our goal of being maintenance free. Finally, the enhancement of garden education was incorporated through community engagement with the design and building of the cold frame, as well as the Bluetooth application which will be used in the school curriculum

    Vital Sensory Kit For Use With Telemedicine In Developing Countries

    Get PDF
    In many developing countries, a large percentage of the population lacks access to adequate healthcare. This is especially true in India where close to 70% of the population lives in rural areas and has little to no access to hospitals or clinics. People living in rural India often times cannot afford to pay to see a doctor should they need to make the journey to a hospital. Telemedicine, a breakthrough in the past couple decades, has broken down the barrier between the patient and the physician. It has slowly been implemented in India to make doctors more available to patients through the use of video conferences and other forms of communication. A compact and affordable kit has been developed that will be used to take a patient’s blood pressure, heart rate, blood glucose concentration and oxygen saturation. Our most novel contribution is the non-invasive glucose sensor that will use a near-infrared LED and photodiode in the patient’s earlobe. Currently millions of diabetics do this by pricking their finger. By wirelessly sending data results from the vital sign kit, the first essential part of a treatment can be carried out via wireless communication, saving the doctor and patient time and money

    B.O.G.G.L.E.S.: Boundary Optical GeoGraphic Lidar Environment System

    Get PDF
    The purpose of this paper is to describe a pseudo X-ray vision system that pairs a Lidar scanner with a visualization device. The system as a whole is referred to as B.O.G.G.L.E.S. There are several key factors that went into the development of this system and the background information and design approach are thoroughly described. B.O.G.G.L.E.S functionality is depicted through the use of design constraints and the analysis of test results. Additionally, many possible developments for B.O.G.G.L.E.S are proposed in the paper. This indicates that there are various avenues of improvement for this project that could be implemented in the future

    Wi-PoS : a low-cost, open source ultra-wideband (UWB) hardware platform with long range sub-GHz backbone

    Get PDF
    Ultra-wideband (UWB) localization is one of the most promising approaches for indoor localization due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference. However, UWB researchers are currently limited by the small amount of feasible open source hardware that is publicly available. We developed a new open source hardware platform, Wi-PoS, for precise UWB localization based on Decawave’s DW1000 UWB transceiver with several unique features: support of both long-range sub-GHz and 2.4 GHz back-end communication between nodes, flexible interfacing with external UWB antennas, and an easy implementation of the MAC layer with the Time-Annotated Instruction Set Computer (TAISC) framework. Both hardware and software are open source and all parameters of the UWB ranging can be adjusted, calibrated, and analyzed. This paper explains the main specifications of the hardware platform, illustrates design decisions, and evaluates the performance of the board in terms of range, accuracy, and energy consumption. The accuracy of the ranging system was below 10 cm in an indoor lab environment at distances up to 5 m, and accuracy smaller than 5 cm was obtained at 50 and 75 m in an outdoor environment. A theoretical model was derived for predicting the path loss and the influence of the most important ground reflection. At the same time, the average energy consumption of the hardware was very low with only 81 mA for a tag node and 63 mA for the active anchor nodes, permitting the system to run for several days on a mobile battery pack and allowing easy and fast deployment on sites without an accessible power supply or backbone network. The UWB hardware platform demonstrated flexibility, easy installation, and low power consumption
    • …
    corecore