241 research outputs found

    Everything in its Place: A Conceptual Framework For Anti-Music

    Get PDF
    In this paper I describe my live performance practice utilising bespoke synthesisers and controllers. I address the conceptual approach and processes in the context of esoteric systems and give a technical description of the instruments. I situate my work in the context of Victorian Spiritualism and magic ritual. Following their precedent, I amalgamate systems and esoteric concepts to meet the goals of transformation and connecting to unknown forces, designing hybrid systems that allow me to approach a performance as an automatic mediumship process. I work primarily with NASA’s lunar orbital data, W.B. Yeats’ esoteric system detailed in A Vision (1937), and the Tarot. These systems, in conjunction with the hardware instruments, allow me to devise an invocation performance practice, where I draw forth music from the aether, tapping into unseen and unknown forces outside of myself. Opposing binaries of the analogue and the digital, hardware and software, scientific data and esoteric systems, produce a ritual invocatory performance. The depth and complexity of the systems are such that I can abandon Western musical conventions while maintaining a sense of form and structure, creating a framework for receiving and embracing transmissions from the vast possibilities of noise, the cosmos, and translating them into an immersive listening experience

    Design of Power Optimized circuit of LC Voltage Controlled Oscillator for use in GSM Handsets

    Get PDF
    The recent performance requirements for mobile phones have been extending its area of interest. Handsets need to have high resolution graphics, pictures, and applications. Consequently, the requirement for a longer battery life has become a bare necessity. This makes optimization of power a critical issue. Along with this cell phones need to be thin and have light weight. A major portion of the power consumption of the handsets can be attributed to the LC oscillators used in the system. A Voltage Controlled Oscillator plays an important role in any communication system. It provides the frequency signal for down-conversion of input signals and also the carrier signals for the modulating signal. Proper amplitude and low phase noise are two important criteria to achieve suitable performance for a VCO in any transceiver system. The strong combination of low phase noise specifications with very low power consumption (battery operation) forces designers to use LC-VCOs. A great research effort has been done in the design of integrated voltage controlled oscillators (VCOs) using integrated or external resonators, but as their power consumption still cannot be unacceptable, today’s mobile phones commonly use external LC-VCO modules. Inductors used in these oscillators are usually bulky and have high power consumption. The low power LC oscillator increases the standby time, thus improving the battery life. Extended battery life provides processing power at lower clock speeds, enabling low leakage process that optimizes power consumption and increases battery time. Also provides integrated and sophisticated systems with improved power management. The main purpose of this project is to design a circuit for LC VCO to be used in GSM system with a tuning rage of 3-4GHz. Since the phase noise requirement for the system is less than 150dBc/Hz at 20 KHz offset. Also for a GSM system, the size of the inductor used in the oscillator is a major issue in determining its overall size, efforts will be made to optimize the size of the inductor as well

    Electronics, music and computers

    Get PDF
    technical reportElectronic and computer technology has had and will continue to have a marked effect in the field of music. Through the years scientists, engineers, and musicians have applied available technology to new musical instruments, innovative musical sound production, sound analysis, and musicology. At the University of Utah we have designed and are implementing a communication network involving and electronic organ and a small computer to provide a tool to be used in music performance, the learning of music theory, the investigation of music notation, the composition of music, the perception of music, and the printing of music

    Development of a batteryless RF receiver based on MEMS technology

    Get PDF
    The main goal of this project is to develop a wireless receiver and batteryless based on the use of microelectromechanical structures as electromagnetic energy transducer, which is able to demodulate the amplitude modulated signal received and produce an audible sound pressure level. Along the project, it has been established the background related to microstrip antennas and microelectromechanical systems design. Besides, it has been done the analysis, design and modelling of the receiver, taking int account different types of structures based on MEMS technology. At the end, it has been done the measurements and analysis of the results obtained in the laboratory

    Public key cryptosystems : theory, application and implementation

    Get PDF
    The determination of an individual's right to privacy is mainly a nontechnical matter, but the pragmatics of providing it is the central concern of the cryptographer. This thesis has sought answers to some of the outstanding issues in cryptography. In particular, some of the theoretical, application and implementation problems associated with a Public Key Cryptosystem (PKC).The Trapdoor Knapsack (TK) PKC is capable of fast throughput, but suffers from serious disadvantages. In chapter two a more general approach to the TK-PKC is described, showing how the public key size can be significantly reduced. To overcome the security limitations a new trapdoor was described in chapter three. It is based on transformations between the radix and residue number systems.Chapter four considers how cryptography can best be applied to multi-addressed packets of information. We show how security or communication network structure can be used to advantage, then proposing a new broadcast cryptosystem, which is more generally applicable.Copyright is traditionally used to protect the publisher from the pirate. Chapter five shows how to protect information when in easily copyable digital format.Chapter six describes the potential and pitfalls of VLSI, followed in chapter seven by a model for comparing the cost and performance of VLSI architectures. Chapter eight deals with novel architectures for all the basic arithmetic operations. These architectures provide a basic vocabulary of low complexity VLSI arithmetic structures for a wide range of applications.The design of a VLSI device, the Advanced Cipher Processor (ACP), to implement the RSA algorithm is described in chapter nine. It's heart is the modular exponential unit, which is a synthesis of the architectures in chapter eight. The ACP is capable of a throughput of 50 000 bits per second

    ATS-6 engineering performance report. Volume 6: Scientific experiments

    Get PDF
    Evaluations include a very high resolution radiometer, a radio beacon experiment, environmental measurement experiments (EME), EME support hardware, EME anomalies and failures, EME results, and US/USSR magnetometer experiments

    NASA Tech Briefs, January 1995

    Get PDF
    Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Report

    Study and design of an interface for remote audio processing

    Get PDF
    This project focused on the study and design of an interface for remote audio processing, with the objective of acquiring by filtering, biasing, and amplifying an analog signal before digitizing it by means of two MCP3208 ADCs to achieve a 24-bit resolution signal. The resulting digital signal was then transmitted to a Raspberry Pi using SPI protocol, where it was processed by a Flask server that could be accessed from both local and remote networks. The design of the PCB was a critical component of the project, as it had to accommodate various components and ensure accurate signal acquisition and transmission. The PCB design was created using KiCad software, which allowed for the precise placement and routing of all components. A major challenge in the design of the interface was to ensure that the analog signal was not distorted during acquisition and amplification. This was achieved through careful selection of amplifier components and using high-pass and low-pass filters to remove any unwanted noise. Once the analog signal was acquired and digitized, the resulting digital signal was transmitted to the Raspberry Pi using SPI protocol. The Raspberry Pi acted as the host for a Flask server, which could be accessed from local and remote networks using a web browser. The Flask server allowed for the processing of the digital signal and provided a user interface for controlling the gain and filtering parameters of the analog signal. This enabled the user to adjust the signal parameters to suit their specific requirements, making the interface highly flexible and adaptable to a variety of audio processing applications. The final interface was capable of remote audio processing, making it highly useful in scenarios where the audio signal needed to be acquired and processed in a location separate from the user. For example, it could be used in a recording studio, where the audio signal from the microphone could be remotely processed using the interface. The gain and filtering parameters could be adjusted in real-time, allowing the sound engineer to fine-tune the audio signal to produce the desired recording. In conclusion, the project demonstrated the feasibility and potential benefits of using a remote audio processing system for various applications. The design of the PCB, selection of components, and use of the Flask server enabled the creation of an interface that was highly flexible, accurate, and adaptable to a variety of audio processing requirements. Overall, the project represents a significant step forward in the field of remote audio processing, with the potential to benefit many different applications in the future

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    Application of Signal Advance Technology to Electrophysiology

    Get PDF
    Medical instrumentation used in diagnosis and treatment relies on the accurate detection and processing of various physiological events and signals. While signal detection technology has improved greatly in recent years, there remain inherent delays in signal detection/ processing. These delays may have significant negative clinical consequences during various pathophysiological events. Reducing or eliminating such delays would increase the ability to provide successful early intervention in certain disorders thereby increasing the efficacy of treatment. In recent years, a physical phenomenon referred to as Negative Group Delay (NGD), demonstrated in simple electronic circuits, has been shown to temporally advance the detection of analog waveforms. Specifically, the output is temporally advanced relative to the input, as the time delay through the circuit is negative. The circuit output precedes the complete detection of the input signal. This process is referred to as signal advance (SA) detection. An SA circuit model incorporating NGD was designed, developed and tested. It imparts a constant temporal signal advance over a pre-specified spectral range in which the output is almost identical to the input signal (i.e., it has minimal distortion). Certain human patho-electrophysiological events are good candidates for the application of temporally-advanced waveform detection. SA technology has potential in early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable and consistent temporally advanced detection of electrophysiological waveforms may enable intervention with a pathological event (much) earlier than previously possible. SA detection could also be used to improve the performance of neural computer interfaces, neurotherapy applications, radiation therapy and imaging. In this study, the performance of a single-stage SA circuit model on a variety of constructed input signals, and human ECGs is investigated. The data obtained is used to quantify and characterize the temporal advances and circuit gain, as well as distortions in the output waveforms relative to their inputs. This project combines elements of physics, engineering, signal processing, statistics and electrophysiology. Its success has important consequences for the development of novel interventional methodologies in cardiology and neurophysiology as well as significant potential in a broader range of both biomedical and non-biomedical areas of application
    corecore