5,830 research outputs found

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    An ultra-fast digital diffuse optical spectroscopic imaging system for neoadjuvant chemotherapy monitoring

    Full text link
    Up to 20% of breast cancer patients who undergo presurgical (neoadjuvant) chemotherapy have no response to treatment. Standard-of-care imaging modalities, including MRI, CT, mammography, and ultrasound, measure anatomical features and tumor size that reveal response only after months of treatment. Recently, non-invasive, near-infrared optical markers have shown promise in indicating the efficacy of treatment at the outset of the chemotherapy treatment. For example, frequency domain Diffuse Optical Spectroscopic Imaging (DOSI) can be used to characterize the optical scattering and absorption properties of thick tissue, including breast tumors. These parameters can then be used to calculate tissue concentrations of chromophores, including oxyhemoglobin, deoxyhemoglobin, water, and lipids. Tumors differ in hemoglobin concentration, as compared with healthy background tissue, and changes in hemoglobin concentration during neoadjuvant chemotherapy have been shown to correlate with efficacy of treatment. Using DOSI early in treatment to measure chromophore concentrations may be a powerful tool for guiding neoadjuvant chemotherapy treatment. Previous frequency-domain DOSI systems have been limited by large device footprints, complex electronics, high costs, and slow acquisition speeds, all of which complicate access to patients in the clinical setting. In this work a new digital DOSI (dDOSI) system has been developed, which is relatively inexpensive and compact, allowing for use at the bedside, while providing unprecedented measurement speeds. The system builds on, and significantly advances, previous dDOSI setups developed by our group and, for the first time, utilizes hardware-integrated custom board-level direct digital synthesizers (DDS) and analog to digital converters (ADC) to generate and directly measure signals utilizing undersampling techniques. The dDOSI system takes high-speed optical measurements by utilizing wavelength multiplexing while sweeping through hundreds of modulation frequencies in tens of milliseconds. The new dDOSI system is fast, inexpensive, and compact without compromising accuracy and precision

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Development of the Telemetrical Intraoperative Soft Tissue Tension Monitoring System in Total Knee Replacement with MEMS and ASIC Technologies

    Get PDF
    The alignment of the femoral and tibial components of the Total Knee Arthoplasty (TKA) is one of the most important factors to implant survivorship. Hence, numerous ligament balancing techniques and devices have been developed in order to accurately balance the knee intra-operatively. Spacer block, tensioner and tram adapter are instruments that allow surgeons to qualitatively balance the flexion and extension gaps during TKA. However, even with these instruments, the surgical procedure still relies on the skill and experience of the surgeon. The objective of this thesis is to develop a computerized surgical instrument that can acquire intra-operative data telemetrically for surgeons and engineers. Microcantilever is chosen to be used as the strain sensing elements. Even though many high end off-the-shelf data acquisition components and integrated circuit (IC) chips exist on the market, yet multiple components are required to process the entire array of microcantilevers and achieve the desired functions. Due to the size limitation of the off-chip components, an Application Specific Integrated Circuit (ASIC) chip is designed and fabricated. Using a spacer block as a base, sensors, a data acquisition system as well as the transmitter and antenna are embedded into it. The electronics are sealed with medical grade epoxy

    Simultaneous image and signal acquisition for foot force analysis

    Get PDF
    Gait analysis is the study of locomotion. There are many applications of gait analysis, some of which are, treatment of the pathological conditions (Pathological gait), development of new prostheses and orthoses devices for rehabilitation, and in the field of biometrics for identifying an individual based on gait information. Main goal of most of the gait analysis is to study the kinematics (the position and motion of different joints) and kinetics (Force that causes the motion) of the joints. To analyze the kinematics and kinetics of the different joints during locomotion, many instruments are required such as a force plate. Force plate is used to measure the ground reaction force, the force exerted by body over the ground during locomotion. Using inverse dynamics approach we can measure the moment across the joints through the use of ground reaction forces. In this experiment, we are modifying an existing Force Plate design, which records ground reaction forces using the strain gauge, by fitting an integrated web-camera that will also record foot imprints from below the force plate instrument. The combination of the strain gauge signal and the image helps in determining the area of the foot in contact with the plate, and the type of strain gauge signal recorded at that moment. We hope that this low cost force plate instrument with the integrated web-camera can aid in the better analysis of gait using the force plate instrument

    Design of a Cost-Efficient Reconfigurable Pipeline ADC

    Get PDF
    Power budget is very critical in the design of battery-powered implantable biomedical instruments. High speed, high resolution and low power usually cannot be achieved at the same time. Therefore, a tradeoff must be made to compromise every aspect of those features. As the main component of the bioinstrument, high conversion rate, high resolution ADC consumes most of the power. Fortunately, based on the operation modes of the bioinstrument, a reconfigurable ADC can be used to solve this problem. The reconfigurable ADC will operate at 10-bit 40 MSPS for the diagnosis mode and at 8-bit 2.5 MSPS for the monitor mode. The ADC will be completely turned off if no active signal comes from sensors or if an off command is received from the antenna. By turning off the sample hold stage and the first two stages of the pipeline ADC, a significant power saving is achieved. However, the reconfigurable ADC suffers from two drawbacks. First, the leakage signals through the extra off-state switches in the third stage degrade the performance of the data converter. This situation tends to be even worse for high speed and high-resolution applications. An interference elimination technique has been proposed in this work to solve this problem. Simulation results show a significant attenuation of the spurious tones. Moreover, the transistors in the OTA tend to operate in weak inversion region due to the scaling of the bias current. The transistor in subthreshold is very slow due to the small transit frequency. In order to get a better tradeoff between the transconductance efficiency and the transit frequency, reconfigurable OTAs and scalable bias technique are devised to adjust the operating point from weak inversion to moderate inversion. The figure of merit of the reconfigurable ADC is comparable to the previously published conventional pipeline ADCs. For the 10-bit, 40 MSPS mode, the ADC attains a 56.9 dB SNDR for 35.4 mW power consumption. For the 8-bit 2.5 MSPS mode, the ADC attains a 49.2 dB SNDR for 7.9 mW power consumption. The area for the core layout is 1.9 mm2 for a 0.35 micrometer process

    Polymeric Microsensors for Intraoperative Contact Pressure Measurement

    Get PDF
    Biocompatible sensors have been demonstrated using traditional microfabrication techniques modified for polymer substrates and utilize only materials suitable for implantation or bodily contact. Sensor arrays for the measurement of the load condition of polyethylene spacers in the total knee arthroplasty (TKA) prosthesis have been developed. Arrays of capacitive sensors are used to determine the three-dimensional strain within the polyethylene prosthesis component. Data from these sensors can be used to give researchers a better understanding of component motion, loading, and wear phenomena for a large range of activities. This dissertation demonstrates both analytically and experimentally the fabrication of these sensor arrays using biocompatible polymer substrates and dielectrics while preserving industry-standard microfabrication processing for micron-level resolution. An array of sensors for real-time measurement of pressure profiles is the long-term goal of this research. A custom design using capacitive-based sensors is an excellent selection for such measurement, giving high spatial resolution across the sensing surface and high load resolution for pressures applied normal to that surface while operating at low power

    Electrochemical Sensors and On-chip Optical Sensors

    Get PDF
    abstract: The microelectronics technology has seen a tremendous growth over the past sixty years. The advancements in microelectronics, which shows the capability of yielding highly reliable and reproducible structures, have made the mass production of integrated electronic components feasible. Miniaturized, low-cost, and accurate sensors became available due to the rise of the microelectronics industry. A variety of sensors are being used extensively in many portable applications. These sensors are promising not only in research area but also in daily routine applications. However, many sensing systems are relatively bulky, complicated, and expensive and main advantages of new sensors do not play an important role in practical applications. Many challenges arise due to intricacies for sensor packaging, especially operation in a solution environment. Additional problems emerge when interfacing sensors with external off-chip components. A large amount of research in the field of sensors has been focused on how to improve the system integration. This work presents new methods for the design, fabrication, and integration of sensor systems. This thesis addresses these challenges, for example, interfacing microelectronic system to a liquid environment and developing a new technique for impedimetric measurement. This work also shows a new design for on-chip optical sensor without any other extra components or post-processing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development
    corecore