
Santa Clara University
Scholar Commons

Mechanical Engineering Senior Theses Engineering Senior Theses

12-15-2014

Snowboard, Ski, and Skateboard Sensor System
Application
Adrien Doiron
Santa Clara University

Michael Fernandez
Santa Clara University

Victor Ojeda
Santa Clara University

Robert Ross
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/mech_senior

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Mechanical Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Doiron, Adrien; Fernandez, Michael; Ojeda, Victor; and Ross, Robert, "Snowboard, Ski, and Skateboard Sensor System Application"
(2014). Mechanical Engineering Senior Theses. 42.
https://scholarcommons.scu.edu/mech_senior/42

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_senior?utm_source=scholarcommons.scu.edu%2Fmech_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fmech_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_senior?utm_source=scholarcommons.scu.edu%2Fmech_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fmech_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_senior/42?utm_source=scholarcommons.scu.edu%2Fmech_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Snowboard, Ski, and Skateboard Sensor System

Application

by

Adrien Doiron, Michael Fernandez, Victor Ojeda, Robert Ross

SENIOR DESIGN PROJECT REPORT

Submitted in partial fulfillment of the requirements

for the degree of

Bachelor of Science in Mechanical or Electrical Engineering

School of Engineering

Santa Clara University

Santa Clara, California

December 15, 2014

 iii

Snowboard, Ski, and Skateboard Sensor System

Application

Adrien Doiron, Michael Fernandez, Victor Ojeda, Robert Ross

Departments of Mechanical and Electrical Engineering

Santa Clara University

2014

ABSTRACT

The goal of this project was develop a sensor for the commercial market for

skiers, snowboarders, and skateboarders that can give them the data such as speed,

elevation, pressure, temperature, flex, acceleration, position, and other performance data

such as trick characterization. This was done by using a variety of sensors, including a

GPS, flex sensors, accelerometer, and others to provide data such as speed, position,

position, and temperature. The sensors were placed in an external polycarbonate casing

attached to the ski or board by using an adhesive pad on the bottom of the casing. These

sensors then transmit the data via a microcontroller to either an LCD screen displaying a

simple application or a memory system. The user can then access and analyze this data

using Matlab code to interpret its relevancy. Using this system, performance data was

recorded to analyze tricks such as spins and jumps.

iv

Table of Contents
Abstract iii

Table of Contents iv

List of Figures vii

List of Tables viii

Chapter 1: Introduction 1

 Section 1.1 : Introduction/Background 1

Section 1.2: Review of Literature 1

Section 1.3: Problem Statement 4

Chapter 2: System Level 5

Section 2.1: Customer Definition and Needs 5

Section 2.2: System Requirements 7

Section 2.3: System Level Sketch 8

Section 2.4: Functional Analysis 9

Section 2.5: Tradeoff Analysis 10

Section 2.6: Team Goals 12

Chapter 3: Electrical System Metrics and Hardware 13

Section 3.1: Scope of the Project 13

Section 3.2: Metrics and Hardware Involved 14

Section 3.3: Component Breakdown and Block Diagram 15

Section 3.4: Component Breakdown 16

Section 3.5: Design Conflict 19

Chapter 4: Electrical System Physical Prototype 20

 Section 4.1: Hardware Prototype Design 20

 Section 4.2: Description of the Arduino Code Structure 23

v

 Section 4.3: Design Iterations 27

Chapter 5: Housing/Casing Subsystem 28

Section 5.1: Preliminary Design 28

Section 5.2: Case Requirements 29

Section 5.3: Final Iteration 32

Chapter 6: System Integration and Testing 36

Section 6.1: Casing Finite Element Testing 36

Section 6.2: Thermal Testing 44

Section 6.3: Vibration and Damping Testing 50

Section 6.4: Dynamic Testing 54

Section 6.5: Sensor Testing 57

Chapter 7: Jump Tests and Data Analysis 57

 Section 7.1: Interpreting the Accelerometer Information 57

 Section 7.2: Data Graphs and Matlab Results 59

Chapter 8: Business Plan 63

Section 8.1: Introduction 63

Section 8.2: Costing Analysis 64

Section 8.3: Company Goals and Objectives 65

Section 8.4: Product Description 66

Section 8.5: Potential Markets 67

Section 8.6: Competition 67

Section 8.7: Sales/Marketing Strategies 69

Section 8.8: Manufacturing Plans 69

Section 8.9: Product Finances 70

Section 8.10: Service and Warranties 71

Section 8.11: Financial Plan/Investors Return 71

vi

Chapter 9: Engineering Standards and Constraints 74

Section 9.1: Engineering Standards and Constraints 74

Section 9.2: Manufacturing 74

Section 9.3: Health and Safety 74

Section 9.4: Economic Factors 75

Section 9.5: Usability 76

Chapter 10: Conclusion 77

 Section 10.1: Future Work/Upgrades 77

 Section 10.2: Personal Reflection 78

Bibliography 82

Appendix 1: PDS A1-85

Appendix 2: Timelines A2-86

Appendix 3: Budget A3-88

Appendix 4: Sensor System Coding A4-89

Appendix 5: Vibration Table Data A5-121

Appendix 6: Sensor Matlab Code A6-124

Appendix 7: Consumer Needs Data A7-128

Appendix 8: Dimensioned Final Casing A8-129

 vii

List of Figures

Figure 1: Product Concept 6

Figure 2: System Level Sketch of Snowboard Sensor System 9

Figure 3: Hierarchal System Description 9

Figure 4: Adafruit Trinket Microcontroller 13

Figure 5: Arduino Mega Microcontroller 13

Figure 6: Component Block Diagram 15

Figure 7: Force-Sensitive Resistor and Neopixel 8 Stick 16

Figure 8: BMP180 Pressure and Temperature Sensor Peripheral 17

Figure 9: Adafruit Ultimate GPS Breakout Board 17

Figure 10: ADXL 326 Gyroscope and Accelerometer Module 18

Figure 11: Electrical System Prototype 20

Figure 12: Nose/Tail LED Strip System 21

Figure 13: Gyroscope Module and Calibration Button 22

Figure 14: Quick-Polled BMP180 Data Graphs 24

Figure 15: GPS Information Calibration Screen 25

Figure 15: Integrated System GUI Flowchart 26

Figure 17: Initial Snowboard Housing Design 28

Figure 18: Initial Ski Housing Design 29

Figure 19: Final Housing Design; Ski, Snowboard, and Skateboard 33

Figure 20: External Power Button for Casing System 34

Figures 21 and 22: Top View (Left) and Side View (Right) 35

Figures 23 and 24: Back View (Left) Isometric View (Right) 35

Figure 25: Vertical Loading Free Body Diagram 38

Figure 26: SolidWorks Displacement Analysis for Vertical Load on the Preliminary Square Casing 40

Figure 27: SolidWorks Displacement Analysis for Vertical Load on the Preliminary Square Casing 41

Figure 28: SolidWorks Stress Analysis for Horizontal Load on the Hexagonal Casing 42

Figure 29: SolidWorks Displacement Analysis for Horizontal Load on Hexagonal Casing 43

Figure 30: SolidWorks Displacement Analysis for Horizontal and Vertical Load on Final Casing 44

Figure 31: SolidWorks Stress Analysis for Horizontal and Vertical Load on Final Casing 44

Figure 32: Temperature Changes Within Casing To Equilibrium 47

 viii

Figure 33: Sinusoidal Wave Displaying Amplitude and Wavelength 51

Figure 34: Illustration of Vibration Test 52

Figure 35: Sensor Acceleration Data Due to Vibration and Board Acceleration Data Due to Vibration 53

Figure 36: Attenuation of Vibration Data 54

Figure 37: Acceleration Data for Static Drop Test 55

Figure 38: Acceleration Data for Static Shake Test 56

Figure 39: Acceleration Data for Snowboard Jump Test 59

Figure 40: Acceleration Data for Skateboard Jump Test 60

Figure 41: Acceleration Data for Snowboard Spin Test 61

Figure 42: Acceleration Data for Skateboard Spin Test 62

Figure 43: Projected Income and Expenses Over 15 Years 72

Figure 44: Projected Investors Return Over 15 Years 73

 ix

List of Tables

Table 1: Summary of Key Requirements 7

Table 2: Microcontroller Comparison 11

Table 3: Sensor Options 11

Table 4: Casing Material Comparison 30

Table 5: Material Properties for Acrylic Plastic 38

Table 6: Material Properties and Measurements 46

Table 7: Heat Losses due to Conduction 48

Table 8: Material and Fluid Properties 49

Table 9: Heat Losses due to Convection and Total Rate of Heat Loss 50

Table 10: Sensor System Test Data 57

Table 11: Preliminary Budget for Prototype Costs 64

Table 12: Final Budget for Prototype Costs 65

Table 13: Unit Pricing and Revenue Generation 70

Table 14: Production Cost and Projections 70

Table 14 (continued): Production Cost and Projections 71

 1

Chapter 1: Introduction

Section 1.1: Introduction/Background

Skiing, snowboarding, and skateboarding are three of the most popular action

sports, attracting millions of participants in North America alone (Statista). Because there

is such a great and international interest in these action sports, companies invest heavily

in research for new technology to bring the newest and best gear to athletes every year.

Such new gear varies greatly, ranging from ski and board designs to the development of

protective gear. Presently, with the advancement of computer technology, electronic

devices have found their way into a variety of sports. In performance sports, such as

running, gathering useful data and providing it to users is essential. Nike’s sensor

technology is one example of useful equipment created to benefit performance athletes by

collecting data to assess their progress in training. For action sports, like skiing,

snowboarding, and skateboarding, there are few options available for their athletes.

Creating and designing such technology allows competitors and enthusiasts alike to track

information and metrics on their performance such as speed, range of board movement,

and the effects of elevation change.

Section 1.2: Review of Literature

Studying performance technology, such as Nike’s, raises the question, “can this

sort of technology be applied to action sports?” Technology is already on the market for

some action sports, like cycling, which leads to question if this can also be applied to

skiing, snowboarding, and skateboarding. In designing a new product, Nike sensors are

the main source of inspiration. However, due to programming complications, using such

technology is not feasible. By researching the current market, finding sensors used

specifically for skiing, snowboarding, and skateboarding yields very few products. Those

that are available, are yet to pass the prototyping stage and onto the market – leaving

room for innovative creativity and design. A team from Michigan State University, in

association with the Air Force Research Laboratory (AFRL), designed a number of

prototypes – with some including features such as a global positioning system (GPS)

(Bekkala). Nokia, in collaboration with the action sport powerhouse Burton, created a

sensor system called PUSH Snowboarding – a system which monitors a snowboarder’s

 2

ride speed, heart rate, “head rush”, board orientation, and foot pressure (“Nokia X Burton

– TVCs.”).

Neither product created by the teams above are on the market, as of yet, which

leaves competing companies the opportunity to pursue research on the technology within

these sensors. Combining sensor technology for performance and action sport athletes

causes engineers, and athletes alike, to question whether the technologies be used

comparatively. In fact, they cannot.

The most dominant of complications to arise is the types of motions that occur

when comparing the movement of skiers, snowboarders, and skateboarders to that of a

runner or basketball player. Participating in an action sport requires complex body

motions in order to control one’s balance, direction, and speed. In order to change the

orientation of the skis or board, a combination of movements from the torso, arms, and

head must be accounted for, along with the important positioning of one’s legs and feet.

Such a combination of movements and physical placement of limbs is not necessarily

taken into account when designing sensors to track the fluid motions of running.

Therefore, in order to create a product for action sport athletes the sensor would need to

be modified in order to track and record the necessary data.

In skiing, snowboarding, and skateboarding, there are specific types of data that

an athlete wants to track, the first of these being speed. However, recording one’s speed

is not merely enough. Being able to maintain a log of one’s speed at specific points

during the “run” is necessary in evaluating an overall performance. Secondly, in order to

determine how far an athlete, specifically a skier or snowboarder, has descended on a run

at a particular speed, data on elevation change and positioning must be collected. This

sort of data collection also helps in evaluating how much airtime an athlete has following

a launch or jump. The third piece of data collected is time: how long a run took, overall

time spent in practice, etc. Collecting the temperature of the athlete’s environment

follows, helping to evaluate if temperature has a substantial effect on performance. And

lastly, the final piece of data is board flex, a tracking system for how much a user turns in

accordance to the amount their board or skis flex. Combining the above data allows

athletes, whether professional or recreational, to track their accomplishments and

 3

improvements while enriching their overall experience. Table 1 on page 5 outlines our

sensor requirements and options for choice.

In researching current products or projects with a similar objective to this design

project, there are limited results in the market for such a specific audience. In terms of

finding another snow sports product with similar functionality, the sensor created by

Nokia and Burton, named PUSH Snowboarding, has four separate components that

measures speed, orientation of the snowboard, heart rate, and altitude (“Nokia X Burton –

TVCs.”). This particular project, however, is a continuing work in process still in its

prototyping phase and therefore not yet reliable. Therefore, a more dependable

comparison is one created by Garmin systems.

Although there is no snow-sport specific device made by Garmin, they boast

being a primary leader in sport sensor technology. Beginning with the Garmin

Forerunner, this product comes in the design of a runner’s watch. It measures what most

advanced running sensors do now: calculating heart rate, speed, and route (“Garmin

Forerunner”). What it does now, in addition, is read steps per minute, ground contact

time, and height increases and decreases during the run (“Garmin Forerunner”). Using

these three advanced measurements helps maximize the runner’s pace and rhythm with

the comfort of looking at an LED screen watch. With all of these measurements, no

phone is needed, as data is recorded straight to your watch.

The next Garmin product to compare is the Garmin Edge, a sensor for cycling.

Similarly, this product does not require a phone or subsequent app while performing the

exercise, as it records its information straight to the device. This particular product,

however, is designed more like a car’s GPS navigation, as it not only looks like one but

also attaches to a bike’s handlebars during the ride. It contains preloaded maps for both

on and off-road trails, allowing the rider to adventure and explore without the worry of

getting lost, with turn-by-turn instructions if needed. This product is heavier than the

Forerunner by one ounce at 3.5 ounces, but also has a rechargeable battery – up to 17

hours – and is waterproof (“Garmin Edge”). As for the sensors specifically, the Edge

displays current, maximum, and average speeds, distance, elevation, and time (“Garmin

Edge”). Other sensors like power, heart rate, and cadence can be added to the Edge, but

sold separately. This product attempts to create a device in a relatively new market for

 4

bike sensors, similar to how this design project is trying to specifically target the snow

sports market.

The last product used in comparison is the Nike Plus sensor. In comparison, it is

the lightest in weight at .23 ounces, as well as the cheapest product on the market at

$19.00 (“Nike Plus”). The Edge reigns in at a price of $300 while the Forerunner costs

$450 (“Garmin Edge”, “Garmin Forerunner”). The Nike Plus functions synchronize with

a phone, as it displays all progress made in running by transferring the information to the

phone wirelessly. The core sensors are very similar to the two Garmin products.

However, unlike the other products the sensor is not water resistant, a requirement

needed in order to accommodate snow activities. Also, the Nike Plus sensor does not

have a direct display like the other two, which is why a phone is necessary to keep track

of the progress.

Section 1.3: Problem Statement

The goal of this project is to develop and test a waterproof and shock-resistant

system of sensors to be attached to a pair of skis, snowboards, and skateboards, in order

to provide the user with useful real-time data about their runs – data which includes the

runs’ speed, elevation, position, temperature, and board flex. In order to achieve this,

several preliminary design goals are made to serve as milestones. The first design goal is

to outline the customers’ needs, which involve estimating and setting standards for sensor

accuracy, system durability, and overall price of the system. The next design goal is the

functional analysis assignment; one that ensures the system detects information and can

display it properly via the LCD screen. Following this, the goals then target the three

main attributes of the system: mechanical, dynamic, and thermal components. For the

mechanical components, the housing design is created and then prototyped into a

physical model and then put under a mechanical stress analysis. With the thermal

component, the system is designed and analyzed in order to confirm its capability of

surviving cold weather and snow. Lastly, the dynamics component is analyzed to see if

the accelerometers can effectively translate jumps, turns, and rotations with the exact

movements of the board. The last major design goal is experimentation. To achieve such

a goal involves testing for the thermal functionality of the system using a refrigerator,

vibration table testing, and the accelerometer dynamic testing.

 5

Chapter 2: System Level

Section 2.1: Customer Definition and Needs

 The target customers are broken into two categories. First are the professionals:

skiers, snowboarders, and skateboarders who may wish to track certain statistics or data

so they have the ability to perfect their technique to enhance their performance. Data

collecting information such as altitude, ski or board bend, speed, and GPS position

greatly benefits professional athletes who participate in such events as the slalom – where

such factors as the ones listed determine how effectively and efficiently the racer makes it

to the finish line. The GPS unit works in tandem with the database during ski runs to

provide professionals with an outline of their exact path in relation to the known course,

their speed, and more, so that they can map their run and determine the optimum course

The second target customer is the active amateur skier, snowboarder, and

skateboarder who wish to track their progress in order to improve, or simply to enjoy

viewing how they performed. This type of customer is most likely a user of similar

devices, such as a Garmin product, for other activities like running or cycling. This

particular consumer is one who frequently uses sensor systems during a regular snow

season, estimating use to be about 2-4 times per week for approximately 6 months –

varying according to snow conditions, where they can expose the sensor to heavy

powder, high winds, or high impacts. This, also, depends on the personal style of the

rider, be they a free rider, park-rider, or a backcountry-rider.

 To satisfy the needs of the customer, the sensor must be able to function in all of

the conditions listed above, and be reliable enough to withstand any environment it is

exposed to – particularly moisture and impact forces. Second, the longevity of the sensor,

and its battery, is integral to customer satisfaction. For the purpose of this project’s

sensor, the goal for minimum longevity is a single snow season, which can last from

October to June. In that time, the sensor system stores and makes the relevant data easily

accessible to the user; this is done by creating an application in the sensor system itself

along with Matlab code to provide trick analysis. The data, then, is organized so that the

user can individually access a certain collection of data or multiple sets of data on one

screen. The user can also activate or deactivate the sensor in order to target a certain

section of their run. Figure 1 below shows the time lapse of a skateboard Ollie overlaid

 6

with accelerometer data indicating when the jump was performed, landed, and the hang

time in between each motion. This also can be implemented to sense the motion of other

tricks. The goal is to provide an easy way for trick characterization to occur so that riders

can data log their ski or snowboard runs or their skateboard sessions.

Figure 1: Product Concept

 To find the specific needs of target audience, a survey was distributed amongst

our peers on two social networks, Facebook and Twitter. The questions asked included;

how many hours do you spend practicing your sport in its respective season?, would you

like data on your velocity to be taken?, would you like to know your tricks’ hang time?,

would you like to know your board or ski rotational direction and degree amount?, where

are you willing to have sensors placed (all that apply)?, and finally rank cost, size,

durability, aesthetics, and simplicity from one to six in order of importance. The data

from this questionnaire is tabulated in Appendix 7 with the Table on the next page

summarizing key requirements based on responses given. According to this survey, the

majority of potential costumers wanted the sensor system to record data on their velocity,

jump hang time, and trick performance such as spin direction or amount. Also, the

majority also preferred the sensors to be placed on the board or ski itself rather than on

their person.

 7

Table 1: Summary of Key Requirements

Due to today’s Social Media Culture, athletes take pride in advertising their

progress and activities. Including a feature on the sensor that tracks and posts

performance data to social networking sites, such as Facebook or Twitter, appeals to the

target consumer – particularly those who have the means to afford a quality product.

Assuming the target consumers have the means to afford such a product, they are likely

to spend an average of $300 or more. However, providing a top-tier product for a lower

price of $150 – 200 is significantly more alluring to the average consumer. Therefore, the

sensor in question for this project must be represented adequately in our budget, seen in

Appendix 3, at a cost of about $200.

Section 2.2: System Requirements

 There are certain specifications that the sensor must meet in order for the sensor

to be considered a fully functioning prototype. To begin, it must satisfy the data

requirements that the sensor displays to the user. Currently this data is speed, elevation,

time, position, and acceleration. This data requires reliable storage so that the user is able

to return to and review the data via computer or by a phone application, and it must also

satisfy the accuracy constraints for each set of data. The system reads the speed to an

accuracy of +/- 0.5 mi/hr, the altimeter to +/- 50 feet, and the timer keeping precision

within a second.

 The second set of requirements is structural, primarily dealing with the forces,

stresses, cooling, and water factors. In skiing and snowboarding, the skis/boards are

subject to a significant amount of force and stress. These are generated through a variety

of factors such as turning, which causes the skis/board to bend and torque, or landing

harshly after launching off a jump, which generates an extreme amount of impact force

Rank of

Importance Customer Requirements

General
Customer

Preference Our Requirements
1 Speed Data Cost Waterproof Casing

2 Jump Hang Time Size
Multisensor
Functionality

3 Board/Ski Orientation Durability Trick Analysis

 8

upon landing. It is important that the sensor, and the casing it is placed in, is able to

withstand these factors. Unfortunately, there is no current data on what kind of stresses

and forces are generated in these situations, so these constraints are determined through

experimental computations. The structure of the outer casing must also combat the effects

of the extreme cold and frozen environment that the sensor can be subjected to. The cold

temperatures impede electronic communication between the components, and if water

should get into the casing and reach the sensor, there will be an immediate short in the

system and effectively destroy the sensor. Therefore, it is vital that the casing around the

sensor be waterproof and insulates the sensor well enough from moisture and temperature

so as not to affect its performance.

 Coinciding with data and structural requirements are the cost and price

constraints. Performance sensors range in cost through great amounts, depending on what

equipment they are paired with and what sort of data they provide to the user. In the case

of the Nike Plus sensor, the sensor itself holds a price tag of $19, but this does not include

the required purchase of running shoes – which cost on average over $100. There are

other sensors available for other sports, such as cycling, which include a GPS unit as well

as speedometers, altimeters, and heart rate monitors. A comparative cost is found by

looking at the Garmin Forerunner and Garmin Edge, both running and cycling sensors.

The Forerunner totals a staggering $450 while the Edge compares at $300 – both costs

significantly higher than the physically smaller Nike Plus sensor. Therefore to reiterate,

for the purposes of the ski, snowboard, and skateboard sensor of this project, the cost as

seen in Appendix 3 is $200.

Section 2.3: System Level Sketch

Figure 2 on the next page shows a photograph of the physical prototype,

excluding the casing, including the various sensors and other components labeled.

Eventually these components are mounted on the ski, snowboard, or skateboard, housed

in a protective casing. The nose/tail bend sensors are mounted under a plastic laminate

along with one of the bend meter LED bars on each end. The temperature and pressure

sensor, GPS, gyroscope, LCD and Arduino microcontroller are soldered to a breadboard

and mounted inside a waterproof and shockproof container. In the case of the snowboard

 9

Figure 2: System Level Sketch of Snowboard Sensor System

and skateboard, this casing is then mounted to the board using a heavy-duty adhesive pad

in front of the rider’s rear foot to act as a “stomp pad”, on which the rider rests their rear

foot on while riding with it unbound. The electrical components are housed securely

inside the casing to prevent it moving about while the board is in use.

Section 2.4: Functional Analysis

The end result of this design project is a product to be installed by the end-user on

their ski, snowboard, or skateboard and communicate the information about their runs to

the LCD screen. The goal is to create a single enclosure to be adhered to the board, in the

place of the stomp pad. For skiers, the same circuitry works with a slightly different

enclosure, mounted to the rear of the ski. This is done through a hierarchy system,

displayed below in Figure 3.

Figure 3: Hierarchal System Description

 10

The system comprises of the three main sensors which link to the microcontroller:

the multisensory, the accelerometer, and the GPS. The multisensory receives voltage

inputs from the circuit within the sensor, which are then sent to the microcontroller and

interpreted as temperature and pressure readings. The accelerometer, similarly, uses

voltage inputs that are translated into acceleration readings in three axes before being sent

to the microcontroller. The GPS, however, is different, receiving its inputs via a satellite

connection with two or more satellites that send the information to the GPS unit. That

information, too, is sent to the microcontroller. Once all data has been sent, it is

processed via the Arduino code that was previously uploaded to the microcontroller. This

allows the raw data outputs from the sensors to be displayed as meaningful data. The

newly processed data is then sent to the LCD screen display, which can be viewed by the

user.

Section 2.5: Tradeoff Analysis

The fundamental goal of this project is a slim, sleek design that is easy to use

without sacrificing functionality. When selecting electronic components, power and

functionality are sacrificed in order to minimize size. While working with existing

knowledge, using commercial microcontrollers as the backbone of the system is the

superlative choice in order to maximize functionality. Because these are commercially

available, they exist as a standardized platform on which the whole system is based. By

working with these existing systems, they are proven to be reliable for simplicity’s sake,

without losing functionality of the design. In terms of low cost and lightweight design,

the Adafruit Trinket was the first option of controller. After further research, it was

decided that the Trinket did not provide sufficient power to utilize the sensors wanted.

The Arduino Mega Microcontroller was decided on as it has the ability to provide power

through as simple USB power supply at between 7 and 12 Volts. The Arduino Mega also

has 256KB of memory on board which provides sufficient space to store data for a short

period of time (Arduino - Compare). The Mega’s has the ability to store 4KB of data

while the power is turned off as well. The Arduino Mega also has 16 analog inputs along

with 54 digital inputs which provide significant support for multiple sensors (Arduino -

Compare). When compared to components of similar pricing, such as the Arduino

Leonardo and the Arduino Uno, the Mega trumps them in all of its specifications. The

 11

Leonardo has only 12 analog inputs and 20 Digital, the Uno has only 6 analog inputs and

14 digital. Each also supports only 32KB of data storage which did not provide enough

for our requirements (Arduino - Compare). Table 2 below shows the specifications for

the above-mentioned microcontrollers excluding the Trinket.

Table 2: Microcontroller Comparison

This project is designed to be added to a user’s existing equipment and, as such,

must be versatile, but also very durable. By choosing to locate the circuitry enclosure

within the stomp pad, it is subjected to considerable force. And in order to optimize

durability of the circuitry enclosure, a durable acrylic composite is used as the main

portion of the multi- layered enclosure. The sensors incorporated give the ability to record

the user’s position, speed, direction, elevation, and temperature. With an

elevation/temperature sensor, the bend sensors, and the GPS module, the user’s entire

MC

Operating

Voltage

CPU

Speed Analog I/O Digital I/O EEPROM SRAM Flash

Uno 7-12 V 16 Mhz 6 and 0 14 and 6 1 KB 2 KB 32 KB

Leonardo 7-12 V 16 Mhz 12 and 0 20 and 7 1 KB 2.5 KB 32 KB

Mega

2560 7-12 V 16 Mhz 16 and 0 54 and 14 4 KB 8 KB 256 KB

Information Desired in
System Sensor Component Options Basis for Choice

Nose/Tail Bend Force Sensitive Resistor
Simple choice, changes analog voltage
value based on bed

Bend Light Display LEDs in all varieties The Neopixel Stick 8 was chosen as
the LED display for the bed sensors

for their compact l inear design with
few contact points to worry about Adafruit Neopixel Stick 8

Gyroscope /
Accelerometer MMA7361

Upon deciding, we were not certain of
our final hardware configuration. We

selected the ADXL line because it
communicated wiz the arduino's
analog voltage inputs rather than he
SCL/SDA protocol which has less total

inputs. We then chose the ADXL326
for the appropriate range.

 L3GD20H

 ADXL 335 +/- 3g

 ADXL 326 +/- 16g

 ADXL 377 +/- 200g

Speed / Location
Adafruit GPS Ultimate Breakout
Board Same features, half the price

 Dexter GPS Shield for Arduino

Additional Information
BMP180 - Temperature, Pressure,
Elevation

These sensors do not have tons of
application in snowboarding as a
sport, but temperature, pressure, and

elevation, are all pertinent data about
one's snowboarding experience

Adafruit GPS Breakout - more
accurate elevation

Table 3: Sensor Options

 12

route down the mountain, including humps and hang-time, are able to be mapped with

minimal hardware. Table 3 on the page above shows sensor options.

Section 2.6: Team Goals

As a team, we aim to accomplish several goals. The first being to create a fully

functioning tested prototype; with fully functioning observing that the sensor is to

accurately give the relevant data, within the prescribed constraints for accuracy, and be

able to store the data with minimal anomalies or data loss. This goal may be augmented

in the case it is decided to add on more sensors.

The second goal is to stay within the set budget. More specifically, the goal is to

create a product that is made as inexpensively as possible – keeping the manufacturing

and parts cost down to maximize the potential profit of this product. It is not intended to

sacrifice the quality of the product, however, meaning that the quality of the components

and materials used will be high enough to not cause the product to break of malfunction.

With this, keeping the cost of the products relatively low is necessary in order to sell to

consumers at a lower and more favorable price, making it more affordable and attractive.

The third goal is to heighten the ability to refine or add on to the prototype that is

initially developed. The reasoning behind this is the desire to create a product that not

only functions when it is in use by customers, but one that offers multiple features that

will appeal to a variety of customers with room to apply other sensors in the future. Some

of the features currently implemented include a GPS system, which has potential to

increase the accuracy of the data, an altimeter, an accelerometer, a temperature sensor,

and two bend sensors.

 The fourth and final goal is to utilize the data received from the sensors and create

a system or program that determines what “tricks” the user has performed by examining

parameters of the data taken. Each trick has a “signature” of movement in the three axes,

if performed correctly, making this information useful to the rider as he/she is able to

understand and improve their skill level and/or correct mistakes that would normally have

gone unnoticed.

 13

Chapter 3: Electrical System Metrics and Hardware

Section 3.1: Scope of the Project

 We wanted to get as much information as possible out of the sensor system, but

we had to work within the constraints of making it a lightweight system on as minimal a

budget as possible. Before we could determine the range of metrics we would be able to

glean form sensors, we needed to choose a control scheme for the system. We opted for a

microcontroller as the center of the system because of prior experience with them. In the

interest of ultra-low-cost and lightweight design, we initially looked into the Adafruit

Trinket to be our microcontroller. After we got a better idea of what we would need from

our system, it became clear that the Trinket was not powerful enough. We then decided to

work with an Arduino Mega, a higher-end microcontroller capable of running many

hardware peripherals simultaneously.

Figure 4: Adafruit Trinket Microcontroller

Figure 5: Arduino Mega Microcontroller

With the decision to use the high-power Arduino Mega and our inability as a team

to incorporate interfacing data via a phone app due to design scope limitations, we

instead opted to use an LCD screen designed for Arduino in our system. Now capable of

a visual readout for the user, the system gained a sense of being a self-contained product.

 14

Section 3.2: Metrics and Hardware Involved

 In order to potentially become a competitive product, our system would need to

take advantage of as many sources of data as are available, having made the choice to

work with the Arduino Mega. We wanted primarily to be able to give as much

information as is possible about the user’s movement on the board. We also incorporated

a GPS peripheral to track date, time, the user’s speed, altitude, as well as the additional

info of latitude/longitude. We decided to incorporate bend detection on the nose an tail in

the case of use with a snowboard. Another additional component we decided to

incorporate gave us the additional metrics of ambient temperature, and air pressure,

which can be relevant in skiing/snowboarding as well.

Movement:

 We decided to use an accelerometer peripheral to get information about the

orientation of the board and the forces acting on it. This is the component that also

enables us to determine the duration of a jump, as well as the direction of a spin, if

present. The GPS peripheral enabled us to track speed, accurate to within .3 miles per

hour.

 Bend:

 Bending on the nose or tail of the board comes about with various tricks. We used

a system the incorporated a force-sensitive resistor to determine the flex on the nose or

tail of the board. In the code it measures it generally, incrementing in ranges of 10% flex

from 0 to 100%. From 20% - 100% flex, an LED strip on the board illuminates 8 LEDs in

sequence.

 Ambient Metrics:

 We found one component capable of tracking temperature, pressure, and giving a

rough calculation of the user’s elevation. These metrics are gathered to render three time

plots, being: temperature, pressure, and elevation. Elevation from the GPS is used when

possible, because it is more accurate. These plots enable the user to view changes in these

metrics over time (one hour, as coded) as they progress down a ski run or downhill

longboard course.

 The hardware making up these measurement subsystems will be discussed in

greater detail in the next chapter.

 15

Section 3.3: Component Breakdown and Block Diagram

The data-tracker operates via a network of four sensor-peripheral subsystems

managed by an Arduino 2560 Mega Microcontroller. The microcontroller has a C

program uploaded to it, which dictates the use of the sensor peripherals connected to its

inputs and outputs. The complete hardware list for the various sensor subsystems consists

of the following:

 Arduino 2560 Mega Microcontroller

 Seeedstudio 2.8” TFT LCD display

 2 x Force-Sensitive Resistors (as nose/tail bend sensors) with pulldown resistors

 2 x Adafruit Neopixel Stick 8 (RGB LED arrays)

 Adafruit Ultimate GPS Breakout v3

 ADXL 326 Gyroscope/Accelerometer Module

 BMP180 Temperature and Pressure Sensor

Figure 6: Component Block Diagram

 16

Section 3.4: Component Breakdown

 As discussed earlier, the Arduino 2560 acts as the brains of the entire system.

Based on the C code, which will be discussed in greater detail in the following chapter,

the Arduino operates hardware peripherals (the sensors, in our case) by controlling or

interpreting the voltages at its multiple inputs and outputs. The majority of the outputs of

this board are taken up by the system's most hardware-intensive peripheral, the

Seeedstudio 2.8” TFT LCD display, used to display the information as measured and

interpreted by the system.

 The LCD display requires a significant amount of space – roughly half the inputs

of the Arduino and taking up two-thirds of the area, meaning that the screen is

conveniently mounted directly to the board, which simplifies the needs of casing design

by being mountable as a single component. While the TFT mounts directly, the

remaining components connect through leads to the additional inputs and outputs that

remain on the Arduino. The first of these components we will breakdown and analyze is

the simplest, the bend-detection system.

Figure 7: Force-Sensitive Resistor and Neopixel 8 Stick

 The components in figure 4 make up the bend sensor on the nose and tail of the

board. Each end of the board is equipped with a 10cm FSR secured with waterproof

plastic laminate. The FSR is given a 5v potential and the voltage drops as the resistor is

bent. The Arduino board divides the range of values into sections, between flat and the

bend of a full tail flex on a snowboard. Through experiments, it is determined that a

proper maximum bend, and the subdivisions between flat and full, correspond to how

many LEDs are illuminated. This was done in order to figure a sense of how deep the last

nose or tail bend was and to add a stylish component to make the product stand out by

using the colored lights.

 17

Figure 8: BMP180 Pressure and Temperature Sensor Peripheral.

 The above component, and the next most complicated component in our

breakdown provides the Arduino with information about both the temperature and

barometric pressure of the surrounding environment. The information is communicated to

the Arduino via the SCL and SDA pins using I2C communication. This provides fast

communication between the component and the Arduino using only a few inputs, which

is ideal given the choice of the LCD screen. The component comes with its own libraries

of functions for converting the sensor data to useful information, which means the board

can be easily made to work with a number of different systems. The code provided by

Adafruit, the manufacturer, is easy to modify and use within the display loop code.

Figure 9: Adafruit Ultimate GPS Breakout Board

 To get position and speed information, a Bluetooth module was selected as the

best choice. The Adafruit Ultimate GPS Breakout Board provides accurate and reliable

information via a satellite link from one of twenty-two dedicated channels.

 18

The unfortunate downside to the convenience brought by GPS is that the

information is only available while the satellite link can be established. In some cases, the

satellites cannot be reached and the breakout board can therefore not function. The

majority of the time, the satellite link is established without a problem, however, code

needed creating for this error case in the system display loop.

Figure 10: ADXL 326 Gyroscope and Accelerometer Module

 To get information about the forces exerted on the board during use, we used the

ADXL326 gyroscope module. We selected this module based on the +/- 16g sensitivity

range which best fit our purposes compared to the other models in the product range

which ranged from +/- 2g to +/- 200g. The peripheral outputs three analog voltages

corresponding to readings on the X, Y, and Z axes. It also outputs a 3v output signal

which is used by the analog reference of the Arduino Mega to compare the axis outputs

against when interpreting the axis readings.

The AREF pin does this, however, it is taken up by the bulky TFT display. The

inability to compare against the 3Vo pin on the ADXL326 resulted in a design conflict

(discussed in greater detail in the next section) and ended up with a loss of precision on

the gyroscope readings. For the purpose of dynamic testing, the TFT display was

removed so the gyroscope/accelerometer could function with the greatest possible

accuracy. This is a design conflict we encountered which is discussed in greater detail in

the next section.

 19

Section 3.5: Design Conflict

 Due to the nature of taking up so many of the primary pins on the Arduino, the

Seeedstudio TFT screen presented us with a design conflict. The screen required use of

the AREF (analog reference) pin in order to function. The AREF pin is used to provide

the comparison point by which analog input voltage is judged as it is interpreted. The

gyroscope module as well typically demands use of the AREF pin in order to provide

more accuracy by judging against a reference voltage provided by the module itself.

Without use of the reference voltage, on-the-fly scaling of gyroscope measurements were

not possible via hardware, and instead required workarounds to function. The first of

these workarounds, present in the display loop code is the use of a simple arithmetic

scaling to readjust the input voltage to scale it directly by 5/3.3 volts because the 0 to

3.3v incoming voltages were interpreted on the range of 0 to 5v, which is the AREF the

TFT is operating by. The simple scaling of this theoretically would reset the analog

readings to the expected range, but there was still a loss of accuracy. This loss of

accuracy originates from the fact that the one-time calculation is relied on as a best guess

for rescaling the voltage, but in actuality, all minute fluctuations in the function of the

gyroscope peripheral would show up only in the input data being fed from the sensor and

would not show up in the AREF which would serve to adjust for them by minutely

fluctuating along with the input data. Since the AREF is not usable via hardware for on-

the-fly readjustment, any fluctuations in the sensor data cannot be adjusted for.

 20

Chapter 4: Electrical System Physical Prototype

Section 4.1: Hardware Prototype Design

 In order to prove the feasibility of the product’s designs, a physical prototype of

the board was constructed using the aforementioned sensor peripherals and electrical

components mounted to a flexible plastic backing. The peripherals were wired to a

central large breadboard which provided ample room to prototype each of the

components with the Arduino.

Figure 11: Electrical System Prototype

Most of the components making up the prototype board in figure 1 provided their

own libraries of functions online by which they operate. Generally these library functions

were all that the component needed to get up and running and spitting out whatever

information is gives. It was then our task to program the display loop to work with the

variables and information laid out in the peripheral's libraries.

 Knitting each of these various libraries of functions into a single programming

script involved the use of a display loop controlling the LCD as the central framework for

the code. The various functions that were run by each of the peripherals can begin to be

calculated while another is being displayed, and then they can be displayed in turn. As

coding progressed, blocks of code and functions were timed to get a sense of how long

they require to process. By knowing this, the code that gathers the data from each of the

sensors and make the calculations could be run while the LCD is idling displaying a

screen.

 21

Figure 12: Nose/Tail LED Strip System

 The Nose/Tail LED strip system in figure 2, being simply a visual element, may

seem like an element that would not necessarily be a design priority, but, whether or not

it is commonly articulated, style is an omnipresent element of snowboarding. The unique

attire and broad array of outfits seen on the mountain demonstrates the held importance,

by many riders, of personal style. Its prevalence in the sport is even seen in the

vernacular, with the combination of style and ease to a rider’s trick being lauded as

'steezy.' To technologically expand a rider's personal relationship with snowboarding, it

should do so on all levels, not simply relate to athletic or statistical aspects of the sport. In

order for a new product to be truly revolutionary in the constantly overhauled industry of

microelectronics, it must be noticed and enjoyed widely and organically.

 The circuit involved is comprised of two force-sensitive-resistors (or FSRs)

designed to increase in resistance as it is flexed. The two FSRs are mounted on the ends

of the board, near the corresponding LED strip, via clear plastic laminate to the nose of

the board, the other to the tail. One pin of each FSR is connected to 5v (Arduino logic

HIGH voltage), the other pin connected through a pullup resistor to ground. This forms a

voltage divider between the pullup resistor and the FSR, which is measured and

interpreted by the Arduino Mega via analog input A8 for the tail, and A9 for the nose.

The Arduino C code involved compares the analog reading against ten value ranges

representing 10% increments between flat (0 degrees) and a full bend (~45 degrees).

Values between 0 and 20% are ignored (no lights illuminate) attempting to eliminate

false-positives from ordinary bumps and wobbles on the ride rather than intentional nose

or tail bends. Values between 20% flex and 100% flex (compared in ten percent

increments) illuminate NeoPixel LEDs 0 through 7 down the strip, corresponding to one

tenth each of the remaining 80%, with colors fading from green through yellow to red.

 22

Figure 13: Gyroscope Module and Calibration Button

 The ADXL 326 Gyroscope/Accelerometer module proved to be an effective

selection for judging the angle of the snowboard relative to the horizon along three axes

(nose to tail, toe to heel, and vertical) and could do so quickly and accurately. The

complicated and state-of-the art micro-technology that enables the precision of this

component is described by the retailer, Adafruit.com.

 “The sensor consists of a micro-machined structure on a silicon wafer. The

structure is suspended by polysilicon springs which allow it to deflect in the when subject

to acceleration in the X, Y and/or Z axis. Deflection causes a change in capacitance

between fixed plates and plates attached to the suspended structure. This change in

capacitance on each axis is converted to an output voltage proportional to the acceleration

on that axis.”

 Adafruit Learn: ADXL 326

 (https://learn.adafruit.com/adafruit-analog-accelerometer-breakouts)

 Though the hardware is complicated and state-of-the-art, a library of functions is

included to simplify the coding process and data gathering. The key information the

accelerometer is used for is the information just before and after an impact, to give

information specific to the movement the rider just performed. In our current stage of

prototyping, the accelerometer requires a serial connection with a computer, because the

data logging is done by a third-party program called CoolTerm. The program can log

incoming serial data in spreadsheet form. Further development of the system would be

needed to store and parse information on the fly as we do not currently have a system

which can interpret this data in a useful way on the Arduino, nor the memory to do so for

multiple runs. The present prototype gives a readout via the LCD display or more

 23

complete information by interfacing via CoolTerm on a computer. We do however have

the ability to analyze a jump or drop performed on the board in a test for the forces that

impact it. By opening them up in Matlab and analyzing the data on each axis as an array,

the net directions and magnitudes of forces can be determined. This Matlab method of

analyzing the generated spreasheets is discussed in greater detail in the next chapter.

 The remaining components, namely the Adafruit Ultimate GPS Breakout v3, and

the BMP180 temperature/pressure sensor work by using the included library functions,

but breaking the data apart to be displayed independently, by the LCD. The functions

themselves grab samples of data but it is in our display loop that the data from those

functions is sorted and worked with. The structure of the display loop will now be

discussed in greater detail.

Section 4.2: Description of the Arduino Code Structure

 Standard Arduino scripts operate the inputs and outputs of a circuit board based

on a programming loop that it runs continuously. Before beginning the programming

loop, it first executes a 'setup' function which contains whatever initial settings,

declarations, or other lines of code are needed to then begin the main programming loop.

Each of the components we built our system out of has their own basic demo script

online, which demonstrates the functionality of the device, containing a setup section of

code and a loop section to be uploaded to the Arduino. Our task involved rewriting the

various setup scripts as their own which then each get called in a master setup script. We

then rewrote the various loop routines as callable functions to be called repeatedly when

that information is called for, as determined by a display loop routine controlling the

LCD which provided the framework of the master loop.

 The LCD display loop provided the structure to our programming loop because it

is a straightforward matter to query the devices one at a time, while rotating through

which one gets displayed. The device operates in a demo-ready display mode which

contains two major changes from what would be used in a device on the mountain. The

first of these changes is that the BMP180 loop (the graphs of temperature, pressure, and

elevation data points over time) is sampled once every second instead of once every

minute. This choice was made to gather a number of data points quickly by the first time

the graph was displayed in the rotation. On an actual mountain-ready design, the delay

 24

time on polling this data would be changed to one minute rather than one second, so as to

gather a plot of the last hour. This change of rapidly gathering the data does display the

functionality of the device, but the graphs appear much more erratic than those gathered

over the course of an hour.

Figure 14: Quick-Polled BMP180 Data Graphs

 As can be seen from the graph, the altitude plot is rather inconsistent. Over a

longer time and trips down various ski runs, the altitude graphs would look more gradual

and cohesive. The least accurate and reliable aspect of the BMP 180 is the altitude

calculation. Since it is simply calculated mathematically, there are two solutions utilized

to provide more accurate values for elevation. The primary solution solves the problem

with much greater precision than the BMP180 is capable of, by getting altitude

information directly from the GPS peripheral, provided it detects a reliable satellite link.

If the GPS does not detect a reliable link to the GPS network, it instead calculates altitude

from a floating point value of the specified sea-level pressure at that location and time. It

unfortunately requires a given specified sea-level pressure, and is most accurate when the

given day’s information is looked up and input into the code. This is not feasible for a

product-ready design, so the GPS is relied on as the primary source of elevation data.

 The code directly involved in the calculation and display of these values is tedious

and lengthy. It is found in the appendix, rather than taking the space to list it here.

 25

Figure 15: GPS Calibration and Information Screen

 Above is pictured the display screen sequence for establishing a GPS link. The

Adafruit Ultimate GPS breakout v3 is a low-power board based around the MTK3339

chipset that communicates with satellites having access to 66 communication channels,

capable of ten updates per second. The Adafruit_GPS library contains handy functions to

draw the specific values for date, time, position, elevation, etc. out of the NMEA

sentence transmitted by the satellite, so they can be worked with and displayed by the

Arduino during the GPS display loop shown in the figure. This information, though

presented in raw form is valuable, and could easily be used to establish additional

information about the user's Ski/Snowboard experience. An example of what features

could stem from this include, for example, a database of different popular ski locations,

which, using this GPS data, could automatically narrow down the user's location to a

particular mountain or resort. Additionally, the user's speed down the mountain is

measured with an accuracy of .3 mph or better. Using the date and time, as well as trends

in elevation, the system could determine when given runs begin and end as well as

distance traveled, top speed, and average speed. The entirety of the display loop can be

seen in Figure 15, the integrated system GUI flowchart on the next page.

 26

Figure 16: Integrated System GUI Flowchart

 27

Section 4.3: Design Iterations

The physical prototype demonstrated in the previous chapter was initially what

our team considered to be the final design of the project. The concept behind the design

was centered around the idea that we as a team were trying to create a fully self-contained

micro-controller system based on ideas of our own design. In that regard we as a team

succeeded. The programming and data management were contained entirely in the micro-

controller and sensor peripherals. When we connected the system to an initial flexible

prototype board and powered it with a battery pack, the design took on a feeling of

having been an achievement. By holding the actual device and seeing the data readouts,

illustrated in the GUI System Flowchart in the previous chapter, our project gained a

sense of being along the lines of a potential product. It was rather satisfying to see it in

this state.

The project in this form was, however, considered an incomplete project by our

advisor and was short of a few of the design goals that we had began with. Our project

needed to be extended, and as different members of the team went home over the

summer, the hardware was reduced down as we focused on getting more useful data from

the accelerometer.

To complete our project, we decided to augment it to include greater functionality

of parsing the data on the accelerometer. We used a third party program called CoolTerm

which was capable of connecting to the Arduino serial connection and log the incoming

accelerometer values into a spreadsheet for Excel. We then wrote a Matlab script that was

capable of parsing the excel formatted spreadsheet and from summing and analyzing

values in the data arrays, we were able to determine with reasonable accuracy the

direction of spins performed and the duration or hang-time of a jump. This is all

discussed in greater detail in the next chapter.

The current state of our project is the accelerometer data only. Previously we had

our self-contained design as discussed in the physical prototype section. That design was

displayed and demonstrated in the oral presentation last spring. The primary illustration

of that design's functionality is seen in the illustrated system GUI Flowchart. A more in-

depth discussion of the accelerometer data parsing happens in the following chapter.

 28

Chapter 5: Housing/Casing Subsystem

Section 5.1: Preliminary Design

For sensor systems designed for skiing or snowboarding, the enclosure

consists of a durable three-layer system. The bottom layer is a flat plate that is the

mounting place for all of the sensors and the battery, the middle layer is a rubber

toughened cyanoacrylate adhesive to provide a watertight seal, and the top layer is the

dome shape that encloses the sensors from the elemental world.

For the preliminary designs, each housing for both the snowboard and the ski

implement a dome shaped cover that will have one single opening for a recharge inlet

so that the case never has to be fully opened. The reason that a domed top is used is to

deflect impacts to the top surface, where a flat top surface would not deflect these

impacts. A hexagonal design is to be used on the snowboard, as shown below in

Figure 34.

Figure 17: Initial Snowboard Housing Design

 29

The purpose of such a large encasing is that it replaces the stomp-pad on the

users board. This is so that there is less extra clutter on the board itself. Besides its

shape, the main difference between the ski and snowboard enclosures is the grip that

is on top of the hexagon in order to ensure the rider stability in using the new sensor

stomp-pad. This grip is custom created from stompdesign.com in order to make sure

the charging port is still accessible.

For the ski, a simple domed square is designed (shown below in Figure 35) as

the goal is to make the sensor enclosure as small as possible.

Figure 18: Initial Ski Housing Design

Section 5.2: Case Requirements
The housing for the microcontroller and other sensors must withstand abuse

from both the human user and the elements around the ski or board. This means that

the housing must be highly impact resistant and 100 percent waterproof to ensure the

integrity of the sensor system. A range of materials is considered, the original choice

being polycarbonate as the best fit for the sensors’ protective housing. Metals, such as

aluminum, were not valid options as they are vulnerable to deformation or are too

heavy. Other plastics, such as polyethelene, were not viable as they are too soft and

 30

can be damaged easily, as well as being difficult to machine. Polycarbonate is a

highly impact resistant material that is injection molded while still having properties

to make it machine-able once it solidifies.

Table 4: Casing Material Comparison

While the specific mixture of polycarbonate is yet to be determined, there are

a few key properties that are not negotiable; the material must be UV resistant, must

have no glass fiber reinforcement (as this reinforcement handles heat stress well but

impact stress poorly, and the glass fibers cause the material to shrink approximately

0.3% during the curing process), and the material must be BPA free.

To manufacture the casing using the polycarbonate, there were two options:

machining the various pieces and assembling them using an adhesive, or using an

injection molding process. The advantage of using the machining process is that it

does not require specialty pieces to manufacture the casing, allowing the easier

manufacturability on a smaller scale. The injection molding process is the perfect

option for a larger scale operation, as you could produce more casings faster as well

as immensely minimizing the deformations, but it would require the creation of

specialty molds. As a result of the incapability and lack of practicality in making a

specialty mold for our purpose of making singular prototypes, the machining process

is the selected option. Once the prototyping phase is completed in the future, the

manufacturing process would be changed over to an injection molding process.

However, as a consequence to choosing the machining process, issues arise

with the material polycarbonate. At the target thickness, it is considered a bit on the

Material Advantages Disadvantages

Aluminum Light, Machinable Vulnerable to Corrosion,

Impacts, Deformation

Polycarbonate Light, Durable, Impact

Resistant (Heavy Impacts)

High Cost, Vulnerable to

Heat (Manufacturing)

Polyethelene Cheap, Machinable Soft, Vulnerable to

Impacts and Deformation

Acrylic Durable, Impact Resistant

(Medium Impacts), Clear

Vulnerable to Heat,

Abrasions, Severe Impacts

 31

thin side for a polycarbonate undergoing the machining steps sought. The results of

performing these intricate cuts would cause a lift on the edges of the polycarbonate

that are being cut as well as making a mess of the edges. The effect of lifting the

edges of the polycarbonate sheet bends the original flat state of the sheet, and carries

the possibility of creating stress cracks which would ultimately compromise its

overall strength. On the other hand, the thickness can be considered too large for a

polycarbonate in terms of induced heat. The created heat from milling the

polycarbonate is not ideal as it causes discoloration and possibly small bubbling. Its

thickness also undoubtedly rules out laser cutting as a possibility. Polycarbonate

strongly absorbs infrared radiation, which is the same frequency that the laser runs

on, in turn making cutting polycarbonate very ineffective. This is not to mention that

any polycarbonate having a thickness greater than a millimeter carries the possibility

of catching fire.

 The milling issues were not great enough to overcome, though the potential of

producing inconsistent cuts was deemed a significant negative. In the end however, it

was simply finding a more attractive solution that made ditching the polycarbonate so

easy. The material acrylic obtained similar desirable properties that the polycarbonate

possessed. It was a lightweight, transparent, and shatter resistant material to use in the

place of a glass structure which would be prone to breaking easily. In terms of safety,

the acrylic is significantly more impact resistant than glass-type materials. If it were

to break, it would do so in relatively blunt large pieces instead of tiny slivers of

material that are comparatively much more dangerous. In addition, because the

thickness is well in between .08” and .5”, it passes the safety requirements of ANSI

Z97.1 for window glazing materials (Cryo).

Acrylic was also chosen over the original polycarbonate material because it is

less prone to scratching. Considering that we are assembling an item for private

consumption, the aesthetics are considerably important. The more scratch resistant it

is, the more pleasing to the eye it becomes. In addition to looking better, it better

serves its function of displaying the information from the LED screen inside the

housing to its user. The acrylic also provides a more rigid structure as polycarbonate

is more flexible. Although polycarbonate is more impact resistant and cracks less

 32

easily, acrylic was chosen as it is cheaper and still provides enough impact resistance

when compared to glass. Acrylic was also chosen for its weather resistance, it has the

ability to withstand exposure to strong sunlight, extreme cold, and quick temperature

changes, as well as providing a waterproof shield when sealed properly (Cryo). These

are very important factors when considering the product can potentially be exposed to

both ends of the weather spectrum in its use, ranging from the cold and melting snow

to hot and sunny days. The only other weakness to this material is that acrylic sheets

can expand and contract in cold, heat, and humidity (for a 48” panel, approximately

0.002” per each degree Fahrenheit change). In spite of this behavior, these values

were found to be negligible to the small size of the casing structure (Cryo).

 For the adhesive to connect the acrylic pieces of each complete housing,

another acrylic solution is used. The solution needed to be able to provide a

waterproof seal as well as withstand severe impacts and temperatures. There were

several different choices, such as 3M Plastic Adhesive 1099, which cures quickly and

provides decent qualities, or 3M Plastic Adesive 2262, which is a clear adhesive for

materials that flex frequently. The choice we made though was Apollo 2241. Apollo

2241 is a highly viscous, rubber-toughened ethyl cyanoacrylate adhesive that

provides high shock and thermal resistivity when bonding with plastics in harsh

environments. This adhesive will also provide a watertight seal around the sensors.

2241 is chosen as it has a high tensile shear strength of 3700 psi while still having a

large operating temperature range between -65 degrees F and 280 degrees F (“Apollo

2241”).

Section 5.3: Final Iteration

 To connect the sensor enclosure to the board or ski, the casing had to remain

firmly in place without it becoming dislodged but also had to be removable. For this,

there were two options: either bolt the casing to the board by drilling into it, or use a

silicone rubber with an adhesive coating. To maintain the integrity of the board or ski,

as well as reduce the amount of labor to install the product, the silicone rubber with

an adhesive coating was determined to be the better option. This is also a bad idea

due to the acrylic material’s cracking weakness to any hole drilling near the edges.

Therefore, to connect the sensor enclosure to the board or ski itself, a silicone rubber

 33

with a pressure sensitive acrylic adhesive coating is used. Because the silicone rubber

has a high resistance to impacts and a good resistance to the stresses that will occur

on the board, it is the most viable option. The ultimate bonding strength is measured

to be 150lbs/inch of width. Figure 36 below shows the final iteration of the casing.

Figure 19: Final Housing Design; Ski, Snowboard, and Skateboard

The fully dimensioned final casing is shown in Appendix 8.

In order to access the power button to turn on the battery, a hole hovering over

the button is drilled. The reason for this is so that the top of the casing does not have

to be removed to turn on the system. This is a clean hole with no threads in order to

allow a pin that is to be machined with the lathe, to freely slide vertically. The pin

design is a cylinder with a wider but shorter length cylinder base at the bottom, which

measures slightly smaller in diameter to the diameter of the power button. The longer,

thinner top cylinder of the pin travels through the hole in a tight fit, with the other half

of its length poking over the top of the casing’s ceiling. This creates a simple fixed

mechanism that is restricted to only moving up and down. The material used is

Teflon. This material was selected among other poly-carbonates because of its soft

texture, as well as its extremely low coefficient of friction making it effortless for the

owner of the product to push the pin down. The top of the pin is also chamfered

around the edges in order for the user’s fingers to avoid sharp edges. This button is

pictured in Figure 37 below.

 34

Figure 20: External Power Button for Casing System

Final developed housing pictures are shown in the Figures on the page below.

Figure 38 shows a top view, Figure 39 shows a side view, Figure 40 shows a back

view, and Figure 41 shows an isometric view. Mechanical drawings are in appendix

8.

 35

Figures 21 and 22: Top View (Left) and Side View (Right)

Figures 23 and 24: Back View (Left) Isometric View (Right)

36

Chapter 6: System Integration and Testing

For testing the prototypes and the final product, various components and their

functionality are tested so that they fall within acceptable ranges of the benchmarks set

initially. This includes testing of the individual sensors, their connections to the

microcontroller and the LCD screen, and the integrity of the external sensor housing.

These categories determine whether or not the prototype is fully functioning or whether

there is a flaw in the design.

 The first components that are tested are the housing and casing for the external

sensors. This is an essential part of the system, as it contains a multitude of essential

components. Therefore, the housing and casing need to be able to withstand severe

impacts, loads, shearing forces, and torsional forces. These are tested for through a

simulated test via SolidWorks. It also has to be waterproof as well as resistant to

condensation internally to ensure the sensors inside the casing will not be damaged by

any moisture source. The second testing runs the system on a vibration table. This

particular test is conducted by simply lowering the interior temperature of the casing

from a higher ambient temperature. To do this, the casing is placed into a freezer, whose

temperature is controlled, and records the temperature change until it reaches steady state.

Lastly is the dynamics test, using an accelerometer within the casing to record the forces

in the x, y, and z direction. This is used to determine what motion the casing and sensors

are undergoing. This could be anything from a jump, spin, or a turn. It also required not

only the use of a snowboard but a skateboard as well.

Section 6.1: Casing Finite Element Testing

 The housing and casing for the external sensors are an essential part of the

system, as it protects a multitude of components. It acts as the only barrier between the

chaotic, fast paced outside environment and the set of sensors and chips delicately

interwoven together on the inside. Therefore, the housing and casing need to be able to

withstand severe impacts, loads, shearing forces, and torsional forces. It also has to be

waterproof as well as resistant to condensation internally to ensure the sensors inside the

casing will not be damaged by any source of moisture. For the purpose of staying on the

safe side, a load force of 100 N is selected for this test, which was a value believed to be

within safe parameters to identify areas of probable failure within the designs. A more

37

realistic value would be 686 N or more (the equivalent of a person weighing 155 lbs or

more standing on the case). This is done in order to simulate the more extreme impact

scenarios such as having the snowboard fly off of the rider’s feet, or having the board and

casing slam into a tree or park features. Although the entire casing will be analyzed, the

projected primary location of weakness will be directly in the center of the top of the

casing, a location that has a distance furthest away from any support. This will be a

highlighted area of concern. Considering the thickness of the top of the casing translates

to 4.826 millimeters from .19”, a reasonable breaking point deflection lies in the 1

millimeter range. The point of failure lies around a millimeter of displacement as a result

of acrylic’s correlation to glass. At the same thickness of .250”, glass and acrylic sheets

underwent several different weighted dropped ball tests. The results consistently had the

acrylic being 18.2 times stronger to impact than the glass. Considering that the glass

fracturing point was a .003 mm deflection, a deflection of .054mm by comparison is

needed for the acrylic to feel that same force. Using these deflection distances to the

material thickness as a ratio, the calculated deflection needed to fracture the acrylic is

determined. The force 100 N still remains on the lower side for these scenarios, but there

has to be some shock absorption material within the case if the housing experiences a

higher force we did not anticipate. As long as the resulting deformation is not anything

major to the point of crippling the casing, it will be considered a success.

Finite element analyses were then conducted to test the durability of the casing we

manufactured. This includes applying loads vertically onto the upward faces of the

casings, as well as horizontal loads. The deflection and stress are then simulated for an

applied load on the tops as well as the sides of the casings. This is done for both the

square and hexagonal base preliminary casings as well as the final snowboard casing. The

100N force is then applied with uniform distribution over the domed surface on top. This

is to simulate if an object impacted the casing from the top directly onto the casing. A

simulation is also done on to simulate if the same load is applied to one of the horizontal

faces on the base of the casing, simulating an object striking the side of the casing. This is

done assuming the casing is created out of acrylic plastic, who’s material properties make

it ideal for objects that need be impact resistant. Table 4 below shows the material

properties for Acrylic Plastic.

38

The free body diagram in Figure 16 on the page below illustrates the type of

loading as well as the fixtures on the casing. As shown, the load is uniformly applied

Table 5: Material Properties for Acrylic Plastic

to the domed surface of the casing, normal to any given point on the domed surface. The

fixtures, illustrated by the green arrows, show where the casing is supported. These are

the base and the dome support, which is a vertical support in the center of the casing to

provide additional support at the weakest part of the dome.

Figure 25: Vertical Loading Free Body Diagram

 As seen from the diagram in Figure 16 and where the applied loads and fixtures

are located, several predictions are made as to what the simulation would look like. For

the displacement done by the vertical loading, it is predicted that the maximum amount of

deflection will not occur at the center of the dome because of the center support in the

middle of the casing. Therefore, maximum deflection will occur in a circular location

around the center support. This is true for both casings as they both contain a central

support for the dome. As for the horizontal loading on the rectangular face of the base,

the load makes the casing deflect most of the force towards the upper portion of the

horizontal face as the bottom of the base is fixed.

Acrylic Plastic

Young’s Modulus (N/m
2
) 3 x 10

9

Poisson’s Ratio 0.35

Shear Modulus (N/m
2
) 8.9 x 10

8

Density (kg/m
3
) 1200

Tensile Strength (N/m
2
) 7.3 x 10

7

Yield Strength (N/m
2
) 4.5 x 10

7

39

 When considering stresses, the pattern of stress concentration follows the similar

trend of the displacement. For a vertical loading, the maximum stress occurs around the

central support, but not where maximum deflection occurs. It is more likely to be closer

to the top of the dome. For the horizontal loading, the maximum amount of stress most

likely occurs toward the bottom part of the rectangular face. This occurs because of the

deformation, the stress concentration moves towards the fixed surface, which in this case

is the bottom base.

In doing the analysis for stress and deformation, two sets of equations had to be

defined, one for the vertical loads and one for the horizontal loads. For the vertical

loading, the equations used to determine stress and displacement are those of a simply

supported circular plate, given as:

𝛿 =
𝐹0(𝑎2−𝑟2)

64𝐷
(

5+𝜐

1+𝜐
𝑎2 − 𝑟2) (eq. 1)

𝜎𝑚𝑎𝑥 =
3

8
(3 + 𝜐)

𝐹0𝑎2

𝑡2 (eq. 2)

where F0 is the uniformly distributed load, a is the maximum radius, r is the given radius,

D is the flexural rigidity, 𝜐 is Poisson’s Ratio, and t is the thickness of the plate. For the

horizontal loading, the equations used to determine stress and displacement are those for

a simply supported rectangular plate, given as:

𝛿 =
𝐹0

24𝐷
(𝑥4 − 6𝑎2𝑥2 + 5𝑎4) (eq. 3)

𝜎𝑚𝑎𝑥 =
0.75𝐹0𝑏2

𝑡2[1.61(𝑏
𝑎⁄)

3
+1]

 (eq.4)

Where a is the length of the plate, b is the width of the plate, and t is the thickness of the

plate. The reason 𝜎𝑚𝑎𝑥 is used is so that the key interest in the stress analysis is to

determine if the stress will exceed the criteria for a safe product, therefore only the max

value is required to determine this.

 For the preliminary casing designs, the finite element analysis shown in Figures

17 and 18 revealed the behavior that would be expected while undergoing loading.

As seen from Figures 17 and 18, the majority of the displacement and stress from

the vertical loading occurred around the central support of the casing. Also, from the

40

simulation, it is found that the max displacement is 0.00086mm and the max stress is

207959 N/m
2
. As both of these parameters are within the failure criteria, this simulation

is considered successful. The preliminary hexagonal casing had a similar behavior, but is

within the safe failure criteria as shown in Figures 19 and 20.

As seen in Figures 17 and 18, the majority of the stress occurred towards the

bottom of the rectangular face and the maximum displacement occurred at the top edge of

the casing, especially towards the outer corners. It is determined that the maximum stress

from the simulation is 996427 N/m
2
, and the maximum deflection is 0.00048mm, which

both are within the failure criteria.

By doing these preliminary casing analyses, several key aspects about the

behavior of the material and design is determined. From doing the four simulations, two

for the rectangular and two for the hexagonal casing, it is determined that the results are

reasonable and within the failure criteria. None of the simulations exceeded the failure

limits of 1mm or 4.5 x 10
7
 N/m

2
 for displacement or stress, which are based upon the

material properties of acrylic. From these simulations, there are several areas of interest

that could be discerned from the models. The first is the amount of stress that

Figure 26: SolidWorks Stress Analysis for Vertical Load on the Preliminary Square

Casing

41

occurred when applying a horizontal load to the square casing. While it did not exceed

the failure limit, it is the closest to it by far. While it may not damage or cause any

permanent deformation to the casing, the amount of stress could indicate that it might be

easily removed from its adhesive base, dislodging the entire casing. This is particularly

worrying because the stress is mainly concentrated towards the bottom edge of the

casing. Another area of concern is the deflection that occurred when applying a vertical

load to the hexagonal casing, which achieved the greatest amount of deflection in any of

the simulations. While it only achieved a deflection of 0.0147mm, it undeniably

illustrates a problem area in the design. The major concern would be if a heavier load is

applied or if the load is a concentrated-point load. This would magnify these parameters,

and could eventually lead to failure.

Figure 27: SolidWorks Displacement Analysis for Vertical Load on the Preliminary

Square Casing

42

Besides those few problem areas, the majority of the analysis showed that the

casings are structurally sound and will not fail while undergoing a 100N load. The most

important result in this experiment is that the casing will not break open during this

extreme scenario, in order to preserve the electronics and its vulnerability to snow.

However, there are still several areas that could do with refinement or improvement to

ensure that the casing is able to handle even greater loads, and minimize the risk of

failure. The first improvement that could be done would be to add additional supports in

the casing under the dome. This would minimize some of the more extreme areas of

deflection, but could lead to stress concentrations around the supports, creating more

potential areas of failure. Another improvement would be to change the type of material

used that has a higher tensile strength and yield strength.

Figure 28: SolidWorks Stress Analysis for Horizontal Load on the Hexagonal

Casing

43

This would limit deflection, but could raise the change impact fracturing, as raising the

yield and tensile strength could cause the material to become brittle. Another option

would be switching the material from plastic to metal, but metal would be heavier, more

susceptible to permanent deformation, and would create other modes of failure, such as

corrosion.

A finite element analysis is then conducted on the third iteration of the casing

design to see how that would behave under loading. To do this, several sections of the

casing are selected and then had loads applied to them as shown in Figures 21 and 22.

The two that are looked at are the top of the electronics portion of the casing, and the

arced wall of the electronics casing.

Figure 29: SolidWorks Displacement Analysis for Horizontal Load on Hexagonal

Casing

44

Figure 30: SolidWorks Displacement Analysis for Horizontal and Vertical Load on

Final Casing

 Figure 31: SolidWorks Stress Analysis for Horizontal and Vertical Load on Final

Casing

 In conclusion, there were more weak areas found that anticipated in some of the

prototypes. However, they are negligible considering that the greatest point of deflection

was at .0147mm. This is well below the point of failure that was calculated at around 1

mm, a point that would cripple the housing. Although cracking will come from these

types of impact forces, the more important result is that the housing does not collapse

onto itself, and then expose the expensive internal system that is viable to damage once

it’s exposed.

Section 6.2: Thermal Testing

 Heat plays a major role in the functioning of electronic components, and can be

the cause of failure and inaccuracy. As such, many electrical components have a set range

45

of temperature that they can operate within. For example, an Apple product, such as an

iPhone, operates between temperatures of 32 and 95
o
F (0 to 35

o
C), and in the case that

the temperature of the device exceeds either of these boundaries, the devices will shut

down to protect itself. The main reason for this is the effect that temperature has on

electrical current. In cold temperatures, the flow of electrons slows, which in the case of a

battery means that the battery has more time to release its charge, thus leading to a

quicker draining of the battery. This affect can vary from having a minimal to severe

impact on battery life. Another effect is that at colder temperatures, condensation may

also occur, which can damage any electrical device. The goal of this test is to determine if

cold temperatures will adversely affect the sensor system and cause damage or decreased

performance. The most essential and vulnerable component to powering the sensor

system is the battery, and therefore is required to successfully function among the coldest

temperatures that can occur during snowboarding. This low temperature requirement is

negative 8 degrees Celsius, 1 degree lower than the lowest average temperature for

weather in Tahoe.

 This test is conducted by simply lowering the interior temperature of the casing

from a higher ambient temperature. To do this, the casing is placed into a freezer, whose

temperature is controlled, and records the temperature change until it reaches steady state.

There is also a time component as well, where the casing is exposed to cold temperatures

for an extended period of time to see if the prolonged exposure will have any effect, as

well as determine the longevity of the battery at those conditions. The sensors are also

observed frequently to determine if any of the components fail or malfunction due to the

cold temperature.

 Before the test is actually conducted though, there are several concepts and

theoretical calculations that must be done. The first is the concepts of heat transfer and

heat loss, which is the transfer of thermal energy from one surface, fluid, etc. to another.

This generally entails that heat energy is lost by one source and gained by another until it

reaches a state of equilibrium. The rate of heat loss is what determines how quickly an

object or surface cools or heats up. This is dependent on several factors, such as heat loss

due to conduction through the material, and heat loss due to convection from air hitting

the surfaces of the case.

46

 The first type of heat loss, conduction, describes the transfer of thermal energy

through a material or materials. This rate of heat loss is determined by several factors,

such as thermal conductivity (k), the area of the materials (A), the thickness of the

material (d), the hot temperature (Th), and the cold temperature (Tc). These relationships

are described by the equation:

�̇� =
𝑘𝐴(𝑇ℎ − 𝑇𝑐)

𝑑

where Q̇ represents the rate of heat transfer. To do this calculation, several of these

parameters had to be taken from material properties and conditions of the experiment,

shown below in Table 5.

Table 6: Material Properties and Measurements

Abase = Atop (m
2) 0.2603

Awall (m
2) .0097

Atoe (m
2) .0051

Atotal (m
2) 0.2751

kacrylic (W/moK) 0.2

krubber (W/moK) .13

dbase=dwall=drubber (m) .0025

dtoe (m) .0635

Th (
oC) 27

Tc (
oC) -8

Abase is the area of the base of the casing, which is also the same area as the area

of the rubber pad. Atop is the area of the top of the casing, which is equal to that of the

area of the bottom of the casing. Awall is the area of the surrounding side wall of the

casing. Atoe is the area of the front toe piece. The two thermal conductivity numbers are

for acrylic and rubber, as they have different thermal properties. The thickness of the base

piece (dbase) is the same as the thickness of the sidewall and the rubber pad. The thickness

of the toe piece (dtoe) is larger than the thickness of the other pieces (0.0635m). Figure 18

shows the hot to cold temperature change, (Th, Tc) represent the temperature change from

27
o
C to -8

o
C.

After the material properties and temperature changes are determined, the rate of

heat loss is calculated for each section: the top, base, rubber pad, toe piece, and the side

wall. This is then summed to give an overall rate of heat loss due to conduction. As seen

47

from Table 6 on the next page, the piece with the least amount of heat loss is the toe

piece. This can mainly be attributed to the increased thickness of the material. The two

pieces that have the greatest rate of heat loss are the base and top pieces, with a rate of

875 watts. This value is less than the rate of heat loss of the rubber because of the less

thermal conductivity that the rubber has when compared with acrylic. The rates of heat

losses are then summed to give a total rate of heat loss of 2324 watts (2.324kW).

The second type of heat loss is heat loss due to convection, which is the transfer

of thermal energy due to the flow of fluids/gases. This is generally one of the more

dominant forms of heat transfer, especially when dealing with structures in contact with a

moving fluid. This type of heat transfer is described by the equation:

�̇� = ℎ𝐴(𝑇 − 𝑇∞)

where h is the convective heat transfer coefficient, A is the area of the surface of

the structure, T is the temperature of the object, and 𝑇∞ is the surrounding temperature of

the environment. This relationship though, is dependent on the convective heat transfer

coefficient, which varies according to certain conditions.

Figure 32: Temperature Changes Within Casing To Equilibrium

27

-8
-10

-5

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
e

m
p

e
ra

tu
re

 (
C

e
lc

iu
s)

Time (s)

Heat Transfer Test

48

Table 7: Heat Losses due to Conduction at t=0

�̇�base = �̇�top (W) -728.84

�̇�rubber (W) -473.75

�̇�toe (W) -0.56

�̇�wall (W) -27.16

�̇�total,cond (W) -1959.15

 The convective heat transfer coefficient relies on two conditions: whether the

fluid (in this case air) is flowing against a vertical or horizontal wall, and whether the

flow is turbulent or laminar. For the case of this test, assuming that the flow is laminar

and that two separate case distinctions are calculated: one for a vertical wall and one for a

horizontal wall. For a vertical wall, the equation to determine the convective heat transfer

coefficient is:

ℎ𝑐𝑜𝑛𝑣,𝑣𝑒𝑟𝑡. =
𝑘

𝐿
(0.68 +

0.67𝑅𝑎𝐿

1

4

(1 + (0.492/𝑃𝑟)
9

16)

4

9

)

where k is the thermal conductivity of the object’s material, L is the characteristic length,

𝑅𝑎𝐿 is Rayleigh number (dimensionless value associated with buoyancy driven flow),

and Pr are Pr and tl numbers (ratio of viscous to thermal diffusivity). This equation is

dependent on the following factor, though: Rayleigh number. Rayleigh number generally

determines whether or not a fluids flow is turbulent or laminar. For a vertical wall,

𝑅𝑎𝐿 ≤ 109is considered to be laminar flow. Anything greater than that is considered to

be turbulent flow (for flow over a vertical plate). To find Rayleigh number, two other

equations must be used:

𝑅𝑎𝐿 = 𝐺𝑟𝐿𝑃𝑟

𝐺𝑟𝐿 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)

𝛾2

49

where 𝐺𝑟𝐿is Grashof number (dimensionless number, approximates ratio of buoyancy to

viscous forces), g is the acceleration due to Earth’s gravity, 𝛽 is the thermal expansion

coefficient, and 𝛾 is kinematic viscosity (ratio of dynamic viscosity to density of fluid).

Using these equations, the convective heat transfer coefficient is found for a vertical wall.

 In the case of a horizontal plate, the conditions and equations change accordingly.

To find the heat transfer coefficient, the equation depends on the Rayleigh number. In the

case of the horizontal plate, the Grashof number must be found and then determine the

Rayleigh number to define the equation for the horizontal heat transfer coefficient. In the

case of the horizontal plate, the Rayleigh number satisfied the condition of 105 ≤ 𝑅𝑎𝐿 ≤

2 × 107, which gives the equation:

ℎ𝑐𝑜𝑛𝑣,ℎ𝑜𝑟𝑧. =
𝑘0.54𝑅𝑎1/4

𝐿

This will give the convective heat transfer coefficient for laminar flow over a horizontal

plate.

Once these equations, variables, and properties (shown in Table 7 on the next

page) are determined, the rate of heat loss could be calculated. As seen from Table 8, the

greatest heat loss came from the airflow over the top of the casing (63 watts). The heat

loss from the other sections (toe piece and wall) is minimal in comparison with the heat

loss from the top of the casing.

Table 8: Material and Fluid Properties

ɤair, 0
o
C (m

2
/s) 9.49 x 10

-6

α (m
2
/s) 15.67 x 10

-6

β(1/
o
K) 3.67 x 10

-3

hconv,vert. (W/m
o
K) 9.7562

hconv,horz (W/m
o
K) 6.3890

Prair, 0

0.715

ko (W/m
o
K) 0.0243

50

Table 9: Heat Losses due to Convection and Total Rate of Heat Loss At t=0

�̇�top (W) -63.26

�̇�toe (W) -2.12

�̇�wall (W) -4.04

�̇�total,conv (W) -69.43

�̇�total (W) -2028.58

In conclusion, it was determined that the sections that were most vulnerable to

heat loss were the top and walls of the casing. The anticipated thermal weaknesses of the

top and walls of the casing is not enough to disrupt the entire system. The casing as a

whole provided a strong enough barrier to prolong the amount of time it took the weather

to fully infiltrate the interior, taking over 2 hours to fully influence the inside. Even more

revealing is how the heat transfer seemed to plateau just below zero degrees Celsius. The

interior of the casing drops from 27 degrees to negative 3 in about an hour, and then it

takes the same amount of time to get from negative 3 degrees to negative 8. This shows

how much harder it becomes to transfer heat, even from the vulnerable top of the casing,

once it gets around zero degrees. Fortunately, for this Raspberry Pi battery, it sports a

functional temperature range as low as negative 20 degrees Celsius. Based off of how

easily it adapted to the temperature at negative 8 degrees Celsius, this test successfully

displayed the system’s ability to handle the rigors of extreme cold weather that is

experienced in snowboarding environments. In the future, if it was decided that insulation

would be needed to help regulate the heat loss through the casing, insulation would be

added to the most vulnerable areas that were determined in this test, the top and walls of

the casing.

Section 6.3: Vibration and Damping Testing

 The goal of the vibration test is to determine what kind of acceleration and forces

the system will be subjected to due to vibrations, what kind of effect it has on sensors,

and whether or not damping is required to reduce the forces on the sensors. This is an

essential test, as the casing will have to undergo various forces and torques, which could

harm the system. This will also be evaluated at the test’s result.

51

 The main goal of damping is influence the oscillation by reducing or restricting

vibration. There are several types of damping, which range from mechanical, musical, to

structural, etc. The type that is linked to this test is structural damping by the application

of using a rubber pad between the base piece of the casing and the bottom of the side wall

of the casing. This is done to insulate the sensors and electrical components from the

vibrations, which will absorb some of the forces and reduce the amplitude of the

oscillating forces. The question, though, is how much damping would it provide, and is

damping necessarily required? To understand this, some relationships have to be

clarified.

 Force is generally described by the equation:

𝐹 = 𝑚𝑎

where F is the force, m is the mass of the object, and a is the acceleration. However, in

the case of force damping, the relationship becomes:

𝐹𝑑 = −𝑐𝑣

where 𝐹𝑑 is the damping force, c is the damping coefficient, and v is the velocity of the

object. The damping coefficient is the main factor that will determine how much damping

will occur, which varies depending on the type of material that is used. In the case of this

test where rubber is the material that is being used as a damper, the damping ratio ranges

anywhere from 0.01 to 0.08.

 Oscillations generally follow simple harmonic motion, generally displayed as a

sinusoidal wave.

Figure 33: Sinusoidal Wave Displaying Amplitude and Wavelength

52

In the case of a vibration, the motion of the object would follow such a pattern as

shown in Figure 24, elevating to a max peak and dipping to minimum amplitude. The

acceleration follows a similar pattern, except as a cosine wave, with max acceleration

occurring at the initial time. With this in mind, there are two possible types of system it

could be: a 1
st
 Order system (defined by a single parameter and a forcing function f(t)),

and a 2
nd

 Order system (defined by two state variables and a forcing function f(t)). In the

case of this particular test, the vibration will resemble a 2
nd

 order system, as it will

depend on two state variables: the spring constant (k) and the damping coefficient (c).

The equation then becomes:

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡)

where m is the mass of the object, c is the damping coefficient, and k is the spring

constant. These two variables are then determined by two equations:

𝑘 =
𝑚𝑔

𝑥

where m is the mass of the object, g is the acceleration due to gravity, and x is the

extended length of the spring, and

𝑐 = 2√𝑘𝑚

where c is the damping coefficient. Using these values, along with the measured mass of

the casing, the force of vibration, acceleration, and damping are predicted. Figure 25

below shows the experimental vibration test setup.

Figure 34: Illustration of Vibration Test

53

Figure 26 on the page below represents the acceleration responses during the test, one

that has an accelerometer attached to the sensor casing and another that has an

accelerometer attached directly to the board. As seen from the accelerometer that is

attached to the sensors, it has significantly smaller amplitude than that of the

accelerometer attached to the board, which indicates that there is some damping that is

occurring. The peak acceleration value of the sensors is 0.218g and the peak

Figure 35: Sensor Acceleration Data Due to Vibration and Board Acceleration Data

Due to Vibration.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 200 400 600 800 1000 1200

A
cc

e
le

ra
ti

o
n

 (
g

)

Time (ms)

Acceleration of Sensors

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 200 400 600 800 1000 1200

A
cc

e
le

ra
ti

o
n

 (
g

)

Time (ms)

Acceleration of Board

54

that is occurring. The peak acceleration value of the sensors is 0.218g and the peak

acceleration of the board is 0.289g. This is a 24.6% reduction in acceleration, which is a

significant amount of force reduction and damping.

Figure 36: Attenuation of Vibration Data

This can also be shown as a ratio by comparing the two data groups from the two

accelerometers. This is known as the attenuation of the two responses. Its main use is to

determine the reduction of forces in situations such as the vibration/damping test. As seen

in Figure 27, the attenuation varies with time and is not constant. Most of the data points

that show the attenuation are usually within the range of less than +/- 1, which indicates a

reduction in force. However, there are several data points, which are greater than +/- 1,

which indicates an increase in force. The explanation for this is that the data readings

must have been out of phase with each other, which would allow for a ratio greater than

+/- 1. With these values, as well as those determined from the dynamic testing, it can be

concluded that the sensors and casing are not in any danger of becoming damaged or

destroyed.

Section 6.4: Dynamic Testing

The ideal functionality of the accelerometer peripheral is to identify a trick made

based on the movement data interpreted by the sensor. Distinguishing exactly between

the many possibilities of movement for tricks requires some precise processing and data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80

A
v

e
ra

g
e

 A
tt

e
n

u
a

ti
o

n

Frequency (Engine Speed)

Attenuation Relationship With
Vibration Frequency

55

parsing methods that are beyond the scope of our team for this project. However, it is still

possible to determine useful movement information as an essential design component,

and gathered what information could be managed.

This could be anything from a jump, spin, or a turn.

It also required not only the use of a snowboard but a skateboard as well. The

testing comprised of 6 different sets of testing: static drop test, shake test, snowboard

jump and spin test, and a skateboard jump and spin test. The static drop test is done be

simply taking a snowboard with the casing attached and dropping it from a height of

1.5m and measuring the impact acceleration. The shake test is comprised of shaking the

snowboard and casing attached from a static position. The snowboard and skateboard

jump test consisted of attaching the sensor system to a skateboard and snowboard,

jumping twice, and recording the acceleration on impact. The 180
o
 spin test consisted of

conducting a 180
o
 spin twice on the skateboard and snowboard. The first spin is be 180

o

in the counter clockwise direction and the second spin is in the clockwise direction.

Figure 37: Acceleration Data for Static Drop Test

 In the static drop test shown in Figure 28 above, the expected acceleration that is a

negative value in the z direction, which would be followed by a sharp spike in

acceleration at the moment of impact. In the case of this test though, we see that there is a

56

negative value in the z direction, but at the point of impact, there are two positive spikes

in acceleration in the x and y directions, not in the z direction. This is contrary to what is

predicted. The explanation for this is that the snowboard did not land on its bottom

surface evenly. Instead, it landed on one of its edges, which would give values in x and y

direction. From the point of impact, the largest acceleration is 1.15g in the y-axis. The

second spikes in acceleration after 1.5 seconds are secondary impacts from when the

board rebounded and hit the ground again.

Figure 38: Acceleration Data for Static Shake Test

 In the static shake test shown above in Figure 29, the board is shaken first in the x

and y-axis, and then for an intermittent period in the middle in the z-axis. This test is

done mainly to demonstrate that the sensor system accurately reads acceleration data over

a certain period in 3 axes. As the data shows, from 0 to 2.2 seconds, the case is shaken in

the x and y axis, producing the positive and negative cycles in acceleration. From 2.5 to

3.5 seconds, the rise in acceleration in the z direction and the decrease of values in the x

and y direction clearly indicate the transition from shaking the case in the horizontal

plane to shaking in the vertical direction. This then transitioned back into shaking in the x

and y directions.

57

Section 6.5: Sensor Testing

 While integrating the different components of the electrical subsystem into the

GUI running on the LCD, there are a few design problems we encountered which we

needed to find solutions to. The first of these design snares came from realizing that the

AREF pin (analog reference), against which the Arduino compares the voltages at the

analog input pins, is required by the gyroscope but physically taken up by the 2.8” TFT

LCD screen. This requires a software workaround by adding lines to manually scale the

inputs coming from the gyroscope module. Unfortunately, by forcing this solution in

software by simply scaling the inputs, accuracy could be lost by not using the exact

reference voltage provided by the gyroscope peripheral. The accuracy of the gyroscope,

even with a totally ideal calibration, is still only accurate to about +/- 10 degrees. This is

a major way in which future revisions to the system would need to be made to improve

the overall data coming from the gyroscope potentially using slightly different hardware.

Table 10: Sensor System Test Data

 Accuracy of the various components is tested by comparing the values as

displayed by the device against those measured using reliable instruments. The

temperature sensor is found to be accurate to at least .5 degrees Fahrenheit. The pressure

sensor is accurate to within ~1 kPa as compared to reported local weather conditions. The

GPS relies on satellites for accuracy, but given a good connection, it is accurate to 4

decimal places on longitude and latitude, within ~.3 to .5 mph, and conveys accurate date

and time information.

 57

Chapter 7: Jump Tests and Data Analysis

Section 7.1: Interpreting the Accelerometer Information

 In order to extrapolate useful information from the accelerometer peripheral, we

transferred the excel spreadsheets into Matlab in order to work with the numbers directly

to see what can be determined from them. The first column of the graph represents the

timestamp associated with the sample in milliseconds; the next three columns correspond

to the X, Y, and Z-axes. Using Matlab, we wrote a script centered around a useful

function, ‘xlsread’, which can read a specified column from an excel spreadsheet and

import it as an array. By summing the acceleration over the whole sample for each axis,

we could get an idea of the move represented by the data, which correlated to the known

test carried out.

 When opening up the arrays of data in Matlab to look for trends, there were a

number of effects in the data that matched expectations of the trick. When executing a

simple jump on a snowboard or skateboard, there were observation forces of the largest

magnitude at the z-axis. Z forces during a skateboard jump were 2 to 4 times greater than

those of a snowboard jump. This is in line with expectations, as a skateboard requires a

sharp striking of the ground to jump whereas a snowboard uses a more gradual spring-

like action.

The first dynamics test carried out was the vertical drop test. By summing the

outputs of the axes in Matlab, a net impact in the z direction with a moderate magnitude

was observed. There was also a substantial clockwise twist after impact represented by a

positive reading on the x-axis and a negative reading on the y-axis. It is not as substantial

as the jump and turn readings, being just a minor deflection from the drop, but it shows

up in the data.

After writing the initial code to calculate the sum of the axis values for the X, Y,

and Z-axes of the accelerometer, to determine the net direction of the forces, we then

modified it to generate a rough calculation of the time boundaries of the Z impact. The

goal was to determine when the Z value on the accelerometer would begin climbing, and

again when it was nearly done. This method gave us a reliable time window on the jump,

because the forces register as huge spikes at the beginning and end of the jump.

 58

 The method we used for this was simply running two sums scans for the z-axis.

The first sum scan generates the total z value experienced in the movement. From there,

it calculates a second sum that is, at each step, compared against the original sum to

determine when it was 10% of the way toward the sum, and again for 90% of the way

toward the sum. This value is then scaled by 120% to make up for the two missing 10%

sections. Despite the crude nature of this calculation, it provides a decent gauge of the

time window, accurate to within 10%, because the impacts experienced are rather sharp

on the Z-axis for jumping the board. Sample Code is shown below, the rest of the code is

listed in Appendix 6.

Matlab Code example

filename = 'SnowJump1.xlsx';

xSum = 0;

ySum = 0;

zSum = 0;

zScan = 0; %second sum to be calculated to get bounds

zMax = 0;

tStart = -1;

tStop = -1;

tData = xlsread(filename,'A:A'); %time, first data column

xData = xlsread(filename,'B:B'); %x axis, second column

yData = xlsread(filename,'C:C'); %y axis, third column

zData = xlsread(filename,'D:D'); %z axis, fourth column

for i = 1:size(xData)-1

 if(abs(zData(i))>zMax)

 zSum = zSum + abs(zData(i));

 end %this loop establishes the total z value

end

for i = 1:size(xData)-1

 zScan = zScan + abs(zData(i));

 xSum = xSum + xData(i);

 ySum = ySum + yData(i);

 if(abs(zScan)>abs(.05*zSum) && tStart == -1)

 tStart = tData(i);

 end

 if(abs(zScan)>abs(.95*zSum) && tStop == -1)

 tStop = tData(i);

 end

end %this loop sums the x,y axis data and looks at the z

data to determine approximate bounds

tJump = tStop-tStart; %subtracts to determine jump window

 59

Section 7.2 Data Graphs and Matlab Results

 We transferred samples of information from the performed tests as data arrays

from the Arduino using a third-party data program called CoolTerm. We were able to

open these results up as excel spreadsheets and render graphs from the data arrays. The

following graphs show the X, Y, and Z acceleration samples over time. The graphs each

consist of roughly five hundred data samples taken over the course of about seven

seconds.

Figure 39: Acceleration Data for Snowboard Jump Test

The snowboard jump test involved a basic jump on the snowboard without any

twist. The sensor data registered a moderate impact along the z-axis, and only very slight

deflection in x and y.

In the snowboard jump test shown in Figure 30 above, the data that is expected to

be seen are sharp spikes in the z direction of acceleration on lift off and impact, with

some residual acceleration in the x and y axis that occur from not landing or taking off

perfectly vertically. As seen from the data, the greatest amount of acceleration is in the z-

axis, which accounts for the vertical acceleration. This occurred for both jumps. The

largest acceleration seen during the test is 5.54g in the z-axis. This shows us that the

accelerometer selection was ample and appropriate given its range of +/- 16g.

 60

We opened up the snowboard jump script in Matlab (snowjump1.m) which

accesses the data arrays as laid out in the excel spreadsheet/graph (snowjump1.xlsx).

When we ran the script, it output data consistent with what we would expect from the test

and from looking at the graph. After analysis of the 450 samples in the data array, it

registered a takeoff time of ~1.308s into the test and a landing time of ~4.032s, which

translates to a 2.724s time window on the jump. This is pretty much in line with what we

would expect from the graph.

Figure 40: Acceleration Data for Skateboard Jump Test

 In the skateboard jump test shown in Figure 31 above, the expectation is that there

is similar data to that of the snowboard jump test, except that there is more residual x and

y acceleration, likely due to the fact that the skateboard is in motion at the time of the

jump and after landing. As seen from the data, there is significant acceleration in the z-

axis, consistent with a lift and impact of a jump. There is also though a significant

amount of acceleration in the y-axis. This illustrates the acceleration that occurs on a

skateboard in the direction of horizontal motion, which in this case is forward in the

positive y direction. In physical terms, this means that at the impact of the jump, the

skateboard accelerated forward, as that is the direction of motion at the time of takeoff.

 61

 The expectations we had from analyzing the graph were again verified by the

Matlab analysis. The window on the jump runs from ~.935s to ~4.145s for a window of

3.210 seconds, as determined by analysis of the 403 samples. The forces on the x and y

axes registered minimal deflections, with roughly the same y impact and slightly more

impact on the x axis.

Figure 41: Acceleration Data for Snowboard Spin Test

 In the snowboard spin test shown in Figure 32 above, it is expected that there

would also be a significant acceleration in the z-axis, as the spin requires a jump to rotate

180
o
. There should also be a significant amount of acceleration in the x and y-axis. These

values depend on the type of spin though, and whether it is a spin in the clockwise or

counter clockwise directions. In the case of a counter clockwise spin, the acceleration

profile would be a positive acceleration value in the x-axis and a negative acceleration

value in the y-axis.

The snowboard spin test was a counterclockwise jump and turn of the snowboard,

which would result in a large negative x value and a large positive y value. When we

opened this up in Matlab we found results that confirmed this. The snowspin1.m script

registered a time window from ~1.150s to ~3.605s for a jump lasting 2.455 seconds. The

x value summed to a large negative value, with a large positive value in the y axis. The

 62

skateboard spin test is similar but again registers a greater force of impact at the z axis

than the snowboard does, this time roughly double, whereas the lateral forces are

relatively more moderate (about two-thirds in magnitude of the snowboard spin).

Figure 42: Acceleration Data for Skateboard Spin Test

 In the skateboard spin test shown in Figure 33 above, it is expected to see similar

results to that of the snowboard spin test. The Matlab analysis determined as expected

that this registers as a spin and jump with a time window of 3.210 seconds ranging from

~.935s to ~4.145s. These values match what we would expect from the graph, and from

our knowledge of the test.

 Given the reliability of these calculations matching what we would expect, we can

conclude that we have effectively designed a form of trick analysis from the

accelerometer data. We have shown that our Matlab analysis technique is effective at

determining the presence of a spin, and the time window during which a jump occurs for

either a snowboard or skateboard. This technique would not prove as effective for skis

however, because skis do not jump by a sharp impact slapping against the ground to take

off, and the graphs would likely not register such tidy spikes around the time window.

 63

Chapter 8: Business Plan

Section 8.1: Introduction

Skiing, snowboarding, and skateboarding are three of the most popular action

sports, attracting more than 90 million participants in North American, alone

(Statista). Because there is such a great and international interest in these action

sports, companies invest heavily in research for new technology to bring the newest

and best gear to athletes every year. Such new gear varies greatly, ranging from ski

and snowboard designs to the development of protective gear. Presently, with the

advancement of computer technology, electronic devices have found their way into a

variety of sports. Today, the up-and-coming technology for athletes is sport sensor

systems, which track a user’s performance and maintaining record of their statistics.

Creating and designing this new technology allows competitors and enthusiasts alike

to track information and metrics on their performance such as speed, range of board

movement, and the effects of elevation change. For actions supports, like skiing,

snowboarding, and skateboarding, there are few options available for their athletes.

In skiing, snowboarding, and skateboarding, there are specific types of data

that an athlete wants to track, the first of these being speed. However, recording one’s

speed is not merely enough. Being able to maintain a log of one’s speed at specific

points during the “run” is necessary in evaluating an overall performance. Secondly,

in order to determine how far an athlete, specifically a skier or snowboarder, has

descended on a run at a particular speed, data on elevation change and positioning

must be collected. This sort of data collection also helps in evaluating how much

airtime an athlete has following a launch or jump. The third piece of data collected is

time: how long a run took, overall time spent in practice, etc. Collecting the

temperature of the athlete’s environment follows, helping to evaluate if temperature

has a substantial effect on performance. Board flex is the fourth, and final, category

of data collection. Board flex is a tracking system for how much a user turns in

accordance to the amount their board or skis flex. Combining the above data allows

athletes, whether professional or recreational, to track their accomplishments while

enriching their overall experience. However, in order to acquire the desired data,

several sensors and electrical components are required: a global positioning sensor

 64

(GSP), an accelerometer, a temperature/pressure/altimeter multi-sensor, a

microcontroller, and bend sensors are such components.

In researching the current market, finding sensors used specifically for skiing,

snowboarding, and skateboarding yields very few products. Those that are available,

are yet to pass the prototyping stage and onto the market – leaving room for

innovative creativity and design. A team from Michigan State University, in

association with the Air Force Research Laboratory (AFRL), designed a number of

prototypes – with some including features such as a global positioning system (GPS)

(Bekkala); while Nokia, in collaboration with the action sport powerhouse Burton,

created a sensor system called PUSH Snowboarding – a system which monitors a

snowboarder’s ride speed, heart rate, “head rush” board orientation, and foot pressure

(“Nokia X Burton – TVCs”).

Section 8.2: Costing Analysis

 Creating an overall budget for the development of a prototype requires two

separate units. The first is the preliminary budget, shown in Table 9 which consists of

the components needed for the initial prototype design, their estimated cost, actual

cost, and pending expenses.

Table 11: Preliminary Budget for Prototype Costs

EXPENSES

 Category Description Estimated Spent Pending

Electronics GPS MTK3339 $ 30.00 $ 29.95

 Nike + Sensor $ 19.00 $ -

Olympus LI 42 B $ 12.00 $ 5.88

 Adafruit BMP085 $ 20.00 $ 9.95

 Adafruit Trinket 5v $ 8.00 $ 7.95

 BLE112 Module $ 14.00 $ 13.95

Casing Polycarbonate $ 10.00 $ - $ 10.00

 Adhesive Pad $ 15.00 $ - $ 15.00

Misc.

TOTAL $ 128.00 $ 67.68 $ 25.00

Net Reserve

(Deficit) $ (67.68) $ (25.00)

 65

 As the design changes, the budget updates in order to give an accurate final

budget for the prototype, as shown in Table 10. The primary changes consist of the

removal of the Nike Plus sensors, and the corresponding Bluetooth modules, and the

addition of the LDC display, bend sensors, and an upgraded Mega microcontroller.

Table 12: Final Budget for Prototype Costs

EXPENSES

 Category Description Estimated Spent Pending

Electronics GPS MTK3339 $ 30.00 $ 29.95

 LCD Display $ 25.00 $ 25.00

Raspberry Battery $ 30.00 $ 29.95

 Adafruit BMP085 $ 20.00 $ 20.00

 Adafruit Mega $ 25.00 $ 7.95

 Bend Sensors $ 14.00 $ 15.95

 Wiring $ 20.00 $ 19.95

Casing Polycarbonate $ 10.00 $ 10.31

 Adhesive Pad $ 15.00 $ -

Misc.

TOTAL $ 189.00 $ 159.06 $ -

Net Reserve

(Deficit)

 $

(159.06) $ -

Section 8.3: Company Goals and Objectives

The vision of this company is to develop a foundation of excellent product

quality while maintaining the customer’s needs, as well. As avid skiers,

snowboarders, and skateboarders, we know that the product has to withstand

hazardous and strenuous conditions as well as expected wear and punishment from

the users. Keeping this in mind, the company’s primary goal is to create a product to

withstand such conditions while maintaining quality performance. Second, it is

important for customer’s desires to be heard and implemented; and with that, the

 66

subsequent goal of the company is to utilize customer inputs to further improve and

develop the sensor system. Our customers are the reason we are in business.

Maintaining their satisfaction and listening to their desires is what drives the

motivation to create a high quality product.

Keeping these two goals in mind and using them as motivation, this company

sees itself in five years as a fully functioning company that manufactures and

produces 10,000 units every year. To successfully reach this vision, the product is to

be sold at a few select retailers and resorts as a testing period. In the following four

years, the distribution will expand to more retailers, with the production capability to

increase to an additional 5,000 units. Within the third and fourth years of production,

a second sensor system is to be developed, and during this time will undergo

prototyping to be introduced to the market and hold firm to a loyal clientele base, who

are interested in a company that is not afraid to grow within the ever growing, and

competitive, market.

Section 8.4: Product Description

The developed product is a sensor to be advertised on the commercial market

for skiers, snowboarders, and skateboarders that gives provides the data they desire;

such as speed, elevation, foot pressure, temperature, flex, acceleration, and position.

This is achieved by using a variety of sensors; including a GPS, flex sensors,

accelerometer, and more in order to provide the said desired data. The sensors are

placed in an external polycarbonate casing attached to the ski or board by using an

adhesive pad on the bottom of the casing. These sensors than transmit the data via a

microcontroller to either an LCD screen displaying a simple application or a memory

system, which then user can access and analyze using Matlab code to interpret

relevant data. Using this system, performance data was recorded to analyze tricks

such as spins and jumps.

The advantage of having such a sensor is that it is specifically designed for the

sports of skiing, snowboarding, and skateboarding. This meaning that the user would

not have otherwise useless information that they would receive from a sensor

designed for performance sports such as running, which might display data such as

‘Pace’ and ‘Lap Time’. The sensor system and its casing are also specifically

 67

designed to deal with the forces and stresses that this particular sensor system would

have to endure while being used. Therefore, it is able to operate well and provide the

user the desired data, no matter the conditions the user may find themselves in.

As of yet, there are no patent conflicts with the current sensor system. In the

future, a patent(s) is required.

Section 8.5: Potential Markets

 Currently, there is no other sport sensor system on the market that is

specifically designed for skiing, snowboarding, and skateboarding. The only

competition comes from large-scale GPS manufacturers, such as Garmin, who have

systems that only track performance and position through GPS. Therefore, there is a

great niche in the market that could be taken by this new product.

 As there is no existing sensor system currently on the action sport market, it is

difficult to tell who would be willing to buy a similar item, and how many of them be

sold. According to Garmin’s annual report for 2011, they sold approximately 16

million units, generating approximately $2.76 billion in revenue (Annual Garmin

Report). This, however, spans multiple products from automotive and marine GPS

units, to cycling and running units. In the first year, it is the goal of the company to

sell 10,000 units with the potential to add an additional 5,000 units at $160 a unit,

generating predicted revenue of $1.6 million. This is achieved by first selling at select

retailors and resorts within the United States and Canada. From there, continue the

production plan of 10,000 units per year with an additional 5,000, if possible, with a

second model due to be released in either the third or fourth year of production.

Section 8.6: Competition

Limited results are uncovered in researching previous and current products or

projects in the selected action sports market. In terms of finding another snow sports

product with similar functionality, the PUSH Snowboarding sensors, backed by

Burton and Nokia, is a project with goals similar to those of our company. PUSH

snowboarding has four separate components that measure speed, orientation of the

snowboard, heart rate, and altitude. The project, however, is still a work in progress,

stalemating in its prototyping phase and proving unreliable for sale.

 68

In choosing a system to compare with this company’s design, Garmin is the

optimum choice. Although there is no snow sports specific device made by Garmin, it

boasts being one of the primary leaders in the sensor technology in use for this

design. Beginning with the Garmin Forerunner, this product comes in the design of a

running watch. It measures what most advanced running sensors do now, calculating

the user’s heart rate, speed, and route. In addition, it reads the user’s steps per minute,

ground contact time, and vertical oscillation. Using these three more advanced

measurements hopes to maximize the runners pace and rhythm at the comfort of

looking at an LED screen on the watch. With all of these measurements, no phone is

needed as it sends the data directly to the watch.

The next Garmin product used to compare is the Garmin Edge, designed for

bike riding. Similarly to the Forerunner, this product does not require a phone while

out doing exercise, as it records its information straight on the device. This particular

device, however, is designed more like a car’s GPS navigation, as it not only looks

like the part, but also attaches to the user’s bike handlebars while riding. It contains

preloaded maps for both on and off road trails, allowing the bike rider to go on

adventures and explore without the worry of getting lost with turn-by-turn directions

if needed. This product is heavier than the watch by one ounce at 3.5 ounces, but also

has a rechargeable battery that lasts up to 17 hours and is also waterproof. As for the

sensors, it displays the user’s speed, max speed, average speed, distance, elevation,

and, of course, time. Other sensors like power, heart rate, and cadence are added on

but sold separately. This product attempts to create a device in a relatively new

market of biking sensors, similar to how this company’s new design is trying to

specifically target the snow sports market.

The last product to compare is the original Nike Plus sensor. The sensor,

itself, is the smallest on the market, weighing in at .23 ounces, as well as the cheapest

at $19. In comparison, the Edge carries a price tag of $300 while the Forerunner is

$450. The sensor functions in sync with a mobile phone, as it displays all of the

progress made while running by transferring the information over wirelessly or via a

Bluetooth network. The Nike Plus calculates the calories burned, pace, distance

traveled, and elapsed time of the workout. The core sensors, too, are very similar to

 69

the two Garmin products. However, unlike the other products the sensor is not water

resistant, which is needed for snow activities. This Nike product, though, is easier to

integrate into other objects because of its much smaller size; although it does not have

a direct display like the two Garmin products, which is why a phone is needed to keep

track of the progress.

Section 8.7: Sales/Marketing Strategies

 There are several ways in which this new product will be advertised and sold.

The first is through commercial advertising on outlets such as radio, billboards,

magazines, and television. These would be focused primarily in areas where there is a

large concentration of skiers, snowboarders, and skateboarders. Advertising would

also take place at various ski resorts throughout the United States and Canada. These

would expand with time to include most of the United States, Canada, and other

foreign markets.

 There needs to be several sales persons to deal with the various financial and

marketing aspects of the business. These personnel are dedicated to the promoting

and selling of the units to the various vendors throughout the United States and

Canada. For the first year, we predict that the need of five marketing persons and

three financial professionals to manage this aspect of the business.

 The distribution is centralized from a single distributer, who is based,

preferably, from somewhere in the Western United States. This would allow for

easier distribution to a larger number of retailors and resorts throughout the United

States. It is the desire of our company to have a second distribution center in Canada,

most likely in the Vancouver area. Instead of distributing the product independently,

we use an existing distributer in order to optimize product coverage.

Section 8.8: Manufacturing Plans

 The sensor systems, themselves, will be built in the Western United States at a

central plant, with the separate parts shipped to the central plant for assembly and

shipping after being bought from external manufacturers. The assembly consists of

wiring the various sensors together, connecting them to the microcontroller and LCD

screens, and then placing the assembled product within the casing. This finished

assembly would then be placed in its packaging and stored until shipped via the

 70

distributer. It is expected to take approximately 3 months to construct the assembly

production line, and from there take approximately 30 minutes to construct 1 unit per

assembly line with 1,000 units kept on hand as on-site inventory.

 It is predicted to take approximately $5 million to get the operations started,

and requires additional funding to keep up with expansion as other assembly lines and

increased required parts are added to the expenses.

Section 8.9: Product Finances

There are two major parts to consider in the production of this product. The

first is the income generated from the sale of the product, as shown in Table 11.

Table 13: Unit Pricing and Revenue Generation

Income Revenue

Individual Product Sales Cost (per unit) $200

Sale of 10,000 Units $2.0 Million

For the production of the product itself, price is $200 per unit. For a year’s

production, this equals $2 million for 10,000 units sold. This, however, does not

include the possibility for an additional 5,000 units that could be produced for an

additional $1 million in revenue.

Table 14: Production Cost and Projections

Part Expense

GPS $30

LCD Display $25

Battery $30

Temperature/Pressure/Altimeter Sensor $20

Microcontroller $8

Bend Sensor (x2) $16

Wiring $20

Casing $10

Total Retail Cost $159

Total Wholesale Cost (40%-30% Discount) $111.30 - $95.40

Total Wholesale Cost for 10,000 Units $1,113,000 - $954,000

 71

Table 14 (continued): Production Cost and Projection

 The second point to consider are the production expenses and costs shown

above in Table 12. For this business plan, we expect to produce 10,000 units per year,

which have a retail cost of $159 per unit. However, if the wholesale prices are taken

into account, the cost per unit drops to a range of $95.40 -111.30. This leads to a total

yearly unit cost of $954,000 - 1,113,000. Other expenses that taken into account are

equipment, personnel, and facilities expenses, which amount to $2 million. This leads

to a total expense of $2.95 million - 3.11 million within the first year and $1.45

million - 1.61 million every subsequent year after that.

Section 8.10: Service and Warranties

 The goal of the product is for it to last at least one ski season, but it is

preferable for the sensors to exceed that goal. In the case that the product is damaged

or made inoperable, the product would need to be sent back to the factory where it is

either repaired or discarded – depending on the type of damage and its severity. The

cost of repairs and the person or persons liable depends on the type of damage and

whether it is caused by user negligence or is a product defect. If there is a defect in

the product, the company is responsible for covering the cost of repairs at no extra

cost to the customer. However, if the damage is caused by user negligence, the user is

responsible for the cost of repairs or consequent replacement. Types of negligence

include intentional destruction of the product, such as striking the casing with a blunt

or sharp object with the intention of harming the product, applying an excessive

amount of weight to the product, or any other form of intentional harm.

Section 8.11: Financial Plan/Investors Return

 The financial plan for the company depends drastically on the funds supplied

by investors and the degree of their investments. According to the financial

Equipment $500,000

Personal Costs (1 year, 25 people) $500,000

Facilities Cost $1Million

Total Yearly Cost (1
st
 Year) $3.11Million - $2.95 Million

Total Yearly Cost $1.61 Million - $1.45 Million

 72

projections, the company is not able to financially support itself until it becomes

profitable, around year 3 or 4 of production. The expected total expenses during this

time ranges from $5.85 million to $7.94 million, depending on production and

personnel expenses. Therefore, to support the business in its beginning stage, an

initial investment of $8 million is needed from investors. Ideally, the investments are

split between 80 investors at $100,000 per investment. With this initial investment, it

is predicted that the company can turn a profit ranging from $60,000 to $700,000 in

its fourth year of production.

Figure 43: Projected Income and Expenses Over 15 Years

 According to the projections shown in Figure 42, the company could turn a

$20 million plus profit by the 7
th

 year of production and $50 million plus profit by its

12
th

 year of production. These projections, however, do not include the possibilities

for expansion. With this in mind, the break-even point for investors will occur

between 8-10 years of production as shown in Figure 43 on the next page.

Depending on the unforeseen expenses and costs that are likely to occur, it is

believed that for each investor’s investment of $100,000 they can potentially receive

a return between $200,000 and $500,000 by the 15
th

 year of production.

-5000000

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 5 10 15 20

C
a

p
it

a
l

V
a

lu
e

 (
$

)

Time (Years)

Projected Income and Expenses

Income

Expense (High)

Expesnse (Low)

Profit (High)

Profit (Low)

 73

Figure 44: Projected Investors Return Over 15 Years

-200,000

-100,000

0

100,000

200,000

300,000

400,000

500,000

0 5 10 15 20

R
e

tu
rn

 (
$

)

Time (Years)

Investor Return

Investor Return (Low)

Investor Return (High)

 74

Chapter 9: Engineering Standards and Realistic Constraints

Section 9.1: Standards and Constraints

 There are several standards and constraints that must be met in order for the

project to be ethically and economically sound. As evident by the world today, all

businesses and projects have implications in a variety of fields. In the case of

developing a sensor for the application of skiing, snowboarding, and skateboarding,

there are three major categories that set the standards and constraints for this project:

manufacturability, health and safety implications, and economic factors. These

elements determine the feasibility and the eventual outcome of the project.

Section 9.2: Manufacturing - Victor

There are a small handful of concerns that surround the manufacturability of

the sensor to be developed. The first, parts must be available and readily accessible in

order to produce a sufficient quantity of the product, itself. This is determined by the

vendors of the separate components and materials, especially the sensor suppliers,

and whether they are accommodating to the needs requested. In order for

manufacturing to be a successful endeavor, it is important, too, that the components

themselves cost less than the consumer price for the product. This, however, depends

entirely on the simplicity of the design of the system; because the higher the

complexity, the longer the product takes to manufacture.

The materials chosen for the casing are the second concern when

manufacturing the casing, itself. Acrylic is a hard plastic, but is susceptible to heat,

abrasions, and surface scratches. This makes it a difficult material to manufacture, as

heat from friction generated from cutting the various sections can cause the material

to melt. Such warping and melting results in a distorted shape, leading to a poor fit

and more time and money spent to correct the result. Secondly, there is the possibility

the acrylic could be scratched during the manufacturing process, which is most likely

caused from the handling of the material itself. The consequence of this is an

undesirable appearance, which subsequently harms the sale of the product, itself.

Section 9.3: Health and Safety - Adrien

 There are also issues surrounding the health and safety implications of

developing a product for an action sport. Whenever a product or component is not

 75

designed with the addition of a sensor system in mind, there is the potential that the

particular product or component’s integrity is compromised. This, in turn, could lead

to a structural failure, which then leads to bodily injury or death. There is also the

potential that the adhesive fails on the external casing, becoming dislodged and

potentially striking the user of the sensor or striking another person nearby the user.

With this potential danger, certain steps must be taken in order to ensure that these

risks are minimized or negated to protect the user, the manufacturer, and the

designer/developer.

These health and safety issues extend to the manufacturing process, as well.

Within the manufacturing process, people are exposed to hazardous materials, such as

acrylic particles that are extremely dangerous when inhaled. The same hazard exists

when handling the adhesive, a plastic epoxy, whose fumes are, also, considered

dangerous. This, therefore, creates a hazardous work environment for manufacturers

that could potentially lead to lasting health effects and/or death – resulting in lawsuits

and harsh fines, affecting the business and its reputation significantly.

Section 9.4: Economic Factors - Robert

The third category that regulates the product is economic factors that might

limit and constrain the development and production of the sensor system. These are

factors that affect how much profit is generated from the product, itself. One of the

causes that affect this is the use of rechargeable batteries to power the components.

Using such batteries are more cost efficient, as the product will not require disposable

batteries, making it cheaper to produce as well as cheaper for the customer. There is

also an economic benefit to using acrylic to construct the casing, as it is easier to

produce than creating a casing out of metal. Making one out of metal is a complicated

process which requires cutting, shaping, and welding, whereas creating a casing out

of polycarbonate only requires cutting the pieces and epoxying them together. This

makes it a more time and cost-effective form of production.

Another economic factor to be considered is the acquisition of parts and

materials. As shown in the business plan, there are a variety of components needed to

build the casing and sensor system. It then makes sense that the acquisition of parts be

done at the lowest possible cost. To do this, it is not logical to purchase these

 76

components and materials at market retail price, as a single individual consumer

might. Instead, it is more sensible to purchase these items at wholesale cost, such as a

corporation or company might do so. By doing this, it will help to reduce the

expenses of production, which can, in turn, increase profits and/or reduce the cost of

the product to the consumer.

Section 9.5: Usability - Michael

The fourth category relates to the products usability, as it needs to have a clear

mode of function and clear data retrieval and analysis. This standard correlates to how

many people will recommend and/or buy the product. If the product is native or easy

to use, more consumers are likely to consider buying it. There is an entire engineering

discipline devoted to usability, in which designers and coders simplify the human to

computer interaction in order to make the product available for the product. Usability

often means implementation of instructions on how to use the product or creating a

manageable interface so that all or most of the target audience is involved. An

upgrade to the usability of the casing’s design came in the form of a single button,

used in order to easily turn on and off the sensor system while enclosed inside the

case.

As a designer, decisions on whom the audience for the sensor system is for

greatly determines the usability of the product. If the goal is to aim only for

technological consumers, then there are differences in functionality, what parts the

product is made of, and where the system is used; as opposed to an everyday user

who may require a simpler product.

 77

Chapter 10: Conclusion

The goal of this project is to develop a sensor for the commercial market,

targeting skiers, snowboarders, and skateboarders, that will give them performance

data – such data including speed, elevation, pressure, temperature, flex, acceleration,

and position. This is done using a variety of sensors, including a GPS, flex sensors,

accelerometer, and others to provide data such as speed, position, foot pressure,

position, and temperature. Originally, Nike Plus sport sensors are used in the system,

but due to compatibility issues, it could not be incorporated. The sensors in use are

placed in an external acrylic casing attached to the ski or board by using an adhesive

pad on the bottom of the casing. These sensors than transmit the data via a

microcontroller to either an LCD screen displaying a simple application or a memory

system, which then user can access and analyze using Matlab code to interpret

relevant data.

Several tests were conducted to test the functionality and survivability of the

sensor system and casing. The purpose of the first test is to assess whether the sensor

system would survive under extreme weather conditions, by placing the casing with

the sensors in a freezer and lowering the temperature. The second test that conducted

is a dynamic set of tests, which accessed the acceleration response read by the

accelerometer during the performance of tricks and jumps. The final test is a

vibration-damping test, which evaluated the functionality of the sensors under

vibration and to determine how much damping, if any, occurs on the casing and

sensors.

Section 10.1: Future Work/Upgrades

Throughout the duration of the project, the team was able to construct a

functional sensor-system prototype that could give the desired data that is specified.

This was accomplished after several components had to be, either, upgraded,

discarded, or replaced. A case constructed of acrylic is made to house the sensor

system, but fails on the first intense loading test that is performed on it, revealing a

flaw in the casing design. In the future, improvements could be made to the system.

Such improvements consist of upgrading the casing material to a higher strength

polycarbonate, or using a different epoxy that would hold the pieces together better.

 78

Another other improvement that could be made to the design would be

upgrading the battery to a smaller battery with more capacity. This would have

several benefits to the design, such as the reduction in size would allow for more

space within the casing, which would allow more room for other components to be

added to the design. The increased capacity would also allow for longer usages and

extend the battery life out even more.

The final change would be changing the interface from a button/LCD screen

interface to a Bluetooth-phone interface. This would reduce the amount of parts that

would be needed within the casing, increasing the amount of space available within

the casing. It would also allow the utilization of the user’s phone, which would

greatly increase the usability and allow the user to view the data from a remote

device, rather than from the casing itself.

Section 10.2: Personal Reflection

Victor Ojeda

 When deadlines are assigned to tasks that all build up toward a common end

goal, it is crucial to at least come close to the target dates assigned to the smaller tasks

in order to successfully reach the final culminated achievement on time. It’s ok to not

reach the desired deadlines from time to time, but when these deadlines are

consistently not met, there is a core dilemma that is causing this repeated failure. The

number one reason for this failure specific to our group has to be the lack of

teamwork. Each one of us is capable of carrying out the tasks that were needed as

well as tasks that other group members performed, however we struggled to get on

the same page whether it was making it to meetings together or being unable to tackle

the simplest of assignments. We had miscommunication problems and were

ambiguous with how we could all contribute and mesh our work together without

actually meeting with eachother. Personally, I put school work in front of the senior

design. Prioritizing is one thing, but there’s also a point when you put it second to

everything in schoolwork and I should have done a much better time during the

school year balancing the two. Not just in being present at meetings which I usually

was, but in being a voice of opinion in how we should organize responsibilities which

we lacked as a whole because we were all too complacent with taking the back seat.

 79

Not dealing with these issues obviously destine any project for failure, as well

as possibly creating other unwanted products. This ranges from feeling anxious and

pressure from not finishing on time to feeling angry and causing arguments among

group members at the disappointment of failure. This leads to procrastination and will

only make things even worse. That is why there is so much importance in setting a

precedent early in the process in order to not let the lack of cohesion as a group spiral

out of control. If we were able to better communicate our commitment to the project

early, it would have lead to better work distribution and an overall greater experience

in working on this project together.

Michael Fernandez

There are many issues that have arisen from our lack completion of our Senior

Design project. The first and foremost problem is that I (we) have failed to graduate

on time. Which also puts myself and my teammates in a lower position in finding

roles in the engineering workforce, not to mention the stress and anxiety an

incomplete produces. While these things in minor amounts can produce results, the

large amount I have personally experienced has greatly affected myself in the fields

losing sleep and avoiding parental confrontation. It also provides knowledge that I did

not do what I should have and was supposed to do. Procrastination is both detrimental

to health and work, in this case senior design, but also in the future, things such as

ignoring changes in health or missing work deadlines could cause us to become ill or

lose our jobs. If I had done more work earlier in the year, I could have helped save

my team from still having an incomplete, I could possibly have a job for fall, and

could proudly hold my diploma. For future projects, the knowledge of the faults of

procrastination will be useful in preventing this situation from happening again in a

work environment. If we had created a more prominent team dynamic and role

system, we could have much more easily accomplished our goals and would most

likely not be in this position now. We have been continually playing a game of catch-

up, but in reality the deadline caught up with us because of our ineffective teamwork

and personal work. Finally, I have learned that not only does my procrastination

directly affect me, but it affects my team mates as well, giving more of the work load

 80

to them at times. If I and my teammates had completed this assignment earlier, all of

our lives would be easier and less stressful.

Robert Ross

 The workload for our project proved to exceed our initial expectations as a

group and needed to be continued into the summer. With this being the case, each of

us as individuals would benefit from an assessment of aspects of the project with an

eye for which trends we as a team fall into which hinders our consistency of work

output. In the future, our projects will require more precise and minute management

of time and deadlines. We were not able to operate completely within the confines of

the already generous Senior Design course time allotments. Given that our future

endeavors will be arbitrarily paced and more competitive by nature, it is crucial that

we as individuals improve our time-management skills to better master the demands

of larger-scope projects.

 The chief area by which we as a team would have improved is by establishing

a team identity early on. Taking early action to establish our own personal interest

and stake in the project as well as in the team community would foster a more

comfortable and pleasant mindset with regard to the tasks at hand. With a comfortable

team-oriented mindset in which we each operate with respect to our known and

communicated goals for the project, work would be more comfortable to pursue

often, with pressure applied in smaller pieces at a more leisurely pace. If we had

assumed responsibility and personal stake in the project early on, our group as a

whole would have been more cohesive throughout the entire process.

 Instead, we put off meeting for the most part until we already had a clear and

present deadline impending. This is, of course, the natural pace of a lot of

schoolwork, with drive to work coming along with the pressures of the deadline, but

it is less than adequate for a project of this scope. Instead of following a consistent

schedule by which we operate as a team, something which only gets more difficult to

establish as time goes on, our group instead procrastinated at many of the smaller

steps which in turn put our group behind pace overall. As this work draws to a close

and we are finishing up the unfortunately lingering catch-up game we wound up in,

we can use the experience here as individuals as we engage in further projects. The

 81

difficulties we met as a team resulting from procrastination are self-evident, and will

serve to bolster ambitious management of time, particularly in the early stages as the

team finds its identity.

Adrien Doiron

 There were several major issues with the project that lead to the late

completion and missing of deadlines. The first was the lack of cohesion between our

teammates. Because of this lack in teamwork, many of the tasks were not

accomplished, work was incomplete, and there was mass confusion when trying to do

a task. This lead to a major part of work being undone, and placing teammates in hard

positions where some were doing large portions of the work involved and others were

doing very little.

 The second major issue with the project was the failure on my part as the team

leader of the project. My major role was to coordinate the project’s tasks with other

members of the team so that the project could proceed efficiently. In this, I failed

entirely, as tasks were not accomplished on time and there was much confusion

between teammates. I attribute this to my own lack of leadership skills and my

underestimation of the amount of planning and communication needed to run a

project. In hindsight, I should have spent more time working as a team leader rather

than just trying to do the project on my own, or someone else on the team should have

taken on the responsibility as the team leader.

 82

Bibliography

1. Adafruit. “Adafruit MTK3339 Chipset”. Adafruit Industries. December 5, 2013

http://www.adafruit.com/images/medium/790_MED.jpg

2. "Adafruit Trinket - Mini Microcontroller - 5V Logic -." Adafruit Industries Blog

RSS. Adafruit Industries, n.d. Web. 06 Dec. 2013.

3. "Apollo 2241." Adhesive. Cyberbond L.L.C., n.d. Web. 06 Dec. 2013.

4. "Arduino - Compare." Arduino - Compare. N.p., n.d. Web. 3 Oct. 2014.

<http://arduino.cc/en/Products.Compare>.

5. Beadrmore, Roy. "Loaded Flat Plates." Loaded Flat Plates. N.p., 20 Feb. 2013.

Web. 03 Mar. 2014.

6. Bekkala, Michael, Michael Blair, Michael Carpenter, Matthew Guibord, Abhinav

Parvataneni, and Shanker Balasubramaniam, Dr. Speed and Distantce Sensor

for Skiers and Snowboarders. Air Force Research Laboratory, Michigan State

University, 11 Dec. 2009. Web. 6 Dec. 2013.

7. "BLE112 Bluetooth Smart Module." BLE112 Bluetooth Smart Module – Bluegiga.

Bluegiga Technologies, n.d. Web. 06 Dec. 2013.

8. Bluegiga. “Bluegiga BLE112.” Bluegiga Industries. December 5, 2013

https://techforum.bluegiga.com/files/bluegiga/Press%20kit%20pictures/BLE1

12_RGB_S.png

9. "BMP085 Barometric Pressure/Temperature/Altitude Sensor-5V Ready." Adafruit

Industries Blog RSS. Adafruit Industries, n.d. Web. 06 Dec. 2013.

10. Cyro. Acrylite FF Physical Properties Brochure (n.d.): n. pag. SD Plastics. Web.

13 June 2014.

<http://www.sdplastics.com/acryliteliterature/1121DFFPhysicalProperties%5

B1%5D.pdf>.

11. Frank, Michael. "Adventure Journal." Gear Preview: Garmin Forerunner 620

Running Watch. AdventureJournal, 16 Sept. 2013. Web. 26 Oct. 2013.

12. "Garmin Edge." Garmin. N.p., n.d. Web. 26 Oct. 2013.

13. "Garmin Forerunner." Garmin. N.p., n.d. Web. 26 Oct. 2013.

14. "Garmin(R) Edge(R) Touring and Edge Touring Plus -- New GPS Devices

Designed For Navigating ByBike." The Wall Street Journal. N.p., 28 Aug.

https://techforum.bluegiga.com/files/bluegiga/Press%20kit%20pictures/BLE1

 83

2013. Web.

15. Glass vs. Acrylic Comparison (n.d.): n. pag. Web.

<http://www.acrylite.net/sites/dc/Downloadcenter/Evonik/Product/ACRYLIT

E/acrylite®-acrylic-vs-glass.pdf>.

16. Hacknmod. “Iphone Wireless Router”. Apple Inc. December 5, 2013.

http://hacknmod.com/wp-content/uploads/2008/10/iphone-wireless-router.jpg

17. Nike. “Nike Sport + Sensors”. Nike Inc. December 5, 2013

 http://media.t3.com/img/resized/ni/xl_NikeSensor_1.jpg

18. "Nike Plus." Nike. N.p., n.d. Web. 26 Oct. 2013.

19. "Nokia X Burton - TVCs." Nokia X Burton - TVCs. N.p., n.d. Web. 03 Feb.

2014.

20. "Number of Skiers & Snowboarders in the USA, 2013." Statista. Scarborough

Research, n.d. Web. 6 Mar. 2014.

<http://www.statista.com/statistics/227427/number-of-skiers-and-

snowboarders-usa/>.

21. "Olympus LI-42B Rechargable Lithium-Ion Battery." Olympus. Olympus

Industries, n.d. Web. 06 Dec. 2013.

22. Report, Garmin Annual. GRMN (n.d.): n. pag. Web.

<https://www8.garmin.com/aboutGarmin/invRelations/reports/2011_Annual_

Report.pdf>.

23. Roark, Raymond J., and Warren C. Young. Roark's Formulas for Stress and

Strain. New York: McGraw-Hill, 1989. Print.

24. Shopify. “Adafruit BMP085 Barometric Pressure/Temperature/Altitude Sensor”.

Adafruit Industries. December 5, 2013

http://cdn.shopify.com/s/files/1/0215/6458/products/BMP085_1_1024x1024.j

pg?v=1383858181

25. "Silicone Gaskets and Pads, Custom Gaskets, Gasket Manufacturers | Stockwell

 Elastomerics." Silicone Gaskets and Pads, Custom Gaskets, Gasket

Manufacturers | Stockwell Elastomerics. Stockwell Elastomerics, Inc., n.d.

Web. 06 Dec. 2013.

26. "STOMPGRIP Online | Welcome." STOMPGRIP Online | Welcome. Stompgrip

 84

Inc., n.d. Web. 06 Dec. 2013.

27. "Ultimate GPS Module - 66 Channel W/10 Hz Updates - MTK3339 Chipset."

Adafruit Industries Blog RSS. Adafruit Industries, n.d. Web. 06 Dec. 2013

 A1-85

Appendix 1:

PDS

 A2-86

Appendix 2: Timeline
Timeline for Fall Quarter

Date Goal

10/30 Complete Preliminary Design 1: Casing

11/8 Complete Preliminary Design 2: Circuitry

11/15 Complete Preliminary Design 3: Interface

11/22 Complete Customer Analysis

11/22 Preliminary List of Components Needed to
Construct Prototype

11/29

12/6

Timeline for Winter Quarter

Date Goal

1/10 Complete Preliminary Design 3: Circuitry

1/17 Finalize Prototype Drawings

1/24 Complete Assembly Drawings

1/31 Finalize List of Components Needed to
Construct Prototype

2/14 Acquire Components and Materials Needed

2/21 Finalize Manufacturing Process

2/28 Begin Construction of Prototype

A2-87

Spring Timeline

Date Goal

3/14 Complete Construction: Casing

3/28 Complete Construction: Circuitry

4/4 Complete Construction: Interface

4/11 Begin Prototype Testing

4/18 Design of Prototype 2

4/25 Complete Prototype 2

5/2 Test Prototype 2

5/9 Design of Prototype 3 (Time allowing)

6/2 Open House

 A3-88

Appendix 3: Budget

Income

Source of Income Amount

Sale of Product $160 (Est.)

Expenses

Part Cost

Adafruit MTK3339 GPS peripheral $30

Nike + Sensor $19

Olympus LI 42B Camera Battery $12

Adafruit BMP085

Pressure/Temperature/Altitude Sensor

$20

Adafruit Trinket (5v) $8

BLE112 Bluetooth Smart Module $14

Polycarbonate Casing $10

Packaging $20

Total Cost $133

 A4-89

Appendix 4: Sensor SystemCoding

System Master Loop Coding

#include <stdint.h>

#include <stdlib.h>

#include <floatToString.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BMP085_U.h>

#include <Adafruit_NeoPixel.h>

#include <SoftwareSerial.h>

#include <Adafruit_GPS.h>

#include <TouchScreen.h>

#include <TFT.h>

#include <Wire.h>

#define USE_SERIAL 0

//>>> Definitions for GPS

unsigned long GPSlinkWait = 0;

unsigned long GPSDisplayTime = 0;

unsigned long timer = millis();

#define GPSECHO true

Adafruit_GPS GPS(&Serial1);

boolean usingInterrupt = false;

void useInterrupt(boolean); // Func prototype keeps Arduino 0023 happy

int GPSsetupBool=0;

//>>> Definition for Pressure/Temperature

#define SEA_LEVEL_PRESSURE 1015.5

Adafruit_BMP085_Unified bmp = Adafruit_BMP085_Unified(10085);

unsigned long beginTime = 0;

unsigned long BMP180PollTime = 0;

int pollNumber = 0;

float pressureArray[60]; //holds 60 minutes of data, declares to -999 which is flagged

in the displaybmp180 function to not

float tempArray[60]; //holds 60 minutes of data

float altitudeArray[60]; //holds 60 minutes of data

float maxPressure = -100000, minPressure = 100000, maxTemp = -120, minTemp =

120, minAlt = 30000, maxAlt = -30000; //values designed to get rewritten on first

pass

//>>> Definitions for Display

unsigned long dispGPSStartTime = millis();

unsigned long callTime = 0;

 A4-90

unsigned long bmp180start = millis();

byte prevDisplay = 0;

unsigned long BMP180DisplayTime = 0;

static unsigned int TS_MINX, TS_MAXX, TS_MINY, TS_MAXY;

static unsigned int MapX1, MapX2, MapY1, MapY2;

TouchScreen ts = TouchScreen(17, A2, A1, 14, 300);

char printBuffer[25]; // <---- used to convert float values to strings for LCD to

display

//>>> Definitions for End_Bars

#define endBarsPin 23

#define brightness 23 // <----- This is WAY low for in sunlight

Adafruit_NeoPixel endBars = Adafruit_NeoPixel(8, endBarsPin, NEO_GRB +

NEO_KHZ800);

int i=0, noseReading = 0, tailReading = 0,tailMidVal = 0,noseMidVal = 0,fullBends =

0,pixelVal = -1;

unsigned long lastSet;

const int tailBendBar = A8;

const int noseBendBar = A9;

//>>> Definitions for Accelerometer

int xdegree=0,ydegree=0,zdegree=0;

unsigned long AccelPollTime = millis();

const int xInput = A10;

const int yInput = A11;

const int zInput = A12;

const int buttonPin = 22;

boolean flatFLAG = 0;

// Raw Ranges:

// initialize to mid-range and allow calibration to

// find the minimum and maximum for each axis

int xFlat=0, xRawMin = 512, xRawMax = 512, yFlat=0, yRawMin = 512, yRawMax

= 512, zFlat=0, zRawMin = 512, zRawMax = 512;

// Take multiple samples to reduce noise

const int sampleSize = 25;

void setup(){

 Display_setup();

 // Display the title screen for 6 seconds

 delay(6000);

 Serial.begin(115200);

 beginTime = millis();

 Accelerometer_setup();

 A4-91

 End_Bars_setup();

 Pressure_setup();

 GPS_setup();

}

void loop() {

 //manages timers incase either they or millis() overflow

 if (GPSlinkWait > millis()) GPSlinkWait = millis();

 if (GPSDisplayTime > millis()) GPSDisplayTime = millis();

 if (beginTime > millis()) beginTime = millis();

 if (BMP180PollTime > millis()) BMP180PollTime = millis();

 if (dispGPSStartTime > millis()) dispGPSStartTime = millis();

 if (bmp180start > millis()) bmp180start = millis();

 if (BMP180DisplayTime > millis()) BMP180DisplayTime = millis();

 if (lastSet > millis()) lastSet = millis();

 if (AccelPollTime > millis()) AccelPollTime = millis();

 Accelerometer_loop();

 End_Bars_loop();

 if(GPSsetupBool==0)

 {

 while(millis()-beginTime < 5000)

 GPS_loop();

 GPSsetupBool = 1;

 GPS_setup_display();

 }

 GPS_loop();

 End_Bars_loop();

 // Every 80ms take data point

 if(millis()-BMP180PollTime >= 80)

 {

 //this loop takes ~40ms

 Pressure_loop();

 BMP180PollTime = millis();

 if(pollNumber==60)

 {

 pollNumber = 0;

 }

 }

 End_Bars_loop();

 if(millis()-GPSDisplayTime > 10000 && prevDisplay == 2 && millis()-

AccelPollTime > 10000)

 {

 prevDisplay = 0;

 GPSDisplayTime = millis();

 A4-92

 Display_GPS();

 }

 if(millis()-AccelPollTime > 10000 && prevDisplay == 0 && millis()-

BMP180DisplayTime > 10000)

 {

 prevDisplay = 1;

 AccelPollTime = millis();

 if(!flatFLAG)

 {

 xFlat = ReadAxis(xInput)*5/3.3;

 yFlat = ReadAxis(yInput)*5/3.3;

 zFlat = ReadAxis(zInput)*5/3.3;

 flatFLAG = 1; // <---- This means it has just set the current orientation (flat on the

ground per instructions) as flat

 }

 End_Bars_loop();

 Display_Accelerometer();

 End_Bars_loop();

 }

 if(millis()-BMP180DisplayTime > 10000 && prevDisplay == 1)

 {

 prevDisplay = 2;

 BMP180DisplayTime = millis();

 //Resets the number of counts (and also where the array is indexed)

 Display_BMP180();

 }

}

 A4-93

Accelerometer Code Script associated with ADXL326 peripheral
void Accelerometer_setup()

{

 //This long Display-heavy routine is the GUI For calibrating the gyroscope

 Tft.fillRectangle(0,0,239,319,BLACK);

 Tft.drawString("STEP",18,24,3,WHITE);

 Tft.fillCircle(52,84,36,RED);

 Tft.drawString("1",26,56,5,WHITE);

 Tft.drawRectangle(60,68,176,44,RED);

 Tft.drawString("Calibrate",92,76,2,RED);

 Tft.drawString("INTERNAL GYROSCOPE",92,102,1,RED);

 delay(750);

 Tft.drawString("Place the board on a flat",30,126,1,WHITE);

 Tft.drawString(" surface, and press the",30,138,1,WHITE);

 Tft.drawString(" calibration button for",30,150,1,WHITE);

 Tft.drawString(" about half a second.",30,162,1,WHITE);

 // Display calibration progress fill-circles

 Tft.drawCircle(14,138,12,RED);

 Tft.drawCircle(14,138+28,12,RED);

 Tft.drawCircle(14,138+28+28,12,RED);

 Tft.drawCircle(14,138+28+28+28,12,RED);

 Tft.drawCircle(14,138+28+28+28+28,12,RED);

 Tft.drawCircle(14,138+28+28+28+28+28,12,RED);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 for(i=0;i<50;i++) { AutoCalibrate(ReadAxis(xInput)*5/3.3,

ReadAxis(yInput)*5/3.3,ReadAxis(zInput)*5/3.3); } // Calibrates with 5 data entries

 Tft.fillRectangle(28,126,220,110,BLACK);

 delay(300);

 Tft.fillCircle(14,138,12,GREEN);

 Tft.drawString("Hold the board vertically",30,126,1,WHITE);

 Tft.drawString(" on the TOE-side edge.",30,138,1,WHITE);

 Tft.drawString(" Press calibration button",30,150,1,WHITE);

 Tft.drawString(" again, for half a second.",30,162,1,WHITE);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 for(i=0;i<50;i++) { AutoCalibrate(ReadAxis(xInput)*5/3.3,

ReadAxis(yInput)*5/3.3,ReadAxis(zInput)*5/3.3); } // Calibrates with 5 data entries

 Tft.fillRectangle(28,126,220,110,BLACK);

 delay(300);

 Tft.fillCircle(14,138+28,12,GREEN);

 A4-94

 Tft.drawString("Hold the board vertically",30,126,1,WHITE);

 Tft.drawString(" on the HEEL-side edge.",30,138,1,WHITE);

 Tft.drawString(" Press calibration button",30,150,1,WHITE);

 Tft.drawString(" again, for half a second.",30,162,1,WHITE);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 for(i=0;i<50;i++) { AutoCalibrate(ReadAxis(xInput)*5/3.3,

ReadAxis(yInput)*5/3.3,ReadAxis(zInput)*5/3.3); } // Calibrates with 5 data entries

 Tft.fillRectangle(28,126,220,110,BLACK);

 delay(300);

 Tft.fillCircle(14,138+28+28,12,GREEN);

 Tft.drawString("Hold the board with the",30,126,1,WHITE);

 Tft.drawString(" NOSE on the GROUND and ",30,138,1,WHITE);

 Tft.drawString(" tail in the air, directly",30,150,1,WHITE);

 Tft.drawString(" vertically. Once again,",30,162,1,WHITE);

 Tft.drawString(" press the calibration",30,174,1,WHITE);

 Tft.drawString(" button for half a second.",30,186,1,WHITE);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 for(i=0;i<50;i++) { AutoCalibrate(ReadAxis(xInput)*5/3.3,

ReadAxis(yInput)*5/3.3,ReadAxis(zInput)*5/3.3); } // Calibrates with 5 data entries

 Tft.fillRectangle(28,126,220,110,BLACK);

 delay(300);

 Tft.fillCircle(14,138+28+28+28,12,GREEN);

 Tft.drawString("Hold the board with the",30,126,1,WHITE);

 Tft.drawString(" TAIL on the GROUND and ",30,138,1,WHITE);

 Tft.drawString(" nose in the air, directly",30,150,1,WHITE);

 Tft.drawString(" vertically. Once again,",30,162,1,WHITE);

 Tft.drawString(" press the calibration",30,174,1,WHITE);

 Tft.drawString(" button for half a second.",30,186,1,WHITE);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 for(i=0;i<50;i++) { AutoCalibrate(ReadAxis(xInput)*5/3.3,

ReadAxis(yInput)*5/3.3,ReadAxis(zInput)*5/3.3); } // Calibrates with 5 data entries

 A4-95

 Tft.fillRectangle(28,126,220,110,BLACK);

 delay(300);

 Tft.fillCircle(14,138+28+28+28+28,12,GREEN);

 Tft.drawString("Hold the board upside-down",30,126,1,WHITE);

 Tft.drawString(" exactly parallel with the",30,138,1,WHITE);

 Tft.drawString(" ground. One more",30,150,1,WHITE);

 Tft.drawString(" time, press the",30,162,1,WHITE);

 Tft.drawString(" calibration button.",30,174,1,WHITE);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 for(i=0;i<50;i++) { AutoCalibrate(ReadAxis(xInput)*5/3.3,

ReadAxis(yInput)*5/3.3,ReadAxis(zInput)*5/3.3); } // Calibrates with 5 data entries

 Tft.fillRectangle(28,126,220,110,BLACK);

 delay(300);

 Tft.fillCircle(14,138+28+28+28+28+28,12,GREEN);

 Tft.drawString("CALIBRATION",40,76+80,2,CYAN);

 Tft.drawString("COMPLETE!",62,76+104,2,CYAN);

 Tft.drawString("Place the board on a",40,150+64,1,WHITE);

 Tft.drawString(" flat surface, and press",40,162+64,1,WHITE);

 Tft.drawString(" calibration button",40,174+64,1,WHITE);

 Tft.drawString(" to continue!",40,186+64,1,WHITE);

 while(digitalRead(buttonPin) == HIGH){End_Bars_loop();} // <---- Delay here

until the button is pressed

 xFlat = ReadAxis(xInput)*5/3.3;

 yFlat = ReadAxis(yInput)*5/3.3;

 zFlat = ReadAxis(zInput)*5/3.3;

}

void Accelerometer_loop() //This function takes ~13ms

{

 int xRaw = ReadAxis(xInput)*5/3.3;

 int yRaw = ReadAxis(yInput)*5/3.3;

 int zRaw = ReadAxis(zInput)*5/3.3;

 if (digitalRead(buttonPin) == LOW)

 {

 A4-96

 AutoCalibrate(xRaw, yRaw, zRaw);

 }

 else

 {

 if(USE_SERIAL)

 {

 Serial.print("Raw Ranges: X: ");

 Serial.print(xRawMin);

 Serial.print("-");

 Serial.print(xRawMax);

 Serial.print(", Y: ");

 Serial.print(yRawMin);

 Serial.print("-");

 Serial.print(yRawMax);

 Serial.print(", Z: ");

 Serial.print(zRawMin);

 Serial.print("-");

 Serial.print(zRawMax);

 Serial.println();

 Serial.print(xRaw);

 Serial.print(", ");

 Serial.print(yRaw);

 Serial.print(", ");

 Serial.print(zRaw);

 }

 // Convert raw values to 'milli-Gs"

 long xScaled = map(xRaw, xRawMin, xRawMax, -1000, 1000);

 long yScaled = map(yRaw, yRawMin, yRawMax, -1000, 1000);

 long zScaled = map(zRaw, zRawMin, zRawMax, -1000, 1000);

 // re-scale to fractional Gs

 float xAccel = xScaled / 1000.0;

 float yAccel = yScaled / 1000.0;

 float zAccel = zScaled / 1000.0;

 if(USE_SERIAL)

 {

 Serial.print(" :: ");

 Serial.print(xAccel);

 Serial.print("G, ");

 Serial.print(yAccel);

 Serial.print("G, ");

 Serial.print(zAccel);

 A4-97

 Serial.println("G");

 }

 }

}

//

// Read "sampleSize" samples and report the average

//

int ReadAxis(int axisPin)

{

 long reading = 0;

 analogRead(axisPin);

 delay(1);

 for (int i = 0; i < sampleSize; i++)

 {

 reading += analogRead(axisPin);

 }

 return reading/sampleSize;

}

//

// Find the extreme raw readings from each axis

//

void AutoCalibrate(int xRaw, int yRaw, int zRaw)

{

 if(USE_SERIAL)

 {

 Serial.println("Calibrate");

 }

 if (xRaw < xRawMin)

 {

 xRawMin = xRaw;

 }

 if (xRaw > xRawMax)

 {

 xRawMax = xRaw;

 }

 if (yRaw < yRawMin)

 {

 yRawMin = yRaw;

 }

 if (yRaw > yRawMax)

 {

 yRawMax = yRaw;

 A4-98

 }

 if (zRaw < zRawMin)

 {

 zRawMin = zRaw;

 }

 if (zRaw > zRawMax)

 {

 zRawMax = zRaw;

 }

}

 A4-99

Seeedstudio 2.8'' TFT LCD display Script:

void Display_setup(){

 Tft.init();

 initTouchScreenParameters();

 //Title lines

 Tft.fillRectangle(0,40,14,60,WHITE);

 Tft.fillRectangle(240-16,40,16,60,WHITE);

 Tft.drawString("SNOWBOARD",12,43,3,BLUE);

 Tft.drawString("data",28,69,2,GREEN);

 Tft.drawString("TRACKER",96,77,2,0x003366);

 //Contributors

 Tft.drawRectangle(20,220,199,60,RED);

 Tft.drawString("AJ Doiron",22,223,1,BLUE);

 Tft.drawString("- MECH",168,223,1,WHITE);

 Tft.drawString("Michael Fernandez",22,239,1,BLUE);

 Tft.drawString("- MECH",168,239,1,WHITE);

 Tft.drawString("Robert Ross",22,255,1,BLUE);

 Tft.drawString("- ELEN",168,255,1,WHITE);

 Tft.drawString("Victor Ojeda",22,271,1,BLUE);

 Tft.drawString("- MECH",168,271,1,WHITE);

}

void Display_loop(){

}

void Display_Accelerometer(){

 callTime = millis();

 Tft.fillRectangle(0,0,240,320,BLACK);

 //get x y z values as strings

 int currentX=0,currentY=0,currentZ=0;

 Tft.drawString(" X:",112,44,2,RED); Tft.drawString("Nose-

Tail",12+8,16,1,RED); Tft.drawString("in degrees",158,48,1,RED);

 Tft.drawString(" Y:",112,136,2,0x00F420); Tft.drawString("Left-

Right",12+6,16+92,1,0x00F420); Tft.drawString("in

degrees",158,48+92,1,0x00F420);

 Tft.drawString(" Z:",112,228,2,YELLOW);

Tft.drawString("Verticality",12,16+92+92,1,YELLOW); Tft.drawString("in

degrees",158,48+92+92,1,YELLOW);

 while(millis()-callTime <= 10000)

 //loop for 10 seconds of refreshing the axes

 A4-100

 //SHOULD CALL ENDBARS FUNCTIONS SO THAT THEY ARE STILL

ACTIVE

 {

 currentX = ReadAxis(xInput)*5/3.3;

 currentY = ReadAxis(yInput)*5/3.3;

 currentZ = ReadAxis(zInput)*5/3.3;

 AutoCalibrate(currentX, currentY, currentZ);

 End_Bars_loop();

 //x value

 if(xFlat <(ReadAxis(xInput)*5/3.3))

 {

 xdegree=map(currentX, xFlat, xRawMax,0,90)+13;// <---- X angle adjustment

factor simply added after the fact MAY RUIN ACCURACY, watch out for it

 }

 else

 {

 xdegree=map(currentX, xRawMin, xFlat,-90,0)+13;// <---- X angle adjustment

factor simply added after the fact MAY RUIN ACCURACY, watch out for it

 }

 dtostrf(xdegree,3,0,printBuffer);

 Tft.fillRectangle(120,64,80,24,BLACK);

 Tft.drawString(printBuffer,120,64,3,RED);

 Tft.fillRectangle(23,31,66,74,RED);

 Tft.drawLine(24,68,88,56,BLACK); //x

 Tft.drawLine(56,36,56,127,BLACK); //y

 if(xdegree >= 0 && xdegree < 45)

 {

 Tft.fillCircle(82,68 - map(xdegree,0,45,0,32),5,BLUE);

 Tft.fillCircle(30,68 + map(xdegree,0,45,0,32),5,BLUE);

 }

 if(xdegree >= 45 && xdegree < 90)

 {

 Tft.fillCircle(82 - map(xdegree,45,90,0,32),68 - 32,5,BLUE);

 Tft.fillCircle(30 + map(xdegree,45,90,0,32),68 + 32,5,BLUE);

 }

 if(xdegree >= -45 && xdegree < 0)

 {

 Tft.fillCircle(82,68 + map(xdegree,-45,0,0,32),5,BLUE);

 Tft.fillCircle(30,68 - map(xdegree,-45,0,0,32),5,BLUE);

 }

 if(xdegree >= -90 && xdegree < -45)

 {

 Tft.fillCircle(82 - map(xdegree,-90,-45,0,32),68 + 32,5,BLUE);

 Tft.fillCircle(30 + map(xdegree,-90,-45,0,32),68 - 32,5,BLUE);

 A4-101

 }

 End_Bars_loop();

 //y value

 if(yFlat <(ReadAxis(yInput)*5/3.3))

 {

 ydegree=map(currentY, yFlat, yRawMax,0,90)+13;

 }

 else

 {

 ydegree=map(currentY, yRawMin, yFlat,-90,0)+13;

 }

 dtostrf(ydegree,3,0,printBuffer);

 Tft.fillRectangle(120,156,80,24,BLACK);

 Tft.drawString(printBuffer,120,156,3,0x00F420);

 Tft.fillRectangle(23,121,66,74,0x00F420);

 Tft.drawLine(24,160,88,160,BLACK); //x

 Tft.drawLine(56,128,56,192,BLACK); //y

 if(ydegree >= 0 && ydegree < 45)

 {

 Tft.fillCircle(82,68 - map(ydegree,0,45,0,32)+92,5,BLUE);

 Tft.fillCircle(30,68 + map(ydegree,0,45,0,32)+92,5,BLUE);

 }

 if(ydegree >= 45 && ydegree < 90)

 {

 Tft.fillCircle(82 - map(ydegree,45,90,0,32),68 - 32+92,5,BLUE);

 Tft.fillCircle(30 + map(ydegree,45,90,0,32),68 + 32+92,5,BLUE);

 }

 if(ydegree >= -45 && ydegree < 0)

 {

 Tft.fillCircle(82,68 + map(ydegree,0,-45,0,32)+92,5,BLUE);

 Tft.fillCircle(30,68 - map(ydegree,0,-45,0,32)+92,5,BLUE);

 }

 if(ydegree >= -90 && ydegree < -45)

 {

 Tft.fillCircle(82 - map(ydegree,-45,-90,0,32),68 + 32+92,5,BLUE);

 Tft.fillCircle(30 + map(ydegree,-45,-90,0,32),68 - 32+92,5,BLUE);

 }

 //Again, check and light the end bars

 End_Bars_loop();

 if(millis()-BMP180PollTime >= 80)

 {

 //this loop takes ~40ms

 GPS_loop();

 A4-102

 Pressure_loop();

 BMP180PollTime = millis();

 }

 End_Bars_loop();

 //z value

 if(zFlat <(ReadAxis(zInput)*5/3.3))

 {

 zdegree=map(currentZ, zFlat, zRawMax,0,90)+13;

 }

 else

 {

 zdegree=map(currentZ, zRawMin, zFlat,-90,0)+13;

 }

 dtostrf(zdegree,3,0,printBuffer);

 Tft.fillRectangle(120,248,120,24,BLACK);

 Tft.drawString(printBuffer,120,248,3,YELLOW);

 Tft.fillRectangle(23,214,66,76,YELLOW);

 Tft.drawLine(24,252,88,216,BLACK); //x

 Tft.drawLine(56,220,56,283,BLACK); //y

 if(zdegree >= 0 && zdegree < 45)

 {

 Tft.fillCircle(82,68 - map(zdegree,0,45,0,32)+92+92,5,BLUE);

 Tft.fillCircle(30,68 + map(zdegree,0,45,0,32)+92+92,5,BLUE);

 }

 if(zdegree >= 45 && zdegree < 90)

 {

 Tft.fillCircle(82 - map(zdegree,45,90,0,32),68 - 32+92+92,5,BLUE);

 Tft.fillCircle(30 + map(zdegree,45,90,0,32),68 + 32+92+92,5,BLUE);

 }

 if(zdegree >= -45 && zdegree < 0)

 {

 Tft.fillCircle(82,68 + map(zdegree,0,-45,0,32)+92+92,5,BLUE);

 Tft.fillCircle(30,68 - map(zdegree,0,-45,0,32)+92+92,5,BLUE);

 }

 if(zdegree >= -90 && zdegree < -45)

 {

 Tft.fillCircle(82 - map(zdegree,-45,-90,0,32),68 + 32+92+92,5,BLUE);

 Tft.fillCircle(30 + map(zdegree,-45,-90,0,32),68 - 32+92+92,5,BLUE);

 }

 // Every 300ms take data point <---- REMOVE THIS when time scale changes to

get data once a MINUTE

 End_Bars_loop();

 A4-103

 End_Bars_loop();

}

}

void Display_GPS(){

 GPS_loop();

 dispGPSStartTime = millis();

 Tft.fillRectangle(0,0,240,320,BLACK);

 Tft.drawString(" GPS info ",48,20,2,YELLOW);

 Tft.drawString("TIME:",8,64,2,WHITE);

 Tft.drawString("DATE:",28,64+48,2,WHITE);

 Tft.drawString("Speed: ",14,126+12+12,2,BLUE);

 Tft.drawString("MPH",28+172,126+12+14,1,GREEN);

 Tft.drawString("(accurate to ~.3 mph)",32,126+12+12+20,1,BLUE);

 Tft.drawString("Alt. :",14,126+62,2,BLUE);

 Tft.drawString("feet",28+172,126+64,1,GREEN);

 dtostrf(GPS.latitude/100,5,2,printBuffer);

 Tft.drawString(printBuffer,14,126+62+28,2,RED);

 Tft.drawString("degrees N",14+114,126+62+28+2,1,RED);

 dtostrf(GPS.longitude/100,5,2,printBuffer);

 Tft.drawString(printBuffer,14,126+62+28+24,2,RED);

 Tft.drawString("degrees W",14+114,126+62+28+24,1,RED);

 Tft.drawString("Tracking: ",14,126+62+30+24+24,1,WHITE);

 Tft.drawString(" All of this information",8,126+62+30+24+24+18,1,CYAN);

 Tft.drawString(" comes from SPACE!",8,126+62+30+24+24+18+12,1,CYAN);

 while (millis()-dispGPSStartTime < 10000)

 {

 if (GPS.newNMEAreceived()) {

 if (!GPS.parse(GPS.lastNMEA())) // this also sets the newNMEAreceived() flag

to false

 delay(100); // we can fail to parse a sentence in which case we should just wait

for another

 }

 A4-104

 Tft.fillRectangle(86,64,136,16,BLACK);

 dtostrf((GPS.hour + 4)%12 + 1,2,0,printBuffer);

 Tft.drawString(printBuffer,28+42+16,64,2,CYAN);

 Tft.drawString(":",28+42+16+16+16,64,2,WHITE);

 dtostrf(GPS.minute,2,0,printBuffer);

 if(GPS.minute < 10)

 {

 Tft.drawString("0",28+42+16+16+20+8,64,2,CYAN);

 }

 Tft.drawString(printBuffer,28+42+20+16+16+8,64,2,CYAN);

 End_Bars_loop();

 Tft.drawString(":",28+42+16+16+32+24,64,2,WHITE);

 dtostrf(GPS.seconds,2,0,printBuffer);

 if(GPS.seconds < 10)

 {

 Tft.drawString("0",28+42+30+20+48,64,2,CYAN);

 }

 Tft.drawString(printBuffer,28+42+30+8+20+48,64,2,CYAN);

 Tft.fillRectangle(28+96,64+48,96,16,BLACK);

 dtostrf((GPS.month)%12,2,0,printBuffer);

 Tft.drawString(printBuffer,28+96,64+48,2,CYAN);

 Tft.drawString("/",28+96+32,64+48,2,WHITE);

 dtostrf(GPS.day,2,0,printBuffer);

 Tft.drawString(printBuffer,28+96+48,64+48,2,CYAN);

 Tft.fillRectangle(110,150,76,16,BLACK);

 dtostrf(GPS.speed*1.15078,4,2,printBuffer); //converts knots to mph by

knots*1.15078

 Tft.drawString(printBuffer,28+76+6,126+12+12,2,GREEN);

 Tft.fillRectangle(110,126+62,76,16,BLACK);

 dtostrf(GPS.altitude*3.28084,5,0,printBuffer); //converts m to feet

 Tft.drawString(printBuffer,28+76+6,126+62,2,GREEN);

 dtostrf(GPS.altitude*3.28084,5,0,printBuffer);

 A4-105

 Tft.drawString(printBuffer,28+76+6,126+62,2,GREEN);

 dtostrf(GPS.satellites,2,0,printBuffer);

 Tft.fillRectangle(84,262,32,16,BLACK);

 Tft.drawString(printBuffer,88,262,2,YELLOW);

 if(GPS.satellites==1){

 Tft.drawString("Satellite",14+54+20+32,126+62+30+24+24,1,WHITE);}

 else {Tft.drawString("Satellites",14+54+42+32,126+62+30+24+24,1,WHITE);}

 End_Bars_loop();

 }

}

void GPS_setup_display(){

 //This long Display-heavy routine is the GPS setup display

 Tft.fillRectangle(0,0,239,319,BLACK);

 Tft.drawString("STEP",18,24,3,WHITE);

 Tft.fillCircle(38,84,36,RED);

 Tft.drawString("2",12,56,5,WHITE);

 Tft.drawRectangle(60,68,176,44,RED);

 Tft.drawString("Initialize",76,76,2,RED);

 Tft.drawString("GPS SYSTEM LINK",86,102,1,RED);

 delay(500);

 GPSlinkWait = millis();

 while(!GPS.fix && millis()-GPSlinkWait <= 10000)

 {

 GPS_loop();

 }

 if (GPS.fix)

 {

 Tft.drawString("System Link",20,76+80,2,CYAN);

 Tft.drawString("Established!",20,76+104,2,CYAN);

 delay(750);

 Tft.fillRectangle(20,76+80,200,120,BLACK);

 Tft.drawString("TIME:",28,126,1,WHITE);

 dtostrf((GPS.hour + 4)%12 + 1,2,0,printBuffer);

 Tft.drawString(printBuffer,28+42,126,1,CYAN);

 A4-106

 Tft.drawString(":",28+42+16,126,1,CYAN);

 Tft.drawString("DATE:",28,126+12,1,WHITE);

 dtostrf((GPS.month)%12,2,0,printBuffer);

 Tft.drawString(printBuffer,28+42,126+12,1,CYAN);

 Tft.drawString("/",28+42+16,126+12,1,CYAN);

 dtostrf(GPS.day,2,0,printBuffer);

 Tft.drawString(printBuffer,28+42+24,126+12,1,CYAN);

 dtostrf(GPS.minute,2,0,printBuffer);

 if(GPS.minute < 10)

 {

 Tft.drawString("0",28+42+16+8,126,1,CYAN);

 }

 Tft.drawString(printBuffer,28+42+16+8,126,1,CYAN);

 Tft.drawString("Speed: ",14,126+12+12,2,BLUE);

 Tft.drawString("MPH",28+172,126+12+14,1,GREEN);

 dtostrf(GPS.speed*1.15078,4,2,printBuffer); //converts knots to mph by

knots*1.15078

 Tft.drawString(printBuffer,28+76+6,126+12+12,2,GREEN);

 Tft.drawString("(accurate to ~.3 mph)",32,126+12+12+20,1,BLUE);

 Tft.drawString("Alt. :",14,126+62,2,BLUE);

 Tft.drawString("feet",28+172,126+64,1,GREEN);

 dtostrf(GPS.altitude*3.28084,5,0,printBuffer); //converts m to feet

 Tft.drawString(printBuffer,28+76+6,126+62,2,GREEN);

 dtostrf(GPS.latitude/100,5,2,printBuffer);

 Tft.drawString(printBuffer,14,126+62+28,2,RED);

 Tft.drawString("degrees N",14+114,126+62+28+2,1,RED);

 dtostrf(GPS.longitude/100,5,2,printBuffer);

 Tft.drawString(printBuffer,14,126+62+28+24,2,RED);

 Tft.drawString("degrees W",14+114,126+62+28+24,1,RED);

 dtostrf(GPS.altitude*3.28084,5,0,printBuffer);

 Tft.drawString(printBuffer,28+76+6,126+62,2,GREEN);

 Tft.drawString("Tracking: ",14,126+62+30+24+24,1,WHITE);

 dtostrf(GPS.satellites,2,0,printBuffer);

 Tft.drawString(printBuffer,14+58+16,126+62+30+24+20,2,YELLOW);

 A4-107

 if(GPS.satellites==1){

 Tft.drawString("Satellite",14+54+20+32,126+62+30+24+24,1,WHITE);}

 else {Tft.drawString("Satellites",14+54+42+32,126+62+30+24+24,1,WHITE);}

 Tft.drawString(" All of this information",8,126+62+30+24+24+18,1,CYAN);

 Tft.drawString(" comes from SPACE!",8,126+62+30+24+24+18+12,1,CYAN);

 delay(8000);

 }

 else

 {

 Tft.drawString("Unable to link",14,126+12+12,2,BLUE);

 Tft.drawString("with satellite",14,126+62,2,BLUE);

 delay(1500);

 Tft.fillRectangle(14,126+12+12,240,200,BLACK);

 Tft.drawString("GPS values could",14,126+12+12,1,BLUE);

 Tft.drawString("not be established",14,126+62,1,BLUE);

 delay(1500);

 }

}

void Display_BMP180(){

 bmp180start = millis();

 Tft.fillRectangle(0,0,239,319,BLACK);

 Tft.fillRectangle(64,20,239,86,BLUE);

 Tft.drawString("Temperature",66,4,2,BLUE);

 Tft.drawString("deg F",66+130,21,1,BLACK);

 Tft.fillRectangle(64,126,176,86,CYAN);

 Tft.drawString("Pressure",66,110,2,CYAN);

 Tft.drawString(" KPa",66+130,116,1,CYAN);

 Tft.fillRectangle(64,232,239,88,GREEN);

 Tft.drawString("Altitude",66,216,2,GREEN);

 Tft.drawString(" feet",66+130,222,1,GREEN);

 //X-axis for Temp

 Tft.drawLine(68,96,237,96,BLACK);

 Tft.drawLine(236,95,236,97,BLACK);

 Tft.drawLine(235,94,235,98,BLACK);

 Tft.drawString("0",70,98,1,WHITE);

 Tft.drawString("10",91,98,1,WHITE);

 A4-108

 Tft.drawString("20",116,98,1,WHITE);

 Tft.drawString("30",141,98,1,WHITE);

 Tft.drawString("40",166,98,1,WHITE);

 Tft.drawString("50",191,98,1,WHITE);

 Tft.drawString("60",216,98,1,WHITE);

 float pixelx = 0, pixely = 0;

 for(int i=0; i<60; i++)

 {

 pixelx = 74 + 2.5*i;

 pixely = map(tempArray[i], maxTemp, minTemp, 26, 96); //though it appears

backwards, this is how it needs to be

 if(tempArray[i]!=-999)

 Tft.fillCircle(pixelx,pixely,3,RED);

 }

 //Y-axis for Temp

 Tft.drawLine(68,23,68,96,BLACK);

 Tft.drawLine(67,24,69,24,BLACK);

 Tft.drawLine(66,25,70,25,BLACK);

 dtostrf(minTemp,6,2,printBuffer);

 Tft.drawString(printBuffer,16,86,1,WHITE);

 dtostrf(minTemp+(maxTemp-minTemp)/6,6,2,printBuffer);

 Tft.drawString(printBuffer,16,76,1,WHITE);

 dtostrf(minTemp+2*(maxTemp-minTemp)/6,6,2,printBuffer);

 Tft.drawString(printBuffer,16,66,1,WHITE);

 dtostrf(minTemp+3*(maxTemp-minTemp)/6,6,2,printBuffer);

 Tft.drawString(printBuffer,16,56,1,WHITE);

 dtostrf(minTemp+4*(maxTemp-minTemp)/6,6,2,printBuffer);

 Tft.drawString(printBuffer,16,46,1,WHITE);

 dtostrf(minTemp+5*(maxTemp-minTemp)/6,6,2,printBuffer);

 Tft.drawString(printBuffer,16,36,1,WHITE);

 dtostrf(maxTemp,6,2,printBuffer);

 Tft.drawString(printBuffer,16,26,1,WHITE);

 A4-109

 End_Bars_loop();

 //X-axis for Pressure

 Tft.drawLine(68,96+106,237,96+106,BLACK);

 Tft.drawLine(236,95+106,236,97+106,BLACK);

 Tft.drawLine(235,94+106,235,98+106,BLACK);

 Tft.drawString("0",70,98+106,1,BLACK);

 Tft.drawString("10",91,98+106,1,BLACK);

 Tft.drawString("20",116,98+106,1,BLACK);

 Tft.drawString("30",141,98+106,1,BLACK);

 Tft.drawString("40",166,98+106,1,BLACK);

 Tft.drawString("50",191,98+106,1,BLACK);

 Tft.drawString("60",216,98+106,1,BLACK);

 for(int i=0; i<60; i++)

 {

 pixelx = 74 + 2.5*i;

 pixely = map(pressureArray[i], minPressure, maxPressure, 96+106, 26+106);

 if(pressureArray[i]!=-999)

 Tft.fillCircle(pixelx,pixely,3,RED);

 }

 //Y-axis for Pressure

 Tft.drawLine(68,23+106,68,96+106,BLACK);

 Tft.drawLine(67,24+106,69,24+106,BLACK);

 Tft.drawLine(66,25+106,70,25+106,BLACK);

 dtostrf(minPressure,7,3,printBuffer);

 Tft.drawString(printBuffer,8,86+106,1,WHITE);

 dtostrf(minPressure+(maxPressure-minPressure)/6,7,3,printBuffer);

 Tft.drawString(printBuffer,8,76+106,1,WHITE);

 dtostrf(minPressure+2*(maxPressure-minPressure)/6,7,3,printBuffer);

 Tft.drawString(printBuffer,8,66+106,1,WHITE);

 dtostrf(minPressure+3*(maxPressure-minPressure)/6,7,3,printBuffer);

 Tft.drawString(printBuffer,8,56+106,1,WHITE);

 dtostrf(minPressure+4*(maxPressure-minPressure)/6,7,3,printBuffer);

 Tft.drawString(printBuffer,8,46+106,1,WHITE);

 dtostrf(minPressure+5*(maxPressure-minPressure)/6,7,3,printBuffer);

 Tft.drawString(printBuffer,8,36+106,1,WHITE);

 A4-110

 dtostrf(maxPressure,7,2,printBuffer);

 Tft.drawString(printBuffer,8,26+106,1,WHITE);

 End_Bars_loop();

 //X-axis for Altitude

 Tft.drawLine(68,96+212,237,96+212,BLACK);

 Tft.drawLine(236,95+212,236,97+212,BLACK);

 Tft.drawLine(235,94+212,235,98+212,BLACK);

 Tft.drawString("0",70,98+212,1,WHITE);

 Tft.drawString("10",91,98+212,1,WHITE);

 Tft.drawString("20",116,98+212,1,WHITE);

 Tft.drawString("30",141,98+212,1,WHITE);

 Tft.drawString("40",166,98+212,1,WHITE);

 Tft.drawString("50",191,98+212,1,WHITE);

 Tft.drawString("60",216,98+212,1,WHITE);

 for(int i=0; i<60; i++)

 {

 pixelx = 74 + 2.5*i;

 pixely = map(altitudeArray[i], minAlt, maxAlt, 96+106+106, 26+106+106);

 if(altitudeArray[i]!=-999)

 Tft.fillCircle(pixelx,pixely,3,RED);

 }

 //Y-axis for Altitude

 Tft.drawLine(68,23+212,68,96+212,BLACK);

 Tft.drawLine(67,24+212,69,24+212,BLACK);

 Tft.drawLine(66,25+212,70,25+212,BLACK);

 dtostrf(minAlt*3.28084,6,2,printBuffer);

 Tft.drawString(printBuffer,8,86+106+106,1,WHITE);

 dtostrf((minAlt+(maxAlt-minAlt)/6)*3.28084,6,2,printBuffer);

 Tft.drawString(printBuffer,8,76+106+106,1,WHITE);

 dtostrf((minAlt+2*(maxAlt-minAlt)/6)*3.28084,6,2,printBuffer);

 Tft.drawString(printBuffer,8,66+106+106,1,WHITE);

 dtostrf((minAlt+3*(maxAlt-minAlt)/6)*3.28084,6,2,printBuffer);

 Tft.drawString(printBuffer,8,56+106+106,1,WHITE);

 dtostrf((minAlt+4*(maxAlt-minAlt)/6)*3.28084,6,2,printBuffer);

 Tft.drawString(printBuffer,8,46+106+106,1,WHITE);

 dtostrf((minAlt+5*(maxAlt-minAlt)/6)*3.28084,6,2,printBuffer);

 A4-111

 Tft.drawString(printBuffer,8,36+106+106,1,WHITE);

 dtostrf(maxAlt*3.28084,6,2,printBuffer);

 Tft.drawString(printBuffer,8,26+106+106,1,WHITE);

 while(millis()-bmp180start < 10000) {End_Bars_loop();}

 }

void initTouchScreenParameters()

{

 //This function initializes Touch Screen parameters based on the detected TFT Touch

Schield hardware

 if(Tft.IC_CODE == 0x5408) //SPFD5408A TFT driver based Touchscreen hardware

detected

 {

#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 ts = TouchScreen(54, A1, A2, 57, 300); //init TouchScreen port pins

#else

 ts = TouchScreen(14, A1, A2, 17, 300); //init TouchScreen port pins

#endif

 //Touchscreen parameters for this hardware

 TS_MINX = 120;

 TS_MAXX = 910;

 TS_MINY = 120;

 TS_MAXY = 950;

 MapX1 = 239;

 MapX2 = 0;

 MapY1 = 0;

 MapY2 = 319;

 }

 else //ST7781R TFT driver based Touchscreen hardware detected

 {

#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

 ts = TouchScreen(57, A2, A1, 54, 300); //init TouchScreen port pins

#else

 ts = TouchScreen(17, A2, A1, 14, 300); //init TouchScreen port pins

#endif

 //Touchscreen parameters for this hardware

 TS_MINX = 140;

 TS_MAXX = 900;

 TS_MINY = 120;

 TS_MAXY = 940;

 A4-112

 MapX1 = 239;

 MapX2 = 0;

 MapY1 = 319;

 MapY2 = 0;

 }

}

 A4-113

Script associated with NeoPixel LED Strip and force-sensitive-resistor
void End_Bars_setup(){

 endBars.begin();

 endBars.setBrightness(brightness);

 //Calibrate the analog read sensors, set reading to be flat/zero

 for(i=0;i<8;i++)

 {

 //REMEMBER! tail = 0 , nose = 1

 tailMidVal += analogRead(tailBendBar);

 noseMidVal += analogRead(noseBendBar);

 delay(50);

 endBars.setPixelColor(i, Color(31*i,0,192));

 endBars.show();

 if(i==7) { tailMidVal /= 8; noseMidVal /= 8; }

 }

 delay(200);

 for(i=0; i<8; i++)

 endBars.setPixelColor(i, Color(0,0,0));

 endBars.show();

}

void End_Bars_loop(){ //Function takes ~15ms

 if(bendCheck() != -1) { lightBarsFromBend(); lastSet = millis(); }

 if(millis()-lastSet >= 3000){

 //if bars have been illuminated for 3 seconds with no change, turn lights off

 for(i=0;i<8;i++)

 endBars.setPixelColor(i, Color(0,0,0));

 endBars.show();

 }

}

int bendCheck(){ //Function Takes <20ms

 //mid value typically 410, max value 250. Bend is broken up into 10 different levels

 //lighting the neopixels with the middle 8 leves, first two sections as buffers

 //buffer value regions are used so pixels stay off while flat and also to max out a

little more generously.

 if(analogRead(tailBendBar) <= analogRead(noseBendBar))

 {

 if(tailMidVal - analogRead(tailBendBar) > 2*((tailMidVal-300)/10) && tailMidVal

- analogRead(tailBendBar) < 3*((tailMidVal-300)/10)) return 0;

 else if(tailMidVal - analogRead(tailBendBar) > 3*((tailMidVal-300)/10) &&

tailMidVal - analogRead(tailBendBar) < 4*((tailMidVal-300)/10)){ return 1;}

 A4-114

 else if(tailMidVal - analogRead(tailBendBar) > 4*((tailMidVal-300)/10) &&

tailMidVal - analogRead(tailBendBar) < 5*((tailMidVal-300)/10)){ return 2;}

 else if(tailMidVal - analogRead(tailBendBar) > 5*((tailMidVal-300)/10) &&

tailMidVal - analogRead(tailBendBar) < 6*((tailMidVal-300)/10)) return 3;

 else if(tailMidVal - analogRead(tailBendBar) > 6*((tailMidVal-300)/10) &&

tailMidVal - analogRead(tailBendBar) < 7*((tailMidVal-300)/10)) return 4;

 else if(tailMidVal - analogRead(tailBendBar) > 7*((tailMidVal-300)/10) &&

tailMidVal - analogRead(tailBendBar) < 8*((tailMidVal-300)/10)) return 5;

 else if(tailMidVal - analogRead(tailBendBar) > 8*((tailMidVal-300)/10) &&

tailMidVal - analogRead(tailBendBar) < 9*((tailMidVal-300)/10)) return 6;

 else if(tailMidVal - analogRead(tailBendBar) > 9*((tailMidVal-300)/10)) return 7;

 return -1;

 }

 else

 {

 if(noseMidVal - analogRead(noseBendBar) > 2*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 3*((noseMidVal-300)/10)) return 0;

 if(noseMidVal - analogRead(noseBendBar) > 3*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 4*((noseMidVal-300)/10)){ return 1;}

 if(noseMidVal - analogRead(noseBendBar) > 4*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 5*((noseMidVal-300)/10)){ return 2;}

 if(noseMidVal - analogRead(noseBendBar) > 5*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 6*((noseMidVal-300)/10)){ return 3;}

 if(noseMidVal - analogRead(noseBendBar) > 6*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 7*((noseMidVal-300)/10)){ return 4;}

 if(noseMidVal - analogRead(noseBendBar) > 7*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 8*((noseMidVal-300)/10)){ return 5;}

 if(noseMidVal - analogRead(noseBendBar) > 8*((noseMidVal-300)/10) &&

noseMidVal - analogRead(tailBendBar) < 9*((noseMidVal-300)/10)){ return 6;}

 if(noseMidVal - analogRead(noseBendBar) > 9*((noseMidVal-300)/10)) return 7;

 return -1;

 }

 //Function returns which pixel to light

}

void lightBarsFromBend()

{ // | Function takes ~15ms not counting the extra ~20ms from bendCheck() |

 pixelVal = bendCheck();

 if(pixelVal >= 0)endBars.setPixelColor(0, Color(0,255,0));

 if(pixelVal >= 1)endBars.setPixelColor(1, Color(0,255,0));

 if(pixelVal >= 2)endBars.setPixelColor(2, Color(20,255,0));

 if(pixelVal >= 3)endBars.setPixelColor(3, Color(128,255,0));

 if(pixelVal >= 4)endBars.setPixelColor(4, Color(255,255,0));

 if(pixelVal >= 5)endBars.setPixelColor(5, Color(255,128,0));

 if(pixelVal >= 6)endBars.setPixelColor(6, Color(255,25,0));

 A4-115

 if(pixelVal >= 7) { endBars.setPixelColor(7, Color(255,0,0)); fullBends++; }

 endBars.show();

}

uint32_t Color(byte r, byte g, byte b)

{

 //we dont need to cite open-source code from online do we?

 uint32_t c;

 c = r;

 c <<= 8;

 c |= g;

 c <<= 8;

 c |= b;

 return c;

}

 A4-116

GPS Peripheral Scripts
void GPS_setup()

{

 // connect at 115200 so we can read the GPS fast enough and echo without dropping

chars

 // also spit it out

 if(USE_SERIAL){

 Serial.begin(115200);

 Serial.println("Adafruit GPS library basic test!");

 }

 // 9600 NMEA is the default baud rate for Adafruit MTK GPS's- some use 4800

 GPS.begin(9600);

 // uncomment this line to turn on RMC (recommended minimum) and GGA (fix

data) including altitude

 GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA);

 // uncomment this line to turn on only the "minimum recommended" data

 //GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);

 // For parsing data, we don't suggest using anything but either RMC only or

RMC+GGA since

 // the parser doesn't care about other sentences at this time

 // Set the update rate

 GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); // 1 Hz update rate

 // For the parsing code to work nicely and have time to sort thru the data, and

 // print it out we don't suggest using anything higher than 1 Hz

 // Request updates on antenna status, comment out to keep quiet

 GPS.sendCommand(PGCMD_ANTENNA);

 // the nice thing about this code is you can have a timer0 interrupt go off

 // every 1 millisecond, and read data from the GPS for you. that makes the

 // loop code a heck of a lot easier!

 useInterrupt(true);

}

// Interrupt is called once a millisecond, looks for any new GPS data, and stores it

SIGNAL(TIMER0_COMPA_vect) {

 char c = GPS.read();

 // if you want to debug, this is a good time to do it!

#ifdef UDR0

 if (GPSECHO)

 if (c) UDR0 = c;

 // writing direct to UDR0 is much much faster than Serial.print

 A4-117

 // but only one character can be written at a time.

#endif

}

void useInterrupt(boolean v) {

 if (v) {

 // Timer0 is already used for millis() - we'll just interrupt somewhere

 // in the middle and call the "Compare A" function above

 OCR0A = 0xAF;

 TIMSK0 |= _BV(OCIE0A);

 usingInterrupt = true;

 } else {

 // do not call the interrupt function COMPA anymore

 TIMSK0 &= ~_BV(OCIE0A);

 usingInterrupt = false;

 }

}

void GPS_loop() // run over and over again

{

 // in case you are not using the interrupt above, you'll

 // need to 'hand query' the GPS, not suggested :(

 if (! usingInterrupt) {

 // read data from the GPS in the 'main loop'

 char c = GPS.read();

 // if you want to debug, this is a good time to do it!

 if (GPSECHO)

 if (c) if(USE_SERIAL) Serial.print(c);

 }

 // if a sentence is received, we can check the checksum, parse it...

 if (GPS.newNMEAreceived()) {

 // a tricky thing here is if we print the NMEA sentence, or data

 // we end up not listening and catching other sentences!

 // so be very wary if using OUTPUT_ALLDATA and trytng to print out data

 //Serial.println(GPS.lastNMEA()); // this also sets the newNMEAreceived() flag

to false

 if (!GPS.parse(GPS.lastNMEA())) // this also sets the newNMEAreceived() flag

to false

 return; // we can fail to parse a sentence in which case we should just wait for

another

 }

 // if millis() or timer wraps around, we'll just reset it

 if (timer > millis()) timer = millis();

 A4-118

 // approximately every 2 seconds or so, print out the current stats

 if (millis() - timer > 2000) {

 timer = millis(); // reset the timer

 if(USE_SERIAL)

 {

 Serial.print("\nTime: ");

 Serial.print(GPS.hour, DEC); Serial.print(':');

 Serial.print(GPS.minute, DEC); Serial.print(':');

 Serial.print(GPS.seconds, DEC); Serial.print('.');

 Serial.println(GPS.milliseconds);

 Serial.print("Date: ");

 Serial.print(GPS.day, DEC); Serial.print('/');

 Serial.print(GPS.month, DEC); Serial.print("/20");

 Serial.println(GPS.year, DEC);

 Serial.print("Fix: "); Serial.print((int)GPS.fix);

 Serial.print(" quality: "); Serial.println((int)GPS.fixquality);

 if (GPS.fix) {

 Serial.print("Location: ");

 Serial.print(GPS.latitude, 4); Serial.print(GPS.lat);

 Serial.print(", ");

 Serial.print(GPS.longitude, 4); Serial.println(GPS.lon);

 Serial.print("Speed (knots): "); Serial.println(GPS.speed);

 Serial.print("Angle: "); Serial.println(GPS.angle);

 Serial.print("Altitude: "); Serial.println(GPS.altitude);

 Serial.print("Satellites: "); Serial.println((int)GPS.satellites);

 }

 }

 }

}

 A4-119

BMP180 Pressure and Temperature Data-Gathering Scripts
void Pressure_setup()

{

 int i;

 for(i=0;i<60;i++)

 {pressureArray[i]=-999;}

 for(i=0;i<60;i++)

 {tempArray[i]=-999;}

 for(i=0;i<60;i++)

 {altitudeArray[i]=-999;}

 float temperature;

 sensors_event_t event;

 Serial.println("Pressure Sensor Test"); Serial.println("");

 /* Initialise the sensor */

 if(!bmp.begin())

 {

 /* There was a problem detecting the BMP085 ... check your connections */

 Serial.print("Ooops, no BMP085 detected ... Check your wiring or I2C ADDR!");

 while(1);

 }

}

void Pressure_loop() //Function takes < 100ms

{

 End_Bars_loop();

 float temperature;

 sensors_event_t event;

 bmp.getEvent(&event);

 if (event.pressure)

 {

 pressureArray[pollNumber%60] = event.pressure;

 bmp.getTemperature(&temperature);

 temperature = ((temperature*9)/5)+32;

 tempArray[pollNumber%60] = temperature;

 float seaLevelPressure = SEA_LEVEL_PRESSURE;

 if(GPS.fix && GPS.altitude > -100 && GPS.altitude < 500000) {

altitudeArray[pollNumber%60] = GPS.altitude; }

 else { altitudeArray[pollNumber%60] =

bmp.pressureToAltitude(seaLevelPressure, event.pressure, temperature)*3.28084; }

 A4-120

 }

 else

 {

 Serial.println("Sensor error");

 }

 End_Bars_loop();

//Updates max and min values which are to be tracked through the whole day ::

 if(pressureArray[pollNumber%60] > maxPressure) { maxPressure =

pressureArray[pollNumber%60]; }

 if(pressureArray[pollNumber%60] < minPressure) { minPressure =

pressureArray[pollNumber%60]; }

 if(tempArray[pollNumber%60] > maxTemp) { maxTemp =

tempArray[pollNumber%60]; }

 if(tempArray[pollNumber%60] < minTemp) { minTemp =

tempArray[pollNumber%60]; }

 if(altitudeArray[pollNumber%60] > maxAlt) { maxAlt =

altitudeArray[pollNumber%60]; }

 if(altitudeArray[pollNumber%60] < minAlt) { minAlt =

altitudeArray[pollNumber%60]; }

 pollNumber++;

}

 A5-121

Appendix 5: Vibration Table Data (RED is sensor on board, BLUE is sensor on

casing)

Natural frequency, pulled board down and let go

Speed on table is 20

 A5-122

Speed on table is 30

Speed on Table is 40

 A5-123

Speed on the table is 70

 A6-124

Appendix 6: Sensor Matlab Code

Skate Jump

filename = 'SkateJump1.xlsx';

xSum = 0;

ySum = 0;

zSum = 0;

zScan = 0; %second sum to be calculated to get bounds

tData = xlsread(filename,'A:A');

xData = xlsread(filename,'B:B');

yData = xlsread(filename,'C:C');

zData = xlsread(filename,'D:D');

zMax = 0;

tStart = -1;

tStop = -1;

for i = 1:size(xData)-1

 if(abs(zData(i))>zMax)

 zSum = zSum + abs(zData(i));

 end %this loop establishes the total z value

end

for i = 1:size(xData)-1

 zScan = zScan + abs(zData(i));

 xSum = xSum + xData(i);

 ySum = ySum + yData(i);

 if(abs(zScan)>abs(.1*zSum) && tStart == -1)

 tStart = tData(i);

 end

 if(abs(zScan)>abs(.9*zSum) && tStop == -1)

 tStop = tData(i);

 end

end %this loop sums the x,y axis data and looks at the z data to determine

approximate bounds

tJump = 1.25*(tStop-tStart);

Skate Spin

filename = 'SkateSpin1.xlsx';

xSum = 0;

ySum = 0;

zSum = 0;

zScan = 0; %second sum to be calculated to get bounds

tData = xlsread(filename,'A:A');

 A6-125

xData = xlsread(filename,'B:B');

yData = xlsread(filename,'C:C');

zData = xlsread(filename,'D:D');

zMax = 0;

tStart = -1;

tStop = -1;

for i = 1:size(xData)-1

 if(abs(zData(i))>zMax)

 zSum = zSum + abs(zData(i));

 end %this loop establishes the total z value

end

for i = 1:size(xData)-1

 zScan = zScan + abs(zData(i));

 xSum = xSum + xData(i);

 ySum = ySum + yData(i);

 if(abs(zScan)>abs(.1*zSum) && tStart == -1)

 tStart = tData(i);

 end

 if(abs(zScan)>abs(.9*zSum) && tStop == -1)

 tStop = tData(i);

 end

end %this loop sums the x,y axis data and looks at the z data to determine

approximate bounds

tJump = 1.25*(tStop-tStart);

Snow Jump

filename = 'SnowJump1.xlsx';

xSum = 0;

ySum = 0;

zSum = 0;

zScan = 0; %second sum to be calculated to get bounds

tData = xlsread(filename,'A:A');

xData = xlsread(filename,'B:B');

yData = xlsread(filename,'C:C');

zData = xlsread(filename,'D:D');

zMax = 0;

tStart = -1;

tStop = -1;

for i = 1:size(xData)-1

 if(abs(zData(i))>zMax)

 A6-126

 zSum = zSum + abs(zData(i));

 end %this loop establishes the total z value

end

for i = 1:size(xData)-1

 zScan = zScan + abs(zData(i));

 xSum = xSum + xData(i);

 ySum = ySum + yData(i);

 if(abs(zScan)>abs(.1*zSum) && tStart == -1)

 tStart = tData(i);

 end

 if(abs(zScan)>abs(.9*zSum) && tStop == -1)

 tStop = tData(i);

 end

end %this loop sums the x,y axis data and looks at the z data to determine

approximate bounds

tJump = 1.25*(tStop-tStart);

Snow Spin

filename = 'SnowSpin1.xlsx';

xSum = 0;

ySum = 0;

zSum = 0;

zScan = 0; %second sum to be calculated to get bounds

tData = xlsread(filename,'A:A');

xData = xlsread(filename,'B:B');

yData = xlsread(filename,'C:C');

zData = xlsread(filename,'D:D');

zMax = 0;

tStart = -1;

tStop = -1;

for i = 1:size(xData)-1

 if(abs(zData(i))>zMax)

 zSum = zSum + abs(zData(i));

 end %this loop establishes the total z value

end

for i = 1:size(xData)-1

 zScan = zScan + abs(zData(i));

 xSum = xSum + xData(i);

 ySum = ySum + yData(i);

 if(abs(zScan)>abs(.1*zSum) && tStart == -1)

 A6-127

 tStart = tData(i);

 end

 if(abs(zScan)>abs(.9*zSum) && tStop == -1)

 tStop = tData(i);

 end

end %this loop sums the x,y axis data and looks at the z data to determine

approximate bounds

tJump = 1.25*(tStop-tStart);

 A7-128

Appendix 7

Consumer Needs Data

Sport Ski Snowboard Skateboard 2 of These

All of

These

 Quantity 11 13 7 10 3

Hours Spent per

Week in season Quantity

 1 -> 10 12

 11 -> 20 10

 21 -> 30 5

 31+ 13

Speed Data

Jump Hang

Time

Board/Ski Orientation (in air

and on ground)

Yes 37 Yes 34 Yes 31

No 7 No 9 No 13
Willing Sensor

Placement (all

that apply) Age Quantity

 Board/Ski 31 19 7

 Boots 29 20 10

 Torso 11 21 21

 None 4 22 4

other 2

 Rank of

Importance 1 2 3 4 5 6

Cost 25 7 3 2 1 2

Size 3 18 4 8 6 2

Durability 7 6 17 5 5 1

Aesthetics 2 5 9 9 8 7

Simplicity 3 3 4 13 13 4

 A8-129

Appendix 8: Dimensioned Final Casing

All dimensions are in inches

 A8-130

 A8-131

	Santa Clara University
	Scholar Commons
	12-15-2014

	Snowboard, Ski, and Skateboard Sensor System Application
	Adrien Doiron
	Michael Fernandez
	Victor Ojeda
	Robert Ross
	Recommended Citation

	tmp.1444951086.pdf.jAcM0

