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Abstract 
___________________________________________ 
 

- iv – 
________________________________________________________________________ 

The alignment of the femoral and tibial components of the Total Knee 

Arthoplasty (TKA) is one of the most important factors to implant survivorship. 

Hence, numerous ligament balancing techniques and devices have been 

developed in order to accurately balance the knee intra-operatively. Spacer 

block, tensioner and tram adapter are instruments that allow surgeons to 

qualitatively balance the flexion and extension gaps during TKA. However, even 

with these instruments, the surgical procedure still relies on the skill and 

experience of the surgeon. The objective of this thesis is to develop a 

computerized surgical instrument that can acquire intra-operative data 

telemetrically for surgeons and engineers. Microcantilever is chosen to be used 

as the strain sensing elements. Even though many high end off-the-shelf data 

acquisition components and integrated circuit (IC) chips exist on the market, yet 

multiple components are required to process the entire array of microcantilevers 

and achieve the desired functions. Due to the size limitation of the off-chip 

components, an Application Specific Integrated Circuit (ASIC) chip is designed 

and fabricated. Using a spacer block as a base, sensors, a data acquisition 

system as well as the transmitter and antenna are embedded into it. The 

electronics are sealed with medical grade epoxy. 
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Chapter 1 
 
Introduction and Previous Work 
 

 
 

1.1 Introduction 

The use of prosthetic joint implants to treat patients with severe 

osteoarthritis and other joint degenerative diseases began in the early 70’s.  The 

designs of the implant were primitive and the surgical procedure was not well 

developed.  Complications such as components loosening and infection were 

commonly observed. Technological advancements of the past decade have had 

tremendous impact in improving the biomechanical performance and longevity of 

Total Knee Arthroplasty (TKA) with implant design, material selections and 

instrumentations.  However, premature failure of the prosthesis remains an 

unsolved problem.  Failure is mainly attributed to malalignment of the implant 

components and the ligaments imbalance, which leads to uneven loading on the 

polymeric component and causes wear [1].  Ligament imbalance is caused by 

the unequal tensions between the lateral and medical collateral ligaments (figure 

1).  Surgeons balance the tension of the soft tissues surrounding the knee joint 

by releasing attachment sites of the ligaments intra-operatively.  
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Figure 1 - The knee joint on the right shows a balance in tension between lateral 

collateral ligament (LCL) and medium collateral ligament (MCL). The figure on 

the left shows an imbalance knee joint, which the LCL is looser than the MCL.  

Medial Collateral 
Ligament 

Lateral Collateral 
Ligament 
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There are numerous types of balancing techniques, which depend on the 

surgeons’ preferences, the orthopaedic companies and the types of implant 

sbeing used.  In general, these methods can be classified into two types, 

anatomical and instrumental, which will be discussed in the following paragraphs.  

The goal of these methods is to align the implants with the mechanical axis of the 

lower extremity by resecting the femur and tibia such that the gap between the 

two bones remains rectangular with the same gap size during extension and 

flexion (figure 2).  In case of varus/valgus deformity, angular compensation is 

made for the resection.  

Anatomical balancing techniques use bone landmarks to justify the 

resection, thus achieving the desired gap size.  This method is not reliable due to 

the variability of the skeletal structures among patients [2].  The success rate 

solely depends on the surgeon’s skill and experience.  On the other hand, 

instruments have been developed in attempt to assist surgeons to perform more 

accurate resections [3,4].  Various instruments such as the spacer block, 

tensioner and tram adapter (figure 3) were experimented and used in surgeries.  

These instruments provide valuable information about the gap shape and size 

during the bone resection process.  Although there is no existing study showing 

the effectiveness and potential of these instruments, it is generally favoured by 

surgeons as a gap assessment tool for verification of their resections.
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Figure 2 - This figure illustrates the ideal bone cut for the femur and tibia during a 

TKA surgery. The cut of the femur is parallel to the cut on the tibia during 

extension and 90o flexion.  
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Nonetheless, the feedback from an instrument such as a spacer block and tram 

adapter is qualitative and the degree of tightness of the ligaments is inaccessible.  

Although the tensioner gives quantitative information about the medial and lateral 

gap, the value reflects only the tension in medial and lateral sides in general. 

Information such as stress distribution is not available, which can be very useful 

with a patient with a knee deformity. The stress distribution profile could provide 

suggestions and clues to what attachment sites of the ligament should be 

released.  Additionally, the surgeons would be able to access the detail effect of 

the release on the flexion and extension profiles.  

Despite the pros and cons of each method, it is still the surgeon’s skill that 

determines the outcome of the surgery.  Even though some surgeons can 

determine the gap information by touching and feeling, yet this is earned from 

many years of experience.  The majority of the surgeons, however, have not yet 

acquired such knowledge.  Hence, there is a demand for an intra-operative 

checking system that provides immediate evaluation of the resections.  

Additionally, this type of instrument can also serve as a learning and training tool.  

Traditional incision for the TKA surgery, which is approximately 8 to 12 

inches in length, can fully expose the knee.  This aids the accuracy to the bone 

resection as the surgeons can visually determine the shape and size of the cut.  

Minimum Invasive Surgery (MIS) has become increasingly popular recently 

among patients because of cosmetic reasons and a faster healing rate.
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Figure 3 - Examples of surgical instrument used in soft tissue balancing in TKA. 

A. Spacer block; B. Tensioner; C. Tram Adapter 

A 

B 

C 
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With MIS, the knee is partially exposed with a 3 to 4 inches incision (figure 4). 

Regardless of its popularity, MIS is a much complicated surgical procedure.  The 

small incision limits the visible judgment of the resection and placement of the 

prostheses.  In the case of a patient with varus or valgus deformity, it became 

very difficult to correctly align the components with such limited visibility.  

Furthermore, many instruments become obsolete because of the size.  Hence, 

the principles of the intra-operative balancing system should be miniature in size 

and biologically inert such that it can be incorporated easily into any of the 

instruments depending on the surgeon’s preference. 

The development of a surgical instrument with quantitative feedback such 

as compartmental pressure can potentially minimize the errors during surgery.  

Eventually, this type of sensing system will be embedded into the implant itself, 

where researchers can easily monitor the performance of the implant.  Unlike 

implants, the instrument is exposed to less extreme conditions and design 

modifications can be made easily without operating on the patient.  Therefore, 

the research here focuses on developing a wireless intra-operative pressure 

monitoring system.  Augmentation of a surgical instrument is an intricate process 

due to the limitations of material and space.  As a result, the spacer block is 

chosen for this research as the initial prototype, because it has a relatively large 

volume for housing the sensors and electronics.   
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Figure 4 - This picture illustrates the small incision from a MIS surgery 
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1.2 Previous Research 

1.2.1 Research in telemetry system within human body 

There has been a lot of effort devoted to developing intelligent sensing 

medical instruments, especially in the blood pressure and gastrointestinal 

monitoring area.  Various sensors have been developed to observe different 

physiological parameters.  These sensors along with the electronics are usually 

sealed into a capsule or pill.  The data is transmitted wirelessly to a personal 

computer after the patient swallows the pill.  The first wireless monitoring system 

in the medical research field dated back in 1957.  Jacobsen, Mackay, and 

Zworykin developed the Endoradiosondes (radio-pills) that are used to monitor 

pressure, pH and temperature for the gastro-esophageal tract [5].  In order to 

minimize the electronics to encapsulate, a single L-C oscillator is used as a 

sensor where one of the components are sensitive to the parameters to be 

measured.  Since then, sensors, actuators and electronics have become more 

sophisticated, complex telemetry devices are developed for implantable drug 

delivery systems [6], intra-corporeal neuromuscular stimulators [7], and 

implantable glucose sensors for diabetics [8,9].  

 

1.2.2 Research in orthopedics 

Despite the rapid development of in vivo telemetry sensors in the 

biological and physiological areas, there are only a small amount of these 
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systems realized in the orthopedics community.  There are many difficulties to 

overcome in implementing these systems.  For instance, one of the most 

researched areas in orthopedics is the stress and contact area on the implant.  

The sensor required for these measurements is much different from those 

described previously.  Additional, advanced signal processing is often necessary 

in order to get any meaningful data, therefore, microcontroller (MCU) based 

system architecture is generally required.  

The first published research on using sensors and biotelemetry in 

orthopedics focuses on obtaining in vivo data from Total Hip Arthoplasty (THA) 

patients.  Due to the large volume and geometry of the implant, it is not difficult to 

allocate enough space for the sensors and electronics.  Bergmann embedded 

strain gages into the neck of the femoral component to measure strain of the 

patients postoperatively.  The instrument is powered by inductive coil and the 

data is sent using a radio frequency (RF) telemetry system embedded in the 

shaft of the femoral component [10,11,12,13].  The data is received and 

processed in a personal computer.  Davy and Kotzar have also developed a 

similar hip prosthesis to monitor various loading conditions of patients 

postoperatively [14,15]. 

While the instrumented hip is being developed to access the in vivo load 

of the hip joint, other researchers have begun to look into determining the load 

across the knee joint.  The first implant that has been  designed to monitor knee 
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joint load is in fact for distal femoral replacement.  The system is similar to the 

instrumented hip.  Bassey, Littlewood and Taylor used 4 strain gages arranged in 

2 half-bridge configurations and embedded in the internal cavity of the intra-

medullary extension of the prosthesis, where the axial strain of the femoral 

component is measured [16,17,18]. 

  In 1996, Kaufman developed the first prototype of instrumented knee 

prosthesis and tested in a cadaver study [19].  Recently, D’Lima and Colwell from 

Scripps Clinic Center for Orthopaedic Research and Education modified a tibial 

prosthesis from DePuy.  The tibia tray is separated into upper and lower halves, 

where the upper portion acts as a load cell.  Four supports located at the antero-

medial, antero-lateral, postero-medial and postero-lateral connect the upper and 

the lower halves of the tibia tray.  Four strain gages from Microstrain Inc. are 

sandwiched at the support.  The electronics and the telemetry components are 

embedded into the stem [20,21].  This system is also powered using inductive 

coupling and power was transmitted using a coil worn around the leg of the 

subject.  The data was collected via a wireless RF system.   

Besides of instrumented implants, a few researchers have investigated the 

use of pressure sensors to monitor intra-operative pressure, and utilize the data 

as a feedback during surgery.  In 1998, Wallace, Harris, Walsh and Bruce used 

Tekscan K-scan sensors to assess the tibiofemoral contact stresses intra-

operatively [22].  Wasielewski, Galat and Komistek used a pressure mapping 
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system from Novel and attached it to the proximal surface of the tibial trials 

component with silicone adhesive.  It was used intra-operatively for soft tissue 

balancing, and the results were correlated to postoperative assessment through 

fluoroscopic analysis [3,4].  The sensors map is connected to a data acquisition 

system and the force and pressure profile is shown on a computer monitor.  

Harris, Morberg, Bruce and Walsh investigated the two different pressure 

measurements techniques in vitro.  The femoral and tibial components are 

cemented onto a saw bone, and the ultra-high-molecular-weight polyethylene 

(UHMWPE) is placed in between.  They are then put onto a servo-hydraulic 

mechanical testing system.  Tekscan K-scan 4000 and Fiji pressure sensitive film 

are positioned on top of the UHMWPE and tested with different loadings [23].  

Recently, Crottet, Maeder and others have developed a force sensing device for 

intra-operative ligament balancing.  The device consists of a sensitive plate on 

each condyle and a tibial base plate. Each sensitive plate has 3 deformable 

bridge instrumented with thick-film piezoresistive strain gages.  The instrument 

was then tested by a surgeon in a cadever experiment [24].  

These state-of-the-art designs, however, have their limitations.  The 

number of sensors used are often limited because of the restricted space.  

Increasing the number of sensors complicates the data acquisition process; 

results with excessive wirings causes difficulties with the implementation of 

telemetry system.  Novel design for the data acquisition and processing system 



Introduction and Previous Work, 13 
 

 
 

is needed for intra-operative application in order to achieve real-time 

measurements.  

 

1.2.3 Research in MEMS/IC based measuring system 

The progression in microelectromechanical systems (MEMS) can 

potentially solve these limitations.  MEMS generally refers to devices on the 

order of micrometers, where traditional physics does not always hold true and the 

coupling of different physics domains are always required.  However, due to the 

coupling nature, they are excellent candidates for sensor devices in terms of their 

sensitivity and repeatability.  The minimization of the sensing units allow more 

sensors to be packed in the same amount of space, providing more information 

than a single load cell.  It ensures that the malfunction of one sensor will not 

jeopardize the entire system.   

MEMS is a fabrication dependent process.  There are many different types 

of MEMS structures; and depending on their intented applications, a custom 

fabrication technique is often required for them.  The most common MEMS 

pressure sensor is the silicon based diaphragm that is used to measure gas or 

liquid pressure, and their fabrication methods are well documented.  However, 

these sensors are not made for direct strain sensing [25,26].  The initial stage of 

strain measuring sensors research is geared towards measuring residual stress 

during fabrication and packaging [27].  They are designed to sense either the 
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change in resistance or capacitance resulting from strain within the MEMS 

structure. It is not popular in other applications since a strain gage is much more 

simple and straightforward.  However, there is a growing interest in strain 

measuring MEMS arrays; especially in the area of tactile sensing [28.29].  

Instead of having one MEMS sensor, a tactile sensor is fabricated in the fashion 

of an array to map the strain within an area.  These tactile sensor arrays are 

commonly used as a grasp force control, object imaging or artificial skin for 

robots [30,31,32].  Xu et al. has recently fabricated a flexible tactile sensor, which 

he demonstrated as wrapping around cylindrical robot fingers [33].  Despite these 

fantastic researches, the solution to MEMS strain sensing is still not completely 

clear. One of the issues is that these sensors are usually embedded inside 

certain type of composite. While the sensor behaves differently within the 

composite due to the change of boundary conditions, the composite also acts as 

a stress shielding material.  A lot of mathematical modeling on composite shear 

lagging can be found in literature [34,35], yet the experimental results are 

sometimes far from theoretical. Eaton looked into the analytical solution for large 

diaphragm deflection and built-in stress [36].  The author reports discrepancy 

between the solution and the actual experimental data, and contributes that 

imprecise data from the composite’s youngs modulus and residual stress.  

Besides the inherent nonlinearity and residual stress from the MEMS devices, 

the percentage variation of the elements in the composite and the method used 
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to form the composite are also factors that can affect the outcome of the sensor 

performance.  

However, MEMS sensors can also be very difficult to calibrate.  Hence, it 

is necessary to have controlled electronics to correct these problems.  Most of 

the ligament balancing systems described earlier utilized surface-mounted off-

the-shelf components. Off-the-shelf integrated circuits (IC) or chips offer 

simplified, technologically advanced components. They are usually packaged a 

function with multiple adjustable alternatives so as to allow the user to program 

the IC to their needs.  Moreover, these applications often require more than one 

of these multi-function chips in a MCU based architecture system. With the 

limited working space of these implants and instruments, it is desirable to extract 

each of the necessary functions for the application.  Even so, a vast amount of 

circuitry is required to realize these functions.  With very large scale integration 

(VLSI) of the circuit, this application specified integrated circuit (ASIC) becomes 

achievable. 

 
  



 
 
 
 
Chapter 2 
 
Approach 
  

 
 

 The following paragraphs outline the design process of developing the 

instrumented spacer block.  First, the design parameters and functional 

requirements of the instrument are examined.  Based on these requirements,  

the basic architecture of the system is formulated.  The later chapters will discuss 

the choice of sensors, electronics, preliminary testing and result, ASIC design 

and testing, and system testing. 

 

2.1 Functional requirements  

2.1.1 Stress measurement 

 The instrument should be able to map the medial and lateral 

compartmental stress distribution of the knee joint during surgery.  Hence, the 

instrument is required to process multiple inputs from different sensors. 

According to previous study, the intra-operative pressure of the knee joint can 

range from 40 N/cm2 to 150 N/cm2 [3,4].  The sensors need to be able to sustain 

three to four times of the stress.  The electronics are required to function 



Approach. 17 
 

 
 

normally in this environment, and display no adverse effect on the readout signal 

from sensors.  

 

2.1.2 Data Transmission 

 The sizes and equipment of an Operating Room (OR) vary among 

hospitals; therefore, the system should produce the least interference to the 

current surgical equipment and OR settings.  Unnecessary wiring should be 

avoided so as to give more freedom, mobility and convenience to the surgeons.  

The data should be transmitted wirelessly from the spacer block to the base 

station, where the computer slices and decodes the signal and displays the 

stresses.  The protocol for telemetry should avoid commonly used wireless 

bands or the cell phones’ to reduce interference.  

 

2.1.3 Bio-compatibility 

 The material of the instrumented spacer should remain the same as the 

original.  However, the packaging of the sensors and the electronics should be 

biocompatible material approved by FDA. 

 

2.2 System Architecture  

In order to acquire a stress mapping of the joint compartment, the 

architecture of the sensing system has to be realized.  As the goal of this 
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instrument is to assess the gap size and the tightness of the medial and lateral 

compartments, strain sensing elements are used.  The system architecture is 

illustrated in figure 5. 

An arrays strain sensing elements are used for each condyle. The system 

composes of several major components, which are the battery and power 

control, MCU, multiplexer (MUX), signal conditioning, analog to digital converter 

(ADC), transmitter (TX), antenna, receiver (RX), digital input/output (DI/O), digital 

signal processing (DSP) and Display.  The battery supplies the power necessary 

for each component.  The MCU controls the activities of all the components.  

MUX is essentially an analog switch that accesses the readouts from multiple 

sensing elements and multiplexes them into one single channel.  The signal 

conditioning portion involves filtering high frequency noise and amplification of 

the signal.  The ADC converts the analog signal into digital signal and submits it 

to the TX.  The TX modulated the signal with a carrier frequency and broadcast it 

out through the antenna.  The RX acquires and demodulates the transmitted 

signal.  The demodulated digital signal is input into the computer through DI/O 

and the data is reconstructed with DSP.  The details of each component will be 

discussed later.  For the prototype of the instrument, the spacer block is chosen 

as the basic design because of its simple geometry and large volume (Figure 6).  

The choice of sensor, which will be discussed in chapter 3, is very important to 

the system because the electronics are built based on the signal from the sensor.  
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Figure 5 - System architecture of the instrumented spacer block. The top blocks 

demonstrate the functional components that will be placed on the spacer, while 

the bottom blocks represent the functions at the base station.  
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Figure 6 - Illustration of the instrumented spacer block with sensors, readout 

electronics and the TX 
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Chapter 3 
 
Sensor Selection 
  
 

 
 

Since forces and stress cannot be measured directly by any means, it is 

necessary to choose a measurement that can be observed and mathematically 

related to forces or stress.  In general, mechanical forces are measured using 

displacements, acceleration, or electromagnetic field.  Strain (ε ), which is a 

measurement of the deformation of a body, is calculated by dividing the original 

length of the body ( 0l ) with the displacement of the deformation ( lδ ).   

0l
lδε =           (1) 

It is a measurement commonly used to derive stress in a static system thru 

Hooke’s law, which states the stress is directly proportional to strain.  

klijklklij c εσ •Σ=           (2) 

where ijσ  is the stress tensor, ijklc  is the 4th order tensors of the elastic 

properties of the material and klε  is the strain tensor.  
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3.1 Strain Gauge 

Therefore, sensors that are capable of measuring strain are needed in 

order to obtain information relating to stress.  Initially, the use of strain gauges 

was considered because it is a well established, fairly simple and accurate 

sensor for strain measurement.  The strain gauge is usually attached to the body 

of the object.  An example of a typical strain gauge is shown in figure 7. As stress 

is applied to the body and deformed, it deforms the coils in the gauge.  Due to 

the piezoresistive effect from the deformation of the wire coil from stress, it will 

lead to a change in resistance of the gauge.  The resistance of a material is 

determined by the following governing equation 3. 

A
lR ρ

=
         (3) 

Where R is the resistance, ρ is the electrical resistivity of the material, l is the 

length and A is the cross sectional area. The strain and the change in resistance 

are related by the gauge factor (G).  

ε
uRR

G
/Δ

=         (4) 

Where RΔ is the change in resistance from deformation and uR is the resistance 

of the gauge without any deformation.  The gauge factor can be considered the 

sensitivity of the gauge.   
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Figure 7 - Illustration of a typical strain gauge. The metallic wire coil is embedded 

within an insulating flexible backing. 

Wire coil 
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The change in resistances can be measured with a Wheatstone bridge.  

An example of the circuit is shown in figure 8.  Voltage is applied to Vdd and 

grounded at Vss.  Typically, the strain gauge is attached to one side of the leg, 

which will be R4 in the figure.  R1, R2 and R3 are resistors with known values 

such that the ratio of the leg R1/R4 is equal to the ratio of the other leg R2/R3.  In 

this case, the bridge is balanced, and no voltage or current will pass thru VA and 

VB.  The changes in resistance from the deformation will imbalance the bridge.  

Thus, voltage will pass through VA and VB.  This voltage (Vab ) can be 

calculated by the following equation. 

       (5) 

Although the functional aspect of a strain gauge fits with the requirements 

stated earlier in chapter 2, there are two reasons that it cannot be used.  First of 

all, an ordinary strain gauge is not designed to measure axial strain.  Although 

there are a few special gauges that are designed for measuring in-plane strain, 

the sensor area is very large. This is not preferable with the limited working 

space.  In order to measure the in-plane strain of the spacer block with typical 

gauges shown in figure 7, they will have to be adhered vertically inside the 

instrument.  Also, the data will be inaccurate if the gauges do not align perfectly 

at a right angle.  Additionally, this configuration makes the circuit board design 

extremely difficult.  Secondly, in order to maintain a good gauge factor, 
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Figure 8 - Wheatstone bridge circuit. Voltage is applied to Vdd and grounded at 

Vss. R4 represents the resistance of the sensor, while R1, R2 and R3 are known. 

By observing the differential signal VA and VB, the change of R4 can be 

measured.  
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there is a trade off between the width and length of the gauge design.  It is 

translated to a trade off between the thickness and the number strain gauge with 

the configuration mentioned above.  In order to pack more sensors to get the 

stress profile and keep the thickness to a minimum such that it can be fit into the 

spacer block, an alternative strain sensor is needed.  

 

3.2 MEMS based Strain Sensor 

To resolve the limited space constraint of the instrument, the use of a 

MEMS based strain sensor is investigated.  As mentioned in chapter 1, a MEMS 

sensor generally couples several different physic domains together, such as 

mechanical and electrical.  Hence, depending on the design and the intended 

use, mechanical strain can be measured by coupling with electrical parameters 

such as the change in resistance, capacitance or charge.   

Piezoelectric sensors are usually made from piezoelectric ceramic or 

single crystal material. It generates charge when a mechanical force is applied.  

According to Gautschi, a piezoelectric sensor is extremely sensitive to strain and 

it has excellent linearity compared to capacitive or resistive based sensors [37].  

However, a typical piezoelectric sensor is incapable of taking a static 

measurement.  A constant load will generate a fixed amount of charges.  There is 

a constant loss of electrons from the interface with electronics and reduction of 

the internal resistance of the sensor, resulting in an inaccurate signal.  The knee 
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joint is in a pseudo-static condition during surgery and the strain is close to 

constant.  Therefore, the piezoelectric sensor is not suitable for this application 

The design and structure for capacitive and resistive type of MEMS strain 

sensor is very similar.  The major difference between the two is in the readout 

circuitry.  There are usually two conductive parts to the capacitive based sensor, 

where the parts are separated with a layer of dielectric material. For example, as 

shown in figure 9, the capacitance (C ) of a parallel plate capacitor is related to 

the geometry of the plate and the dielectric constant of the material ( rε ). 

d
A

C rεε 0=          (6) 

 Where 0ε  is the permittivity of free space, A  is the surface area of the plate and 

d  is the distance between the plate. When mechanical stress is applied to the 

sensor, the structure deforms, thus changing the distance between the 

conductive parts and the amount of dielectric material in between them.  The 

capacitive sensor is usually excited with alternating current (AC) power. The 

change in capacitance is measured by determining the attenuation of the AC 

signal or the frequency shift in a resonant circuit.  

 On the other hand, the principle of the piezoresistive sensor is similar to 

the strain gauge discussed earlier.  However, unlike strain gauges, the change in 

resistance is not only affected by the geometrical deformation of the metallic foil.
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Figure 9 - Example of a parallel plate capacitor 
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The resistivity of piezoresistive material for MEMS such as germanium, 

polycrystalline silicon, amorphous silicon, silicon carbide, and single crystal 

silicon are also affect by the deformation.  Hence, the gauge factor of MEMS 

strain sensor is at least 2 orders of magnitude higher than conventional strain 

gauges [38].  

 Since capacitive and piezoresistive MEMS sensors are potential 

candidates for this application, it is important to investigate both of them and 

decide the best method.  In this thesis, the focus is on the piezoresistive type 

MEMS as the sensing element for the instrument and the implementation of its 

readout circuit.  

 As mentioned earlier, MEMS is a fabrication based process.  In general, 

the parameter of interest dictates the design of the MEMS structure.  There are 

quite a few of structures developed to measure strain.  The most common 

structures for a piezoresistive sensor is the microcantilevers beam.  It has been 

used extensively in many areas associated with physical, chemical, thermal, 

biological and acoustic sensing.  It is also commonly used as the probes in 

atomic force microscopy analysis, for cell and molecule detection.  

Microcantilever beam is suitable for this particular application. The axial stress 

causes the microcantilever to deflect, hence changing the resistance of the 

beam.  However, since the length of the microcantilever is in the micron scales, it 

will be broken easily through direct contact with the bone.  Hence, a protective 
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medium is necessary to protect the microcantilever beam from collapsing by 

external force. Charles Hautamaki demonstrated that embedded microcantilever 

beam in composites can be used as strain sensors [39].  The microcantilever 

beam also has the advantage of flexibility, where it can be arranged into any 

custom mapping array.  In the following paragraphs, we will look into the 

modeling theory and computer simulations of microcantilever. 

 

3.3 Theory Fundamental  

The behavior of a cantilever beam undergoing deflection is well 

documented with different scenarios of loadings and supports.  However, does 

this still apply to the cantilever beam in the microscopic level?  

The Stoney’s formula is frequently used to model the microcantilever [40].  

)1(6

2

ν
σ

−
=

R
EH

         (7) 

Where σ  is the surface stress of the beam, E  is the Young’s Modulus of the 

microcantilever’s material, H  is the thickness, R  is the radius of curvature of the 

deflation, and ν  is the Poisson’s ratio.  Recently, there are people questioning 

the accuracy of the Stoney’s formula and provide various improved versions of 

the equation.  Especially in a lot of biomedical or chemical research areas, as the 

microcantilever has a thin film coating on top of the silicon to facilitate bonding of 
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molecules of interest onto the cantilever.  Nonetheless, the equation shown in the 

following is the most common form for modeling [41].  

2

2

)1(4 Lh
HE

dd

ss
d ν

δ
σ

−
=          (8) 

Where dσ  is the surface stress of the thin film, sE is the Young modulus of the 

thick film, sH  is the thickness of the thick film, δ is the deflation of the beam, dh is 

the thickness of the thin film, dν  is the Poisson’s ratio of the thin film and L is the 

length of the beam.  

As for this system, Stoney’s formula is not applicable because it is used to 

describe the relationship between cantilever free end deflection and the changes 

of the surface stress. An encapsulated microcantilever beam has a fully 

constrained boundary condition, which is different from the Stoney’s formula 

model.  Because of the small size of the microcantilever and the macro forces 

the cantilever measures, it is assumed that the force applied is evenly distributed 

across the cantilever beam.  The support of the composite under the cantilever 

further complicates the model of the cantilever beam as the force travels through 

the two materials of different moduli. A free body diagram of the microcantilever 

beam is illustrated in figure 10. The support from the composite ( S ) is assumed 

to be non-rigid and is a function of the applied load ( F ).  

)(FfS =           (9) 
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Figure 10 - Free body diagram of an encapsulated microcantilever beam 
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The net force ( w ) applied to the microcantilever should be,   

SFw −=           (10) 

Hence, the problem is reduced to a free end cantilever with even load.  

Using the governing elastic beam equation,  

2

2

2

2

4

4

0
dt

ydA
dx

ydT
dx

ydEI ρ+−=        (11) 

where E is the Elastic Modulus, I is the moment of inertia, T is the tension, ρ  is 

the density of the material and A is the cross-sectional area of the beam. 

Assuming there is no tension in the beam and applying the following boundary 

conditions to the equation,  

0),(
0),(

0),0(
0),0(

=′′′
=′′
=′
=

tLy
tLy

ty
ty

 

It yields the characteristic equation for deflection of the microcantilever for this 

particular system. 

( ),34
24

434 LxLx
EI

wy +−=   Lx ≤≤0     (12) 

Where y is the deflection, L is the length of the beam. The moment of inertia for 

the rectangular shaped beam is defined as: 

12

3bhI =           (13)
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where b is the width and h is the thickness of the beam.  

As defined earlier in equation 3, the resistance of an object is related to its 

geometry.  Substituting equation 3 into equation 12, the resistance of the 

deflected beam is:  

( ) ,34
2

434

2

LxLxw
ylhER
+−

=
ρ

  Lx ≤≤0      (14) 

However, it is important to notice that the resistance calculated here is solely 

based on the mechanical aspect of the problem.  As mentioned earlier, the 

piezoresistive effect of the semiconductor material involves the internal change of 

resistivity of the material when stress is applied.   

The normal stress (σ ) at any point of the cantilever is,  

( ) ,)(2
2

22

I
xLbw

I

bxLw −
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⎜
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⎝

⎛−
=σ  Lx ≤≤0      (15) 

The change in resistivity tensor ( id ) of an isotropic piezoresistive material is 

related to applied stress tensor  
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where ijπ  is the piezoresistive coefficient of the material. 
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Hence, 

TTLLuRR σπσπ +=Δ /         (17) 

where Lπ , Tπ  are the transversal and longitudinal piezoresistive coefficient of the 

material respectively, which are different depending on the crystal orientation of 

the material, and Lσ , Tσ  are the stress in the corresponding directions.  

The voltage drop (V) across a piezoresistive element is governed by the following 

equation.  

( )TTLLIRV σπσπ ++= 10         (18) 

where 0R  is the resistance of the material at stress free state, I is the applied 

current to the material. 

Combining equation 15 and 18, yields 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

I
xLbwIRV L

2

0
)(1 π

       (19) 

One of the major assumptions of this calculation is that the support reaction force 

is a function of the applied load.  However, this function varies with the composite 

used for encapsulation. The shear lagging model mentioned in the introduction 

can only interpret a rough representation of this function.  Moreover, the 

mechanical properties of the composite can also vary with the mixing and curing 

method, and the proportion used for each part.  Computer simulation is used to 

attempt in examining the use of the piezoresistive microcantilever.   
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3.4 Finite Element Analysis 

Finite element analysis (FEA) is used to investigate the amount of strain, 

stress and the piezo-resistive effect with different loading conditions applied on 

the microcantilever beam. Coventor (Coventor, Inc., Cary, NC) is a FEA 

simulation program that provides solvers for models in the scale of micro or 

nano-meters.  It also allows direct coupling of solvers from different energy 

domains.   Unlike other FEA packages, the model used for simulation here is 

created using standard MEMS fabrication steps, including one or more cycles of 

lithography, material deposition, and etching depending on the shape and the 

complexity of the feature.  Since there is no information regarding the fabrication 

process of the commercially available microcantilever, a 200x50x5 microns 

microcantilever model is created according to the process shown in figure 11.  

Single crystal silicon (SCS) is used as the material for the microcantilever and it 

is mounted onto FR4, which is a common fiber glass material for circuit board, 

and embedded within a box of medical grade composite material (EP42HT2).  

Step 0 creates a substrate layer of FR4.  Steps 2, 4, 9 and 10 simulate the 

encapsulated environment of the microcantilever.  Steps 3, 5 through 8 are the 

processes to create the microcantilever with two leads for power and grounding.  

The mask layers are then designed, and the FEA model is created based on the 

processes and the masks. The cantilever model and the FEA model is meshed 

with a Manhattan brick element, as shown in figure 12. 
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Figure 11 - Simulated fabrication process used by Coventor to create FEA 

model. The process above created a microcantilever with SCS and surrounded 

by medical grade composite material. The thickness of the microcantilever is 5 

micron as shown in step 3.  
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Figure 12 - In figure A, the figure shows a simple cantilever design. In figure B 

shows the meshed model of the cantilever mounted on FR4 and embedded 

inside the composite 

A 

B 
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A distributed load is applied on the top surface of the composite and a potential 

difference of 3V was applied across the microcantilever.  According to previous 

studies from Dr. Waseiewski, the ideal intra-operative compartment pressure is 

between 10 and 40 kPa, but it can also go up to 140kPa [3,4].   

 The simulated result of the von Mises stress is shown in figure 13.  A 

query is set to retrieve the information around the microcantilever.  The stress at 

the neck and the tip of the microcantilever are probed on the top surface and the 

neutral axis sections.  Figure 14 shows the von Mises stress of these locations 

against the applied pressure from 0 to 150 kPa.  Among the four locations, the 

neutral axis neck region of the microcantilever is the most sensitive; and it is the 

only region which experienced higher stress than the applied load.  The response 

at the surface tip of the microcantilever indicates that it has the smallest von 

Mises stress.  They indicate that the highest stress and least deflection occur at 

x=0, and vice versa at x=L as shown in figure 15.  The data also indicates a 

linear relationship between the applied stress and the stress on the 

microcantilever.  However, this data does not describe the transient response of 

the microcantilever with the applied load.  Drifting of the microcantilever is also 

not taken into consideration in this simulation.  Additionally, the change of 

material properties results from the deformation or strain such as dislocation, 

also the plane slipping effect of the crystal structure is not included in this 

simulation.   
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Figure 13 - Location of the probing points for the FEA 
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Figure 14 - Von Mises stress of FEA model  
 
 
 

 

Figure 15 - Deflection measured at different regions 
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The result from the FEA only gave us a rough idea about the response of the 

microcantilever encapsulated within the composite.  A lot of parameters used in 

the simulation, however, do not reflect the properties of the microcantilever in the 

real world.  For example, the Young’s Modulus of silicon based piezoresistive 

material can vary from 130 to 390 GPa [42,43].  The resistivity of the material 

also varies with the amount of doping.  The piezoresistive coefficient of material 

changes depending on the orientation of the crystal structure.  Hence, 

experimental data of the microcantilever is necessary for the electronics 

interface. 

There are various companies that manufacture off-the-shelf piezoresistive 

microcantilevers.  Veeco (Veeco Instrument, CA) produces a piezoresistive 

microcantilever with thermo compensation.  However, the company terminated 

all production in 2004.  Cantion (Cantion A/S, Demark) also produces 

piezoresistive microcantilevers.  Nonetheless, the microcantilevers are fabricated 

in an array 4 or 8, which reduces the flexibility of the system design.  

Furthermore, the microcantilevers are embedded within their chip with only a 

small opening.  Thus, it is not suitable for macro stress measurement.  There are 

also a few companies who are in development of their microcantilever products.  

Nascatec (Nascatec Technologies GmbH, Munich) produces piezoresistive 

microcantilevers upon request.  The microcantilever has the Wheatstone bridge 

fabricated within the sensor itself (figure 16).   



Sensor Selection, 43 
 

 
 

  

 

 

 

 

Figure 16 - Microcantilever from Nascatec, The pads assignment on the 

microcantilever from left to right is: Vdd, VA, Vss, VB 



Sensor Selection, 44 
 

 
 

As seen on figure 16, there are 4 pads on the microcantilever that are connected 

to the 4 junctions of the bridge circuit.  The 4 pads can be connected to the circuit 

board by wire-bonding. The pad pitch and the pad width on the microcantilever 

are roughly 60 and 40 microns respectively. 20 microns of aluminum wire and a 

wedge (4WNS4-2010-W5C-M00) are used with the wire-bonder (KNS 4523) for 

wire-bonding. Upon preliminary testing, it is noticed that the build-in bridge is 

slightly imbalanced. It could be due to improper handling of the sensors.  In order 

to balance the bridge, an extra resistor is attached parallel to the resistor of the 

sensor leg (figure 17).  The signal bandwidth of the microcantilever is less than 

50Hz. 

 

3.5 Composite Encapsulation 

 Since the microcantilever is a very fragile sensor, it is necessary to 

encapsulated it within some type of protective material to limit the deflection and 

avoid being broken by physical contact.  There are several requirements for the 

properties of the composite material.  Since the composite comes into contact 

with most of the sensors and electronics, it has to be electrically insulated to 

avoid cross talking between the components.  The sensors are resistive based 

so heat generation is unavoidable when voltage is applied to them.  The 

composite should have negligible thermo expanding effect in order to reduce 

stress on to the sensor.  Additionally, the instrument comes into contact with



Sensor Selection, 45 
 

 
 

 

 

 

 

 

Figure 17 – Schematic for balancing built in Wheatstone bridge for Nascatec 
microcantilever. Rb is the balancing resistor placed parallel to R1 in between Vdd 
and VA 
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human tissues and body fluid during surgery.  Thus, it has to be biocompatible.  

Class IV materials are those that have passed the systemic injection test, 

intracutaneous test, and implantation test from the Food and Drug Administration 

(FDA).  The composite is required to be able to withstand at least one type of 

standard sterilization method, for instance, ethylene oxide, gamma radiation, 

steam, autoclave, or chemical. 

 Based on these parameters, it is obvious that bio-metallic composites 

cannot be used for encapsulation because of its conductive nature.  Bio-ceramic 

materials are also unsuitable because they require extremely high temperature to 

reach the molten state.  It will damage the sensors and electronics upon applying 

the material.  Bio-polymeric materials have the potential to fit with all the criteria.  

Most of the polymers can be polymerized at either room temperature or a slightly 

elevated temperature.  

Biocompatible epoxy is chosen as the encapsulation material for the 

microcantilever beam for the stress shielding purpose.  There are multiple factors 

that influence the performance and properties of the epoxy.  A reasonable 

modulus is necessary to transmit the force to the sensor; and homogeneity is 

essential to ensure even load distribution. Bubbles from mixing or from a curing 

by-product need to be eliminated above the microcantilever to ensure proper 

loading transfer. It is also undesirable to have bubbles underneath the 

microcantilever beam as they can potentially affect the amount of deflection with 
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the same loading condition.  Residual stresses introduced by shrinkage of the 

encapsulating material during a heat cure were minimized so that the cantilever’s 

sensing capability is not adversely affected.  

There are four types of epoxies (EP30MED, EP21LV, EP42HT-2 and 

EP3HT) by Master Bond (Master Bond Inc., NJ) that are Class IV approved by 

the FDA.  EP3HT is a one part epoxy. However, the viscosity of the epoxy is too 

high that it is difficult to distribute evenly across a large surface area.  Hence, it 

was not used in any of the encapsulation experiments.  The rest of them are 2 

part mixed epoxy.  The ratios for each epoxy for A to B are as follows: EP21LV 

1:1, EP42HT-2 5:2, and EP30MED 4:1.  Several batches of these epoxies were 

mixed to evaluate the best kind of sensor encapsulation.   

The epoxies were mixed in beakers using a stir bar at room temperature 

for 5 minutes.  It was then set on a hot plate which was heated to 60oC for 5 

minutes. The elevated temperature would facilitate diffusion of air bubbles within 

the epoxy and rise to the surface of the mixture.  The sample was stirred slowly 

during the heating process.  The samples were then pipetted into a petri dish and 

allowed to cure for 3 days.  The samples were observed under the microscope 

(figure 18). It can be seen that EP21LV and EP42HT-2 have more bubbles than 

EP30MED. It can be related with the mixing method. The heating increased the 

polymerization rate of the epoxies, thus decreasing the working time significantly.
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Figure 18 - Air bubbles trapped during encapsulation (top to bottom: EP42HT-2, 
EP30MED. EP21LV) 
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EP21LV and EP42HT-2 became extremely difficult to work with since they are 

very viscous already.  As a result, the air was trapped inside the mixture during 

the preparation.  Additionally, due to the viscous nature and the limited working 

time at elevated temperature of the EP21LV and EP42HT-2, it is difficult to get a 

homogeneous mix of the parts.  This will affect the quality of the mechanical 

properties of the composite.   

EP30MED, on the other hand, remains relatively thin and behaves as a 

Newtonian liquid even with the use of the hot plate for a relatively long period of 

time; thus allowing more working time for the preparation of the epoxy and 

achieve a homogeneous mix of the epoxy.   

It is obvious that the EP30MED should be used for encapsulation material 

because of its biocompatibility, good mechanical and electrical properties, and 

long preparation time.    

  The next test was to investigate the effect of the microcantilever after 

encapsulation.  EP30MED was mixed according to the mixing method listed 

above.  A microcantilever was attached to a piece of printed circuit board (PCB), 

which is made from fiber glass material, FR4.  A well was made for the 

microcantilever to sit in.  The resistance measurement of the microcantilever was 

taken.  The mixed epoxy was slowly transferred from the beaker to the well.  The 

well was designed that there will be roughly 2mm think of epoxy above the 

microcantilever (figure 19).  The epoxy was let to cure for one week. 
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Figure 19 – Microcantilever and force sensitive resistor (FSR) encapsulated with 
2mm of epoxy 
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The resistances of the microcantilever were recorded.  If there is a drastic 

change in the values, it implies that the encapsulation induced deformation to the 

microcantilever.  Since we cannot measure the resistance of the specified leg of 

the bridge independently without the parallel circuit of the bridge, the values 

shown are going to be bigger than the actual resistance.  As shown in table 1, 

the resistances change are very small, indicating the curing of epoxy only put a 

small amount of residual stress to the sensor.  It is also noticeable that the 

resistances between the microcantilevers are not consistent, which is possibly 

due to many factors such as manufacturing.  The effect of the encapsulation can 

be minimized by the parallel resistor Rb as illustrated in figure 17.  

 The amount of stress protection from the encapsulation was also 

experimented.  The encapsulated microcantilever was tested under the Instron 

tensile testing machine (figure 20).  The strain rate is set to 20μm/minute.  The 

microcantilever was connected to the readout circuit, which will be discussed in 

the next chapter.  The same test was conducted 8 times to ensure reliability of 

the data. On the last trial, the microcantilever was broken at around 473μm of 

extension at the load head, which is approximately 9.77MPa. The current drawn 

from a microcantilever is roughly 0.0025A, and the sensing area is assumed to 

be 15mm2. The average result is shown in the orange curve in figure 21. This 

demonstrated that encapsulated microcantilever can be used as strain sensor as  
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Table 1 – Comparison of resistance Vdd   VA // Vdd  VB VA prior and after 
epoxy encapsulation 

 
Before Encapsulation After Encapsulation 

1.085k 1.097k 
0.735k 0.742k 
0.969k 0.980k 
0.723k 0.722k 
0.685k 0.690k 
0.674k 0.687k 
0.721k 0.726k 
0.729k 0.734k 
0.719k 0.712k 
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Figure 20 – Experiment setup of the encapsulated microcantilever with Instron 
tensile machine  
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Figure 21 – Comparison between the readout from microcantilever and FSR 
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it works well beyond the stress recorded from previous intraoperative study, 

which is 30 to 150 kPa.  The commonly used FSR was loaded under the same 

condition, which reaches saturation at the early stage (Figure 21). The properties 

of the microcantilevers encapsulated within 2mm of EP30MED epoxy is shown in 

table 2. The RSS error of the microcantilever is calculated to be +/- 0.873mV. 

Another reason that we prefer MEMS device rather than FSR is size. The 

size of MEMS is significantly smaller than FSR and it is capable of resolving 

stress pattern in higher resolution. The size of the microcantilever sensor is 

approximately 0.25mm2 and its base is about 32mm2. On the other hand, if the 

sensing area of FSR is approximately 78mm2, the surrounding seal adds the total 

area to 100mm2.  
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Table 2 - Properties of microcantilever encapsulated in 2mm of EP30MED 
 

Parameter Value 
Range 0 – 300 kPa 
Input 0 – 3.3V +/- 1% 

Linearity 0.625mV/kPa (over range) 
Repeatability 0.6444mV/kPa (over range) 

Sensitivity 0.35455mV/kPa (over range) 



 
 
 
 
Chapter 4 
 
Electronics Design 
  
 

 
 

 As mentioned in previous sections, MCU based architecture requires 

various electronic components.  However, the specification of these components 

is not clear and commercial testing and evaluation PCB that fits with the desired 

design of the system is not available.  Therefore, scaled up prototypes are 

needed to determine and test the specification of these components.  

 

4.1 Realization of the system 

The system is designed based on the system architecture in figure 5 and 

the data collected from the testing of the microcantilever. Initially, 

photolithography was used to fabricate the circuit board that is used to test the 

response of the microcantilever. The masks were designed in Illustrator (Adobe) 

and printed onto a transparency. The copper board was exposed to light with the 

mask placed on top of it.  After the exposure, it was placed into the developer to 

develop.  The region exposed to light was etched away by stripper. It is a few 

simple steps for one-sided PCB.  However, it became a very complicated 
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process for multi-layers PCB, which is necessary for advanced circuit design as 

in the prototype testing board. Misalignment of the vias that connect the layers 

together is common without the mask aligner and small and high precision drills.  

Hence, PCB design software, Easy-PC (Number one Systems, U.K.) was used to 

design the circuit layout and then exported it as gerber files and sent to the 

company to fabricate.  

 

4.2 Initial Design of the Evaluation PCB 

 According to the system architecture, the initial design of the evaluation 

PCB consists of two double layer PCBs, which are designed based on their 

functionality.  The first one is a MUX board (figure 22). Four pads were allocated 

for each microcantilever for wire bonding which includes power, ground and two 

outputs from the bridge. The output pads were connected to a dual 16-channels-

to-1 analog MUX (ADG726, Analog Device). Since it is capable of opening two 

corresponding channels simultaneously, the differential outputs from the micro-

cantilever can be obtained.  This dual channel selection function is controlled by 

signal CS. Four more addressing signals (A0 to A3) are needed to control the 

switching between different channels for the MUX.  The addressing signals are 

generated from a MCU, which is the center piece of the second board.  The MCU 

board consists of the power supply and regulator circuit, which minimize the DC 

power noise and control the power source to the components at +3.3V.  
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Figure 22 – PCB layouts for MUX and MCU Boards (Orange indicates top layer 

and blue indicates the bottom layer 
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A second order low pass filter (LPF) using Sallen Key Topology with cut 

off frequency at 200Hz was designed (figure 23) [44]. An instrumental amplifier 

(INA331A2) is used for amplifying the signal.  The gain is adjustable by 

connecting it to a potentiometer.  A 16-bit ultra-low power MCU (MSP430, Texas 

Instrument) is used for addressing the MUX and functions as an ADC.  A 10-pin 

joint test action group (JTAG) connector is used to connect the MCU to the 

computer and another 10-pin JTAG connector is connected to the MUX board.  A 

buffer and a set of light emitting diodes (LEDs) were implemented to monitor the 

control signals from the MCU.   The soldered boards are shown in figure 24.  

A crystal oscillator (OSC) at 32.768 kHz was used as the clock for the 

system.  A relatively low frequency OSC was selected on purpose for this 

prototype, so that the control signals are slow enough for inspection on the LEDs 

display.  The MCU was programmed through the JTAG from a personal 

computer according to the functional block diagram in figure 25.  Enable (EN) 

and write enable (WR) signals are sent to the MUX and TX when the MCU is 

powered up. The MCU sends out 5 addressing signals to the MUX board to 

control the channels to be opened for data.  The acquired analog data was then 

passes through the LPF and amplified at the INA.  The signal is then returned to 

the MCU.  The MCU functions as an ADC and converts the analog signal into a 

digital signal.  Each digital word from this ADC is 12 bits; however, only 10 bits is 

used.  The digital signal is written temporarily into the RAM in the MCU. 
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Figure 23 - LPF (Sallen Key Topology) 
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Figure 24 – Detail design and components of the MUX and MCU boards  
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Figure 25 – Functional blocks of MCU 
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Universal asynchronous receiver/transmitter (UART) is established as the 

communication protocol between the MCU and the TX.  The MCU registers every 

8 bits of data and sends it to the TX for transmission.  An interrupt signal is sent 

to MCU to clear the RAM after the TX has sent the signal. 

The PCBs were debugged and several design errors and misconnections 

were resolved.  The functions of the LPF and the amplifier were accessed. The 

cut off frequency observed from the fast Fourier transform (FFT) window of an 

oscilloscope was approximately 200 Hz.  Using the frequency divider of the 

MCU, the control and addressing signals to the MUX works very well from the 

LEDs display.  An encapsulated microcantilever was mounted onto the MUX 

board, which was then connected to the MCU board through JTAG.  The sensor 

signal was monitored after the INA prior to the ADC.  As the sensor was pushed 

with a finger tip, an immediate response was observed with the oscilloscope. The 

second iteration of the evaluation PCB was designed with 2 additional boards 

which hold the TX and RX.  Before going into the details of the PCBs, it is 

necessary to provide information regarding the RF components selection and 

investigations with the carrier frequencies. 
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4.3 Carrier frequency selection and wireless communication protocols 

 The wireless communication between the TX and RX relies on the 

propagation of the electromagnetic (EM) waves, and its characteristic is 

dependent on the frequency used.  The digital signal is mixed with the carrier 

frequency at the TX and then propagates through the antenna to the RX.  Noise 

can be introduced during the transmission.  Therefore, it is preferable to use the 

band of frequencies with the least interference for the carrier.   

Kuhn et al. measured the EM interference in an OR during knee surgeries 

using various antennas and spectrum analyzer [45]. Figure 26 shows the power 

spectrum from 200 MHz to 2.5 GHz, measured intraoperatively during the 

surgeries.  Two peaks were observed at 872 and 928 MHz, which correspond to 

the CDMA-2000 uplinks and downlinks in the US cellular band.  The peak at 

1.95GHz is also from the US cellular band.  There is a noticeable peak at 2.4 

GHz, which is corresponded to the WLAN and Bluetooth devices.  Based on the 

electrical properties of the human tissue and the EM interference existing the 

OR, lower frequencies are more favourable to use as the carrier frequencies for 

the wireless communication of the device [45].  
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Figure 26 – EM interferences in OR 
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4.4 Second iteration of the evaluation system 

 Based on the requirements and results from earlier, a crystal referenced 

phase lock loop (PLL) TX (MAX1472) from Maxim-IC was chosen. It modulates 

the incoming signal and operates in the range of 300MHz to 450MHz (depending 

on the crystal) with a data rate of 100kbps. The TX uses the Amplitude Shift 

Keying (ASK) modulation method.  With limited working space, ASK modulation 

was used due to its simplicity of the circuit as opposed to PSK or FSK, which 

require more components to perform the modulation function.  There are also a 

few ASK TXs that are manufactured from other companies. However, MAX1472 

has the smallest package size (3mmx3mm) with only a few off chip components, 

which is ideal for the system.  The corresponding part (MAX1473) is used as the 

RX.   

 The second iteration of the testing boards includes the corrected MUX and 

MCU PCBs and the TX and RX boards.  The TX and RX boards are shown in 

figures 27. The TX and RX circuits were designed and tested based on the 

manufacturer’s specification. With the 13.56MHz crystal (XTAL) reference, the 

TX operates at 433.92MHz. It was connected to a +3.0V DC power supply at the 

Vdd and the Data_In terminal, and grounded at the Vss. The sub-miniature 

version A (SMA) connector of antenna_out was connected to the spectrum 

analyzer. (Figure 28a) The peak of about +10dBm was observed around 434 

MHz (Figure 28b).   
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Figure 27 – TX PC Board (Top) and RX PC Board (Bottom) 
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(A) 

 

(B) 

Figure 28 – A: TX experiment setup; B: the peak is detected at 433MHz 
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In order for the RX to operate at 433.92 MHz, a 6.6152MHz reference XTAL is 

used.  A +3.3V DC power is connected to the Vdd terminal and grounded at Vss.  

It is then connected to a signal generator (Aligent E8257D),  which is set to an 

output frequency of 433.92MHz at a power level of -100dBm. The modulation of 

the generator is set to a 2 kHz 100% amplitude-modulated (AM) square wave. An 

oscilloscope is connected to the Data_out terminal of the RX. (Figure 29a) A 2 

kHz square wave is verified from the oscilloscope (Figure 29b).  By reducing the 

signal level from the signal generator, the sensitivity of the RX was accessed, 

which was -115.6dBm or 0.2% bit error rate (BER).  These two experiments 

demonstrated the performances of the TX and RX alone, and the next step is to 

establish communication between the TX and the RX.  

 Both the TX and RX were connected to a +3.3V DC power supply. A 1/4 

wave whipped antenna was connected to the reverse polarity SMA on the TX 

board. A 200 Hz square wave created from the signal generator was applied to 

the Data_in terminal at the TX end.  The input signal was also connected to the 

oscilloscope (Figure 30a). At the receiving end, the Data_out terminal was 

connected to an oscilloscope (Figure 30b).  Figure 30c is the resulting display on 

the oscilloscope. Channel 1, the yellow signal, comes from the signal generator 

and was probed at the Data_in terminal at the TX side. Channel 2, the blue 

signal, is the Data_out from the RX side.  The digital communication between the 

TX and the RX was satisfactory.   
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(B) 

Figure 29 – A: RX experiment setup (A); B: received square wave  
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(C) 

Figure 30 – A: TX setup; B: RX setup; C: Side by side comparison of the transmit 
and receive signal 
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After the testing of the RF communication components, the next step was 

to incorporate them with the MUX and MCU boards.  There was not any error 

with the second iteration of the MUX and MCU PCBs.  A +3.3V power supply 

was applied to all the boards.  The setup was shown in figure 31.  The MCU PCB 

was connected to the MCU PCB through JTAG.  The digital data output from the 

MCU was feed to the data_in terminal of the TX PCB.  The RX was connected to 

a DI/O card from National instrument and was connected to the computer.  A 

200Hz sine wave was applied to all channels on the MUX board.  Hence, upon 

reconstructing the signal on the receiver side, it should become a 200 Hz sine 

wave.  The signal prior to the modulation on the transmission side and after the 

modulation on the receiving side was monitored on the oscilloscope. Based on 

the observation from the oscilloscope, the transmitting and receiving signals 

looks identical.  However, these data were logic ones and zeros. Therefore, they 

cannot be interpreted without DSP.   

One concern was that the data stream was resampling at the RX and that 

one bit could be sampled multiple times depending on the sampling rate of the 

DI/O.  Hence, if the signal contained the same bit consecutively, the computer 

would not be able to separate the different bit as there is no sync information for 

synchronizing the resample data into bits.  It is also not economical to allocate an 

extra TX to transmit the sync information.  A self synchronization technique was 

used to re-clock the signal.  A stream of single bit alternating logic zeroes and 
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Figure 31 – Board level experiment setup.  
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ones was sent from the TX to the RX.  The computer courts the number of times 

that each bit was sampled.  The average court of 1 bit of data was used to 

interpret the courts for different numbers of bits.  The conversion from number of 

courts versus number of bits was then established.   

In order for the RX to recognize the beginning of the data stream, a 10 bit 

comma signal was then introduced.  The comma signal was generated from the 

MCU at the beginning of every multiplexing cycle, or in other words, every other 

16 channels.  The DSP program was written in MATLAB. First, the program 

establishes a connection with the DI/O card. The computer then stores the data 

sampled at DI/O.  The program searches for the 10 bit comma signal in the 

stored data.  At least 2 comma signals are needed for each set, as it guarantees 

that it captures the data for all 16 channels.  These data were then extracted and 

the comma signals were discarded.  Since the UART submits 8 bit of data from 

the MCU to the TX at a time, each channel will have 16 bit word.  However, only 

the last 10 bit represents the actual data.  Next, we want to check if the extracted 

data has the information for 16 channels and assume that there is no bit 

synchronization error.  The total number of bits should be 256.  The next step is 

to eliminate the 6 extra bits from the data of each channel.  The data is then 

sliced and converted from binary to decimal.  The reconstructed sine wave is 

shown in figure 32.  

 



Electronics Design, 76 
 

 
 

 

 

 

Figure 32 – Reconstructed signal 
  



 
 
 
 
Chapter 5 
 
ASIC Design 
  

 
 

  

  As seen in figure 31, the entire system consists of three different PCBs,  

of which the total areas for components are well over the geometry that any 

instrument would allow.  The biggest challenge is the vast amount of components 

required to perform the function as well as the amount traces needed to connect 

them together.  One of the solutions to resolve this problem is to increase the 

number of layers of the PCB instead of the standard double layers.  An attempt 

was made to migrate the system to a 6 layer PCB.  However, there is only 

enough surface area to fit half of the intended system. Additionally, there is not 

enough area for vias which connects the traces in between layers.   

Commercially available ICs are usually packed with multiple functionalities 

from which the user can pick.  Despite of the high quality and ease-of-use, they 

are not tailored to perform the specific functions needed for the system.  Hence, 

multiple components are always needed in order to achieve the desired 

functions.  It is definitely not preferable with limited working space.  Moreover, 
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noise can be introduced to the system through the connecting traces and vias.  

As the MEMS signal is usually very small, it should be avoided as much as 

possible.   

There are two methods that can reduce the number of components and 

retain all the necessary functions at the same time.  The first method is to use 

field-programmable gate array (FPGA).  FPGA is a semiconductor based IC that 

has programmable logic components, such as simple logic gates and math 

functions.  The interconnections between the logic components are also 

programmable.  The requirements of the system are first decided and then the 

schematic of the system is designed.  The description of the system is translated 

into the computer for simulation, using hardware description language (HDL).  

The synthesis program then maps the design into a netlist and then translates  it 

into gate level description and checks to ensure the translation is corrected.  The 

design is laid out in the FPGA and then simulated and debugged.  

 The second option is designing a fully customized application specified 

integrated circuit (ASIC) for the system.  Unlike the commercial available general 

purposed ICs, ASIC is custom designed for the application.  Like FPGA, ASIC 

design begins with establishing the system requirements and schematic design.  

The design is modeled and simulations are also conducted to test the design.  

ASIC is a hierarchical design process, which starts from low level parts and 

builds up to high level components and functional blocks.  The layout design of 
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the ASIC locates at the top level of the hierarchy.  Simulations are done in 

different levels to ensure proper functions and interconnections between parts.  

The final output from the design is a set of photomasks for standard IC 

fabrication.  The design flowchart is illustrated in figure 33 [46]. 

FPGA is a more economical option than a full-custom ASIC design.  

However, it is usually slower than ASIC due to latency and pre-routing, which the 

technology is based on. Complex system design is usually not feasible.  The 

packages of FPGA are in generally large to allow the user to have enough pins 

for their application.  FPGA consumes much more power than ASIC, which is not 

suitable for a low-power system.  ASIC also can incorporate a much higher 

density of logic on one chip than FPGA.  Moreover, FPGA is only economical for 

scaled up prototypes which were done earlier in the previous chapter.  Also, after 

the initial design cost, ASIC chip is much more cost-effective than FPGA in 

production level.   

Although the system is not very complex, the surface area and the cost 

are important factors for this system.  Due to the high power consumption, FPGA 

is highly undesirable. Hence, the full custom ASIC design method is used.   

 

5.1 First iteration of the ASIC design 

Based on the test results from the scaled up prototypes in the previous 

chapters, the following functions are incorporated into the first iteration of 
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Figure 33 – Design flow of ASIC 
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the ASIC design. 

• Clock network (CLKNET) 

• Signal amplification 

• Sample and Hold (S&H) circuit 

• ADC  

Typically, the instrument is used for 10 to 15 minutes during surgery. 

Therefore, the ASIC was designed to use +3V battery power (CR2032, 

Panasonic).  

 

5.1.1 CLKNET 

The most important part of the ASIC design is the CLKNET.  The ASIC logic 

is based on the raising edge of the clock or control signals. Hence, improper 

clock timing can jeopardize the results regardless of how well other components 

perform. The input of the CLKNET circuit is connected to the output of an 

oscillator (OSC).  The circuit generates various controlling and addressing 

signals based on the frequency of the OSC.  In this design, the CLKNET controls 

the operation of the ADC, which will be discussed in later section.  

 

5.1.2 Signal Amplification 

An INA was implemented to amplify the differential sensor signal from mV
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range to full scale (FS) and reject the common mode signals [47].  Hence, a 

reference voltage is needed.  Ideally, the reference voltage should be one half of 

the FS to obtain the maximum dynamic range.  However, taking into 

consideration that there are more components later in the chain (e.g. ADC and 

DAC), the range should be set under the maximum possible FS to allow margin 

for error correction.  Therefore, the voltage reference is designed to be 

adjustable with an external potentiometer.  The gain of the INA is also set to be 

adjustable.  The circuit diagram of a typical three operational amplifiers (op-amp) 

configuration INA is shown in figure 34.  V1 and V2 are the differential signals 

from the Wheatstone bridge of the microcantilever.  The internal resistance (R) of 

the INA is 20kΩ  and the external resistor (Rgain) is adjustable based on the level 

amplification needed.  The gain (A) is a function of the ratio between the internal 

and external resistances, which is given in the following equation.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Rgain
RA 21 , where R = 20k 

This configuration is suitable for the application since it has very high input 

impedance and common mode rejection ratio (CMRR), very low DC offset and 

low noise, and the gain is easily adjustable with a single resistor.  
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Figure 34- Circuit Diagram from INA 
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5.1.3 S&H circuit 

 The primary function of the S&H circuit is to sample and hold the analog 

signal constant during the conversion period of the ADC [48].  The instantaneous 

value of the analog signal is sampled periodically.  During the conversion 

process, the ADC requires the input analog signal to be held steady for a small 

period of time so that it can compare the converted signal with the original signal 

for error.  If the signal is allowed to change during the conversion period, the 

converted signal will not be able to converge and the digital word output will not 

be the true representation of the analog input. 

 A simplified S&H circuit consists of a switch and a capacitor.  When the 

switch is closed, the input signal is stored in a sampling capacitor.  The switch is 

then disconnected during the conversion period.  The switch is closed again after 

the conversion and a new value is set.  The rate at which the switch is opening 

and closing is the sampling rate of the ADC.  The rate is dependent on the 

conversion rate of the ADC, which is different based on the ADC design.   

  

5.1.4 ADC Selection 

 As mentioned above, there are many different types of ADC, which are 

selected based on the requirements of the system.   The primary design issue 

with ADC is the tradeoff between speed and resolution.  Fast ADC, such as flash 

ADC design, is capable of converting the signal in a single cycle, but the 
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resolution is limited.  Slower ADC design such as sigma-delta method allows up 

to 24 bits resolution, but it requires multiple stages and cycles for a single 

conversion.  The system here requires a moderate speed conversion and 

resolution.  Hence, Successive Approximation Register (SAR) logic ADC is the 

optimal choice between these two parameters [49].  

  

5.1.5 SAR Architeture  

SAR ADC consists of 4 major parts, which are a comparator, a register, a 

DAC and the SAR logic circuit [50].  It works as a trial and error method to 

convert analog signal into digital word.  The block diagram of a SAR ADC is 

illustrated in figure 35.  The digital word of the reference voltage (Vref) is set at 

the middle of the FS of the ADC at the beginning of the conversion period.  In the 

first cycle, the signal from the S&H circuit (Vin) is compared to the VDAC with a 

high accuracy comparator.  The SAR logic is very similar to the binary search 

algorithm.  It decides the logic zeros and ones based on the following rules: 

• Vin > VDAC,  output = 1; 

o New VDAC is set to VDAC + ½ VDAC 

• VDAC < Vin,  output = 0 

o New VDAC is set to VDAC - ½ VDAC 

The most significant bit (MSB) of the register records the output from the logic 

circuit.  Depending on the output of the comparator, VDAC will either increase or 
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Figure 35 - schematic for SARADC architecture 
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decrease by one half of the value of itself.  This completes the first cycle of the 

conversion.  The cycles are repeated n-times until the least significant bit (LSB) 

is converted.  Hence, a n-bit SAR ADC requires n cycles of conversion to reach 

the result. 

 SAR ADC can be considered as the middle ground of the trade off 

between speed and resolution.  It does not work as fast as the flash ADC.  It 

requires n-cycles to complete the conversion.  It does not go as high resolution 

as the sigma delta ADC since it will require too many clock cycles, which makes 

it impractical.  However, there is no pipelined delay at the end of the conversion 

period since the data corresponding to the edge of the sampling clock is 

immediately available.  This makes it very easy to implement in a multiplexed 

application as compared to other ADC types.  Also, SAR ADC is extremely power 

and space efficient.  It requires the least components and very low power 

dissipation, which makes it the ideal method for low-power application.  Hence, 

an 8-bit SAR ADC is implemented into the system. 

 

5.1.6 ADC design and implementation 

As mentioned before, the CLKNET provides the trigger for all the 

components within the ASIC.  The timing for the trigger for the ADC is very 

important.  The relationship between the clocks for the S&H circuit (shClk), ADC 

reset (adcReset) and DAC (dacClk) is illustrated in figure 36.  The shClk triggers 
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Figure 36 - timing diagram for the 8bit ADC 
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the S&H circuit to sample and holds the analog value from the sensor.  The 

register of the ADC is reset at the rising edge of the adcReset.  The DAC 

requires a trigger on every conversion period.  Hence, there are 8 triggers for the 

dacClk in between two triggers from the shClk.  

 The overall accuracy and linearity of the ADC depends on two 

components, which are the DAC and the comparator [51].  Their design will be 

discussed in the following paragraphs.  

 Since the MSB transition of the DAC represents the largest excursion of 

the output, the settling time of the DAC is determined by the MSB setting, as the 

DAC has to settle within the resolution of the overall converter.  The linearity of 

the DAC also determines the linearity of the ADC. Hence, switch capacitive DAC 

design, which is based on the principle of charge redistribution, is used. The 

capacitive DAC consists of an array of binary weighted capacitors and a dummy 

capacitor.  The accuracy of the ADC requires a high resolution comparator for 

comparing the hold value with the testing value.  Figure 37 shows the schematic 

of an 8 bit SAR ADC design based on charge redistribution [52].  The following 

paragraphs detail the implementation of the SAR ADC 

 

5.1.6.1 Sampling and Holding 

 During sampling, switch A (SA) is closed and connected to the ground. 

Switch B (SB) is connected to the sampled voltage (Vin).  The other switches (S8 
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Figure 37 - SAR ADC design based on charge redistribution 
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 – S0) are connected to the common bus B.  This configuration charges the lower 

plates of the capacitors.  The total charge (Qin) is equal to, 

VinCQin ×−= 2  

After the sampling, SA is opened, SB is connected to Vref and S8 to S0 are 

connected to the ground.  Hence, a voltage of –Vin is applied to the input of the 

comparator, thus achieving the hold function.  

 

5.1.6.2 Charge redistribution and conversion 

The conversion begins by first connecting the largest capacitor (C) to Vref 

thru S8, which forms a 1:1 capacitance divider with the S7-S0 that are still 

connecting to the ground. The input voltage of the comparator (Vc) becomes 

2/VrefVinVc +−=  

With a high resolution comparator, the MSB is determined. If the Vin is greater  

than Vref/2, Vc will be less than 0, which results in a high output from the 

comparator and the logic 1 will be established for the MSB.  On the other hand, if 

the Vin is less than Vref/2, Vc will be greater than 0, resulting in a low output that 

corresponds to logic 0 will result from the comparator.  

 The next step then connects C/2 to Vref.  The next bit is determined by 

comparing Vin to either Vref/4 or (3/4)Vref.  If the logic output is 1 from the MSB, 

S8 is then connected to ground to discharge C.  Vc then becomes 
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VrefVin
VrefVrefbitVinVc

)4/3(
4/2/8

+−=
+×+−=

 

If the MSB is equal to logic 0, Vc becomes 

4/VrefVinVc +−=  

The process continues until all bits are determined.  For the 8 bit ADC, the 

equation for Vc of the LSB is  

25611282643324
...1658/64/72/8

VrefbitVrefbitVrefbitVrefbit
VrefbitVrefbitVrefbitVrefbitVinVc

×+×+×+×
+×+×+×+×+−=

 

 

The ASIC chip is simulated with Cadence’s Spectre. Transient analysis, 

AC analysis and noise analysis results show that the whole chip works very well 

under different process corners and a –40~85℃ temperature range. The layout is 

done using Cadence Virtuoso with clean Design Rule Check (DRC) and Layout 

vs. Schematic (LVS).  The parasitic parameters were extracted and used in post-

layout simulation.  The pre and post-layout simulation does not show much 

difference due to the good floor plan and optimized place and route.  The ASIC is 

designed for the 0.35μm Taiwan Semiconductor Manufacturing Company 

(TSMC) fabrication process and packaged with 64 pins Thin Quad Flat Pack 

(TQFP) package.  The chip size is 3mm2 and the package size is 10mm2.     
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 A PCB designed to test the ASIC is fabricated to access the performance 

of the ASIC (Figure 38), which includes the clock generator, reset generator, 

power regulator, and manual channel selection for the addressing signals, signal 

input connectors and various testing points for the ADC, DAC, and INA.  Four 

chips were tested with two using a 32.768 kHz OSC and two using a 1.544 MHz 

OSC. The CLKNET performs very well.  The INA was also accessed. The open 

loop gain of the INA is about 60 dB.  It has a unit gain bandwidth greater than 2.4 

MHz, as shown in figure 39a.  Even though minor overshoot is observed with the 

step input, the settling time is very fast as shown in figure 39b.  The phase 

margin is approximately 45°.  The S&H circuit of the ADC is tested with input 

ranging from 200mV to 2.4V for a 3.3V power supply.  In figure 40, the S&H 

circuit is set to hold the value for an extended amount of time.  The characteristic 

of the S&H can be observed from figure 40a (slower OSC). With faster OSC, the 

S&H period becomes too small to observe from the oscilloscope (figure 40b). 

Since the ADC consists of multiple parts, several probing points were 

added during the design phase of the chip to assess these areas.  The DAC 

feedback mechanism of the SAR ADC performs very well. Digital code was 

manually input to the DAC and the analog voltage output was observed. Figure 

41 shows the linear relationship between the digital code and its analog voltage.  

The red line indicates the ideal transfer function and the blue dots are the 

collected data. There is a sudden jump at 700mV due to the fact that it is a 
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(A) 

 

(B) 

Figure 38 –A: the fabricated IC and package; B: the PC board for evaluating the 
IC 
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(A) 

 

(B) 

Figure 39 – A: Unit gain Bandwidth of the INA; B: Settling error and phase margin 
of the INA  
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(A) 

 

(B) 

 

Figure 40 – A: S&H with 32.768kHz OSC; B: S&H with 1.544kHz OSC 
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Figure 41 – Linearity of the DAC (Black: Data; Red: ideal transfer function) 
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complete switch of the binary code from 01111111 to 10000000. The differential 

nonlinearity (DNL) and the integrated nonlinearity (INL) of the DAC were tested 

(figure 42). DNL represents the error from 1 LSB for every step and INL 

represents the error between the output and the ideal conversion line.  The jump 

occurred at 700mV can be seen as the large amplitude change from the DNL 

and INL figures. 

The comparator of the ADC, however, is not performing as expected.  A 

sine wave is given to the ADC for conversion. However, two of the ADCs do not 

respond to the input at all, as shown in figure 43a.  Since the amplitude dropped 

to half of the original in each bit cycle, it is an indication that the comparator is not 

working. The other two chips seem to perform the conversion; however, the 

comparator does not perform well.  As shown in figure 43b, difficulties were 

experienced with the input when the amplitude is closed to zero crossing. 

 

5.2 Second iteration of the ASIC design 

The second iteration of the ASIC design includes all the features and 

corrections of mistakes in the first design as well as integrating more functions 

such as MUX and its control signals, parallel inputs to serial output (PISO), parity 

check and comma generator.   
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Figure 42 - DNL (left) and INL (right) of the DAC 
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(A) 

 

(B) 

Figure 43 – A: No response from the ADC; B: Comparator malfunction when the 
input is close to zero 
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5.2.1 MUX 

A MUX using time division multiplexing was implemented.  Since the 

output from the microcantilevers has two differential outputs, it requires twice the 

inputs for the multiplexer.  However, since one side of the bridge remains 

constant, a new readout method is used to reduce the number of inputs. The 

schematic is shown in figure 44a.  R2 and R3 is a half bridge that is constantly 

connecting INA. The MUX switches between different sensors for the other input 

of INA.  A 5 bit decoder is designed for signal selection.  Only 30 channels are 

used because a comma signal is necessary for the RX to recognize the 

beginning bit of the signal.  Two channels of the MUX are used by the comma 

signal.  The revised functional block diagram is shown in figure 44b.  

 

5.2.2 ADC 

From the previous ADC design, there is a major design issue related to 

the metastability of the comparator, which is the ability of the comparator to make 

a decision of whether the input voltage is larger or smaller than the reference 

voltage.  The output of the comparator is either logic HI or LO depending on the 

result from the comparison.  In order to achieve such logic output, the input 

voltage must be sufficiently large enough to push it in one direction or the other.  

However, there is a chance that the comparator is unable to make a decision.  As 

the result from the previous design indicated, the comparator is incapable of
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(A) 

 

(B)  

Figure 44 – A: Readout Circuit for multiple microcantilevers; B: Revised 
functional block diagram 

common 
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distinguishing the input near zero crossing of the sine wave.  A metastable output 

is highly undesirable since the output is completely random and impossible to 

correct in signal processing.  In order to resolve this problem, the new ADC 

design added a regenerative latch at the output of the comparator [53].  In this 

case, the input only needs to start it in one direction, and the regenerative latch 

drives it to the decision. The second additional component of the ADC is the 

PISO.  In the previous version the digital output was in parallel, which requires 8 

channels to complete each output.  The PISO component converts the multi-

parallel outputs into one single serial output.  Parity check is also introduced as a 

bit integrity check.  An even number of ones in the data will result as logic zero 

for the parity bit and one for an odd number of ones.   

 

5.2.3 CLKNET 

 The general function of CLKNET is the same as the previous ones.  

However, an additional network was needed for the triggering of the MUX. The 5 

bit addressing signals were designed as a part of the new CLKNET.  

 

5.2.4 Comma Generator  

In order for the receiver to distinguish the beginning and end of the serial 

data, a comma generator is introduced. The comma generator generates a 

comma signal of 11001100 and 00110011 at the end of each MUX period. The 



ASIC Design, 104 
 

 
 

parity bit check of these two signals is opposite to the input signals from the 

sensor channels, which will be one.  

The second iteration of the ASIC was also designed in Cadence (figure 

45). Three systems were implemented.  One system was from the first iteration 

with fixed mistakes, but without the latched amplifier for the ADC.  The second 

system is a discrete version of the new system, in which the components are 

separated from each other and they can only be connected externally.  It also 

contains various probing points for debugging and testing.  The third system is 

the complete system with the minimum amount of input and output pins.  This 

ASIC was also fabricated with 0.35μm TSMC process and packaged with TQFP-

80 (14mm x 14mm) as shown in figure 46.  A PCB testing board was also 

designed for testing of the chip (figure 47).  

 

5.2.5 CLKNET Test 

The oscillator is 12.352MHz. CLK13M/P75, which is the clock input to the 

chip and has a square wave with frequency at 12.352MHz from the oscillator. 

CLK842out/P76 is frequency of each of the 16 channels. A square wave with 

frequency at 772kHz is observed.  For the 5 bit addressing signals, A0 to A4, 

their frequencies are 42.888kHz, 21.444kHz, 10.722kHz, 5.361kHz, 2.6805kHz 

respectively. The frequency for DAC reset, ADC clock and the serial enable 
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Figure 45 - Layout of the second version of ASIC 
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(A) 

 

(B) 

Figure 46 – A: The micrograph of the ASIC (A); B: the IC and its package 
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Figure 47 – Evaluation PC board for the second version of the ASIC 
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signal is at 85.7758kHz. From the logic analyzer, the timing of each pulse train 

was observed (figure 48). 

 

5.2.6 Band gap reference and S&H Test 

The band gap reference is a technique that is used to generate a stable 

voltage reference that is independent to the temperature [54,55]. It was 

measured to be 1.249V.  The S&H circuit for the ADC performs well, even with 

the high frequency input clock (figure 49a).  The input range of the S&H circuit is 

80 to 2580mV.  

 

5.2.7 ADC Test 

The comparator of the ADC with regenerative amplifier was tested. Sine 

waves with different frequencies were applied to the input of the ADC and the 

output was monitored. The conversion of 5k sine wave was observed (figure 

49b). The oscilloscope shows a rough result of the comparator as it compares 

and converges to the hold signal.  The input sine wave frequency was reduced to 

1k (figure 49c). The result shows that the comparator is sensitive to identify small 

changes in the input voltage. Although the results observed from the oscilloscope 

reveal decent performance from the comparator, more testing is needed to 

collect precise measurements to further access the performance of the ADC.  

The input of the chip was connected to a function generator, and the output was 
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Figure 48 - Timing analysis of the CLKNET 
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(A) 

 

  

(B)      (C) 

Figure 49 – A: Performance of the S&H circuit at high frequency input; B: 
Conversion of the ADC at high frequency (Blue: input signal; Yellow: output 
response observed at the register); C: Conversion of the ADC at low frequency 
(Blue: input signal; Yellow: output response observed at the register) 
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connected to a logic analyzer.  Sine waves at various frequencies were applied 

and the data was stored within the analyzer.  The data was then analyzed with 

MATLAB.  The digital code output was restored to the full scale range.  Each 

data set was clipped and the frequency domain of the data was calculated.  The 

signal to noise and distortion ratio and the effective number of bits was accessed.  

A point score histogram or code density test was utilized to evaluate the 

differential nonlinearity and integral nonlinearity of the ADC (figure 50) [52]. This 

approach is performed in the amplitude-domain of an ADC. A dynamic and 

repetitive signal is applied to the ADC, generating a corresponding distribution of 

digital codes at the output of the converter. The histogram shows how many 

times each different digital code word appears on the output. In the case of a 

sinusoidal signal, the histogram would reveal a bathtub distribution. The digitized 

information is then sorted into code bins. Each code bin represents a single 

output code. Depending on the input signal, the number of samples, or hits for 

each bin are collected. Any deviation from the corresponding output code 

distribution results in various errors that may be estimated with the histogram 

method. These error parameters include first and foremost DNL and INL. For an 

ideal ADC, each code bin width should correspond to a bit width of FSR/2N, 

where N is the resolution of the ADC and FSR is the full-scale range of the ADC 

in volts. Due to the limitation of the oscilloscope, the FSR of the ADC cannot be 

precisely determined. The FS ranges approximately from 200 to 1589mV. 
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Figure 50 – Code density histogram of a 100 Hz sine wave sampled at 1.25 
MSPS 
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The MUX was disabled and a sine wave of frequencies of 100, 200, 400, and 

1kHz were input to the chip.  The output of the ASIC was connected to a data 

acquisition card (NI PCIe-6259, National Instrument), which was connected to 

the PC.  The DSP was carried out with MATLAB.  Since the TX and RX do not 

transfer the clock data, a self synchronization method is used to recover the 

timing information.  The data was over-sampled with the depth that each set 

contains two sets of comma signals.  The over sampled data was reduced and 

converted to a binary signal. The comma signals were detected and the string of 

data between the comma signals was extracted.  The data was then checked 

with polarity.  The comma signals and the polarity bits were removed, and the 

string of data was transformed into a matrix.  The binary data was converted to 

decimal.  The signal was reconstructed and the characteristic of the ADC was 

calculated. The signal to noise and distortion ratios (SNDR) of the ADC at these 

frequencies are 45.3682, 42.3878, 40.7787 and 41.9988 dBFS respectively. The 

effective numbers of bits (ENOB) are 7.2439, 6.7654, 6.4815, and 6.6842 bits. A 

survey indicates that there can be up to three bits difference on some of the ADC 

design. The average difference from the survey was 1.43 bit [56].   

As observed from the data collected, the SNDR and the ENOB drops as 

the frequency increases. This can contribute by two factors.  First, the frequency 

of the OSC, which governs the sampling rate, did not increase with the 

increasing of the data rate.  Hence, less code bin are sampled during a period of 
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the signal.  Secondly, the memory depth of the logic analyzer did not increase 

with the frequencies tested; this can contribute to insufficient data points.  This 

leads to a far less desirable point score histogram.  

Differential Non-Linearity (DNL) Error is the difference between the actual 

measured width of the step and the ideal value of 1 LSB.  The Integral Non-

Linearity (INL) error represents the deviation of the actual transfer function from a 

straight line, such as gain and error. The results are shown in figure 50 to 53. 

The DNL error is roughly plus or minus 5 LSB with a standard derivation of 0.19, 

which indicates a monotonic transfer function with no missing code. The INL 

error is plus 1.28 or minus 0.17LSB with a standard derivation of 0.33. In order to 

avoid saturating the signal, the amplitude of the signal is slightly less than the FS. 

This costs an offset to the ADC transfer function characteristic, which is reflected 

in the INL figures 51 to 54. 
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Figure 51 – DNL (Top) and INL (Bottom) of the ADC with 100Hz sine wave 
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Figure 52 – DNL (Top) and INL (Bottom) of the ADC with 200Hz sine wave 
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Figure 53 – DNL (Top) and INL (Bottom) of the ADC with 400Hz sine wave 
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Figure 54 – DNL (Top) and INL (Bottom) of the ADC with 1kHz sine wave 
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5.2.8 INA Test 

The detail of the performance of the INA was assessed.  The INA DC 

output bias is 1.224V, as observed at INAref/P67.  A differential signal was 

generated with a signal generator and a DC power source.  A sine wave with 

20mV peak to peak (p-p) with 1.224V offset and high impedance load output was 

applied to the positive input of the INA.  The negative input of the INA was 

connected to the DC power, which was set at 1.224V.  The frequency of the sine 

wave was increased manually and the root mean square of the voltage output 

was recorded.  Three different external resistors, with valves at 300, 510 and 

1kW, were used to test the gain of the INA, which were 41, 72 and 104 

respectively.  The plot of the INA gain was plotted in figure 55.  Based on the 

response shown in figure 56, the phase margin is estimated to be 65 degrees.  

 

5.2.9 MUX Test 

 Due to the limitation of the packaging, only sixteen channels are 

connected with pins.  A sine wave is input at one of the channels and the output 

of the MUX was observed.  Figure 57 shows the output from the MUX with only 

one channel input.  Each channel is opened for 11.65μs.  There is a mismatch of 

the on-resistances of the MUX as shown in figure 58.  The resistances decrease 

with the channels.  This results from the difference in length of the trace metal
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Figure 55 –  INA gain with different gain resistors 
 

 

 
Figure 56 – Output response of the INA (Yellow: input signal, Blue: output signal) 
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Figure 57 – Output response of the MUX (Yellow: input signal; Blue: output 
signal)  
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Figure 58 - Measurement of analog switch on-resistance 



ASIC Design, 123 
 

 
 

within the ASIC.  Table 3 shows the length of metal used in each channel.  These 

resistances by the metal connection were ignored by the simulation tools.  

Hence, the mistmatch was never discovered during the simulation and 

verification during the design.  The simulated resistances of the traces were re-

calculated and their resistances are similar to the experimental results obtained 

in figure 58.  Hence, the on-resistances of the MUX is closed to 0 ohm and 

appeared to be a straight line.  

 

5.2.10 New and Old Systems Test 

 The second system on the ASIC without discrete point was tested by 

applying a sine wave signal at one of the channels and importing the data into 

PC for processing.  The result was the same as the discrete version of the 

design. The corrected system from the first iteration was also tested.  However, 

metastablity was still observed with the ADC without the latch comparator 

configuration. 
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Table 3 - Length of the metal connection in different channels 
 

Channel Metal (um) 
1 2725 
2 2607 
3 2467 
4 2344 
5 2205 
6 2094 
7 2015 
8 1848 
9 1701 

10 1568 
11 1419 
12 1292 
13 1144 
14 1008 
15 851 
16 725 
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5.3 System Testing 

A testing PCB was built to evaluate the system performance of the 

electronics (figure 59).  The goal is to evaluate the different building blocks of the 

system after they are connected together.  Since this board is built with the goal 

of evaluation, many probing points were established for debugging the system.   

The overall error of the ASIC can be evaluated by comparing the input 

waveform from the signal generator to the output digital code.  A 100Hz 20mV p-

p sine wave was applied to the inputs of the system.   All sixteen inputs should 

receive the same input such that the output from the MUX to the ADC is a single 

sine wave function.  The gain resistor is 510 ohm, which gives the system a gain 

of 72.  The digital output of the system was sampled with a data acquisition card 

into the computer, where the decoding was performed.  The timing delay is 

corrected and the result is shown in figure 60 and 61.  The root mean square 

error of the system is 0.1145mV at input, or 8.25mV after amplification.  The 

result from here shows that the error is slightly higher than 1 LSB, which is 

approximately the same as the error calculated for the ADC in section 5.2.7.  As 

a result, we can conclude the major source of error came from the SAR ADC. 

The overall system RSS error includes both microcantilever (2mm EP30MED 

encapsulation) and ASIC is +/- 8.29mV, which is approximately +/- 1.79kPa. 
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Figure 59 - System evaluation board 
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Figure 60 – Comparison between the input waveform and the reconstructed 
output signal (Blue: input, Red: reconstructed output) 
 



ASIC Design, 128 
 

 
 

 

 

Figure 61 – Close up diagrams showing the errors created from the system 
(Blue: input, Red: reconstructed output) 



 
 
 
Chapter 6 
 
Conclusion and Future work 
  

 
 

6.1 Conclusion 

 The work in this thesis demonstrates the use of a MEMs devicem such as 

microcantilever to measure the axial strain of macroscopic force with epoxy 

encapsulation.  It is a big leap for orthopedic research, as the strain sensor has 

significantly reduced in size as well as increasing the resolution of the measuring 

surface.  It has also shown the procedures and steps to design and implement a 

measuring system with ASIC technology.  These innovations show the feasibility 

to implement a highly accurate and compact system in a size limited 

environment, such as surgical instrument.  It is crucial to avoid direct contact 

between the sensors, electronics, and living human tissues.   Biocompatible 

epoxy served several purposes in this system:  protecting the sensors, sealing 

the electronic components from water, body fluids, and preventing possible 

allergic reaction from the materials. It has also shown that a piezeoresistive 

microcantilever has a higher range of operation and is highly customizable as 

compared to FSR.  The sensitivity of the sensor is determined by the thickness of 

the encapsulating epoxy.  The readout electronics have been tested and verified.  
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The system properties are concluded in table 4. The feasibility of transmitting 

data via a telemetric system was also demonstrated. 

  

6.2 Future Work 

The future iteration of the design should integrate the wireless communication 

into the system.  As mentioned before, due to the limitation of the packaging, 

only one half of the input leads to the MUX were wired to the package.  The next 

iteration of the ASIC design should bring out all thirty input channels.  Secondly, 

the size of the packaging should be reduced to only necessary input and outputs 

leads and eliminate those that are used for debugging.   The coin batteries 

should be replaced with compact rechargeable lithium batteries.  Additionally, the 

surface resolution can further be improved by reducing the size of the 

microcantilever.  An automatic bridge balancing system can be realized with a 

series of resistors and a DAC to balance the bridge automatically at the start up 

of the system.  Lastly, the discrete data gathered from each condylar 

compartment on the spacer should be converted into a smooth continuous 

surface stress function via bicubic Interpolation [57].  
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Table 4 - System parameters 

 

Parameters Values 
Analog input channels 16 
Analog MUX switching frequency Oscillator dependent  
A/D Converter input range ~ 200mV – 1589mV 
A/D Converter resolution 8bit 
A/D Converter rate 772 kHz 
Band gap reference 1.249V 
INA gain Gain resistor dependent 
INA phase margin 65o 

INA Unit gain bandwidth ~ 2.4 GHz 
A/D ENOB 7.24 bit 
A/D SNDR 45.4 dB 
A/D SFDR 56.4 dB 
DNL +0.57/-0.42 LSB 
INL +1.3/-0.2 LSB 
Power supply 2.6 – 4.4V 
Error checking Parity bit evaluation 
Carrier frequency 315 or 433.92MHz 
Data Rate 100kbps max. 
Range Up to 10m 
Modulation ASK 
Output method RS232C 
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Technical Data Sheet 
 

MASTER BOND POLYMER SYSTEM EP42HT-2  
 

Two Component, Room Temperature Curable, Heat Resistant Epoxy Adhesive, Sealant, 
Coating & Casting System Featuring Resistance to Medical Type Sterilization Including 

Radiation,  
Chemicals and Steam.  Meets USP Class VI Requirements. 

 
Product Description 
 Master Bond Polymer System EP42HT-2 is a room temperature curable two component 
epoxy, adhesive, sealant, coating and casting material featuring high temperature resistance 
along with outstanding chemical resistance.  It is widely used in medical devices because of its 
capability of withstanding repeated sterilizations, including radiation, ethylene oxide, chemical 
sterilants, and steam.  In addition, it fully complies with the testing requirements of USP Class VI 
plastics.  While EP42HT-2 is a superior adhesive, sealant and coating, it is also castable to 
thicknesses exceeding 2-3 inches.    EP42HT-2 cures readily at ambient or more quickly at 
elevated temperatures. One particularly popular cure schedule is “overnight” at room temperature 
followed by 2-4 hours at 150-200°F. 
It has an easy to use 100:40 mix ratio by weight or 100:50 by volume.  The cured 
epoxy compound is resistant to various types of sterilizations, inorganic and 
organic acids, alkalis, organic solvents and aromatic hydrocarbons.  EP42HT-2 is 
an excellent electrical insulator.  Especially noteworthy is its serviceability from -
60°F up to 450°F, combined with resistance to steam, chemicals and radiation.  
Aside from its widespread use in the medical industry, EP42HT-2 is also used in 
electronics, electrical, fiberoptic and optical as well as OEM type applications.  To 
optimize physical properties including heat resistance, a post cure of 100-130°C 
for 2-3 hours is recommended. 
 
Product Advantages 

• Convenient non-critical 100:40 mix ratio by weight or 100:50 by volume. 
• Contains no solvents. 
• Convenient cure schedules at both ambient and elevated temperatures. 
• Outstanding resistance to medical sterilants,radiation, ETO, chemicals and steam. 
• Excellent chemical resistance to acids, alkalis and many solvents. 
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• Superior thermal stability; serviceable up to 450°F. 
• Castable to thicknesses exceeding 2-3 inches. 
• Conforms to the requirements for a USP Class VI plastic. 
• Available in amber-clear and black as a Class VI system. 
• Service temperature -60°F/450°F 

 
Product Properties 

• Mix ratio, by weight, part A to part B.......................................................................................... 100/40 
• Mix ratio, by volume, part A to part B ........................................................................................ 100/50 
• Viscosity, mixed, 75°F, cps........................................................................................................... 3500 
• Working life after mixing, 100 gram mass, 75°F, minutes...........................................................45-60 
• Cure schedule 
  75°F, .............................................................................................................................24-48 hrs 
  200°F, ...............................................................................................................................2-3 hrs 
• Tensile strength, 75°F, psi....................................................................................................... >12,000 
• Elongation, 75°F, %......................................................................................................................... 3.4 
• Tensile lap shear, Al/Al, 75°F, psi.............................................................................................. .>2000 
• Tensile modulus psi ...............................................................................................................>450,000 
• Coefficient of thermal expansion, in/in x 10-6/°C..........................................................................35-40 
• Volume resistivity, 75°F, ohm-cm................................................................................................ >1014 
• Dielectric constant, 75°F (60Hz)...................................................................................................... 3.8 
• Service temperature range, °F ......................................................................................... -60 to 450°F   
• Hardness, Shore D ......................................................................................................................... >75 
• Shelf life at 75°F, in unopened containers............................................................................  6 months 
• Parts A and B available in syringes, pints, quarts, gallons and five gallon containers. 

 
Special Chemical Resistance Data 
Resistant at Room Temperature, 77°F (immersion): Acetic acid (10%), 
Ammonium hydroxide (29%), Butyl alcohol, Calcium hypochlorite (5%), Citric 
acid (10%), Cottonseed oil, Distilled water, Ethylene glycol, Formaldehyde (37%), 
Gasoline (98% octane), Hydrochloric acid (10%), Hydrogen peroxide (20%), 
Lard, Linseed oil, Mineral oil, Phosphoric acid (10%), Propylene glycol, Sea 
water, Sodium hydroxide (20%), Sodium hydroxide (50%), Sodium sulfite (1%), 
Sour crude oil, Sulfuric acid (10%), Tap water, Toulene, Zinc hydrosulfite (1%). 
 
Resistant at 200°F (immersion): Citric acid (10%), Ethylene glycol, Hydrochloric 
acid (10%), Mineral oil, Phosphoric acid (10%), Propylene glycol. 
 
Satisfactory Resistance to Spillage Above 200°F: Carbon tetrachloride, Ethyl 
alcohol, Gasoline, Hydrochloric acid (10%), O-dichlorobenzene (10%), Sodium 
hydroxide (10%), Sulfuric acid (10%), Tap water, Xylene. 
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Preparation of Compound and Bond Surfaces 
 Master Bond Polymer System EP42HT-2 is prepared for use by 
thoroughly mixing part A with part B in a noncritical 100 to 40 mix ratio by weight 
or 100 to 50 by volume.  Mixing should be done slowly to avoid trapping air.  The 
working life of a mixed 100 gm batch is 45-60 minutes.  It can be further 
lengthened by using shallow mixing vessels or mixing smaller size batches. All 
bonding surfaces should be carefully cleaned, degreased and dried to obtain 
maximum bond strength.  Certain metal or plastic surfaces should be 
mechanically or chemically etched in order to maximize bond strength.  Castings 
can be accomplished in rubber, plastic or metal molds after application of 
appropriate mold releases.  When casting, vacuum degassing may be necessary 
to eliminate all air bubbles. 
 
Application and Assembly 
 For potting and casting the EP42HT-2 is readily pourable.  For bonding or 
sealing EP42HT-2 can be conveniently applied with a brush, paint roller, spatula 
or knife. Enough mixed adhesive should be applied to obtain a final adhesive 
bond line thickness of 4-6 mils. This can be accomplished by coating one surface 
with an adhesive film 4-6 mils thick or by coating the two surfaces, each with a 2 
to 3 mil thick layer of adhesive. Porous surfaces may require somewhat more 
adhesive to fill the voids than non-porous ones. Thicker glue lines do not 
increase the strength of a joint but do not necessarily give lower results since 
EP42HT-2 does not contain any volatiles. The parts to be bonded should then be 
pressed together with just enough pressure to maintain intimate contact during 
cure. 

 
Cure 
 Master Bond Polymer System EP42HT-2 can be cured at room 
temperature or at elevated temperatures as desired. At room temperature, 
Master Bond Polymer System EP42HT-2 develops 85% of its maximum bond 
strength within 24-48 hours. The bond strength then increases continuously for 
another 2-3 days. Faster cures can be realized at elevated temperatures, 2-3 
hours at 200°F for full strengths.  When potting, the thicker the section, the faster 
the rate of cure. 

 
Handling and Storage 
 All epoxy resins should be used with good ventilation.  Skin contact should 
be minimized. To remove resin or hardener from skin use mild solvent then wash 
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with soap and water.  If material enters the eyes, flood with water and consult a 
physician.  Optimum storage is at or below 75°F in closed containers.  No special 
storage conditions are necessary.  Containers should however be kept closed 
when not in use to avoid contamination.  Cleanup of spills and equipment is 
readily achieved with acetone or xylene employing proper precautions of 
ventilation and flammability. 
 

Master Bond Inc. 
Adhesives, Sealants & Coatings • 154 Hobart Street • Hackensack, N.J.  07601-
3922 • Tel: 201-343-8983 

Notice:  Master Bond believes the information on the data sheets is reliable and accurate as is technical 
advice provided by the company.  Master Bond makes no warranties (expressed or implied) regarding the 
accuracy of the information, and assumes no liability regarding the handling and usage of this product. I304 
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Technical Data Sheet 
 

MASTER BOND POLYMER ADHESIVE EP30 MEDICAL  
 

Low Viscosity, Two Component Epoxy Adhesive For High Performance General Purpose  
Bonding, Coating and Sealing for Medical and Food Grade Applications 

 
Conforms Title 21 U.S. Code of Federal Regulations, FDA Chapter 1, 

Section 175.105 and 175.300 Requirements  
Now Meets USP Class VI Specifications 

 

 
Product Description 
 Master Bond Polymer Adhesive EP30 Medical is a low viscosity, two 
component epoxy adhesive for general purpose bonding formulated to cure at 
room temperature or more rapidly at elevated temperatures, with a four (4) to one 
(1) mix ratio by weight. This adhesive is 100% reactive and does not contain any 
solvents or other volatiles. It is especially recommended where low viscosity is 
required for ease of application and bonded assemblies must exhibit superior 
dimensional stability. The EP30  Medical has exceptionally low linear shrinkage. 
(0.0003 inches/inch.) 
 
 Master Bond Polymer Adhesive EP30 Medical produces high strength, 
rigid bonds which are remarkably resistant chemicals including water, oil and 
most organic solvents, as well as sold sterilants ETO and gamma radiation. 
Adhesion to both similar and dissimilar materials including metals, glass, 
ceramics, wood, vulcanized rubbers and many plastics is excellent. The 
hardened adhesive is an electrical insulator. Color of part A is clear, part B clear. 
The  temperature range is -60 to 250°F. 
 
Product Advantages 

• Convenient mixing: easy-to-use mix ratio, four (4) to one (1) by weight, very low viscosity. 
• Easy application: contact pressure only required for cure; adhesive spreads evenly and 

smoothly.  
• Versatile cure schedules: ambient temperature cures or fast, elevated temperature cures 

as required.  
• High bonding strength to a wide variety of substrates.  
• Superior durability, and chemical resistance particularly to sterilants. 
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• Biocompatible as per USP Class VI testing. 
• Conforms Title 21 U.S. Code of Federal Regulations,  FDA Chapter 1,  Section 175.105 

and 175.300 Requirements. 
 
Product Properties 

• Mixing ratio, by weight, parts A to B .............................................................................................. 4/ 1 
• Part A properties, typical viscosity, cps at 25°C .....................................................................600-700 
• Part B properties, typical viscosity, cps at 25°C ............................................................................ 400 
• Working life after mixing, 75°F, 100 gram mass, minutes ..........................................................30-35 
  200 gram mass, minutes ...................................................................................................20-25 
• Cure schedule, room temperature: 85% of maximum strength developed within ............24-48 hours 
• Ultimate strength attained after 5-7 days 
• Cure schedule, elevated temperatures: at 40°C (104°F) .................................................16-24 hours 
  Or 100°C (212°F) .........................................................................................................2-3 hours 
• Bond strength, shear, aluminum to aluminum, room temperature cure, 75°F, psi ...................... 3200 
• Bond strength, shear, aluminum to aluminum, room temperature cure, 75°F, psi 
  After 30 days water absorption ........................................................................................... 3120 
• Tensile strength .......................................................................................................................... >9500 
• Volume resistivity......................................................................................................................... >1014 
• Dielectric strength ............................................................................................................. 440 volts/mil 
• Tensile modulus....................................................................................................................... 400,000 
• Service temperature range, °F ................................................................................. .-60°F to +250°F 
• Shelf life at 75°F, in unopened containers ................................................................................  1 year 
• Parts A and B available in pint, quart, 1 (one) gallon and 5 (five) gallon containers.  

 
Preparation of Adhesive and Bonding Surfaces 
 Master Bond Polymer Adhesive EP30 Medical is prepared by thoroughly 
mixing part A with part B. in a four (4) to one (1) mix ratio by weight. Mixing 
should be done slowly to avoid entrapping air. The low viscosity of the two 
components makes mixing easy. The working life of a mixed 100 gram batch is 
approximately 30 to 35 minutes and that of a 200 gram batch 20-25 minutes. It 
can be substantially lengthened by using shallower mixing vessels or mixing 
smaller size batches. All bonding surfaces should be carefully cleaned, 
degreased and dried for obtaining maximum bond strengths. Also when bonding 
to certain metal surfaces, vulcanized rubbers, etc., chemical etching should be 
employed for optimal adhesion and environmental durability. Non-porous 
surfaces should be roughened with sandpaper or emery paper for hard materials.  
 
Adhesive Application and Assembly 
 Master Bond Polymer Adhesive EP30 Medical can be conveniently 
applied with a brush, paint roller, spatula, knife, etc. Enough mixed adhesive 
should be applied to obtain a final adhesive bond line thickness of 3-5 mils. This 
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can be accomplished by coating one surface with an adhesive film 3-5 mils thick 
or by coating the two surfaces, each with a 1.5 to 2.5 mil thick layer of adhesive. 
Porous surfaces may require somewhat more adhesive to fill the voids than non-
porous ones. Thicker glue lines do not increase the strength of a joint but do not 
necessarily give lower results as the EP30 Medical adhesive system does not 
contain any volatiles. The parts to be bonded should then be pressed together 
with just enough pressure to obtain and maintain intimate contact during cure.  
 
Cure 
 Master Bond Polymer Adhesive EP30 Medical can be cured at room 
temperature or at elevated temperatures as desired. At room temperature Master 
Bond Polymer Adhesive EP30 Medical develops 85% of its maximum bond 
strength within 24-48 hours. The bond strength then increases continuously for 
about a week. Faster cures can be realized at elevated temperatures, e.g., 16-24 
hours at 40°C (104°F) or 2-6 hours at 100°C (212°F) for full strengths. Remove 
excess adhesive promptly before it hardens with a spatula. Then wipe with rag 
and solvent such as trichloroethylene, toluene or lacquer acetone.  The thinner 
the section of epoxy, the slower the rate of cure. 
 
Handling and Storage 
 All epoxy resins should be used with good ventilation, also skin contact 
should be minimized. Master Bond Polymer Adhesive EP30 Medical employs a 
low toxicity-low skin irritation "safety" hardener. To remove resin or hardener 
from skin, use solvent, then wash with mild soap and water. If material enters the 
eyes, flood with water and consult a physician. Optimum storage is at or below 
75°F in closed containers. No special storage conditions are necessary. 
Containers should however be kept closed when not in use to avoid 
contamination. Cleanup of spills and equipment is readily achieved with 
chlorinated, aromatic or ketone solvents employing proper precautions of 
ventilation and flammability.  
 

Master Bond Inc. 
Adhesives, Sealants & Coatings • 154 Hobart Street • Hackensack, N.J. 07601-
3922 • Tel: 201-343-8983 
 

Notice:  Master Bond believes the information on the data sheets are reliable and accurate as is technical 
advise provided by the company.  Master Bond makes no warranties (expressly or implied)  regarding the 
accuracy of the information, and assumes no liability regarding the handling and usage of this product. 
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Technical Data Sheet 
 

MASTER BOND POLYMER SYSTEM EP21LV 
 

Versatile Two Component, Low Viscosity Epoxy System For High Performance Bonding,  
Sealing, Coating, Encapsulation & Casting. Conforms Title 21, U.S. Code of Federal  

Regulations, FDA Chapter 1, Section 175.105 & 175.300 for Food Applications 
 

Meets USP Class VI Specifications for Medical Applications 

Product Description 
 Master Bond Polymer System EP21LV is a two component, low viscosity 
epoxy resin system for high performance bonding, sealing, coating, encapsulation 
and casting. It is formulated to cure readily at room temperature or more quickly at 
elevated temperatures.  It has a very forgiving 1 to 1 mix ratio by weight or volume.  
In fact, EP21LV has the unusual characteristic of being able to adjust the properties 
of the cured system by altering the mix ratio.  Adding more A part (e.g. 2:1 mix ratio) 
gives a more rigid cure (enhanced machinability) while adding more B part (e.g. 1:2 
mix ratio) gives a more forgiving cure (greater impact resistance).  The EP21LV 
produces high strength, durable bonds which hold up well to thermal cycling and 
resists many chemicals including water, oils, fuels, acids, bases and salts.  It is 
serviceable over the wide temperature range of -65°F to +250°F.  It bonds well to a 
variety of  substrates including metals, glass, ceramics, wood, rubbers, and many 
plastics.  Once cured, EP21LV is an outstanding electrical insulator.  This, coupled 
with its low viscosity, makes it an excellent encapsulating and potting epoxy.  As a 
Class VI epoxy, EP21LV has a wide range of uses as an adhesive, sealant or 
coating in the medical industry. In addition, it meets FDA requirements for food 
compatibility.  EP21LV contains no solvents or diluents.  While the standard color of 
the cured material is amber-clear, a wide variety of additional color choices are also 
available.  
 
Advantages 

• Convenient mixing: non critical 1:1 mix ratio by weight or volume.  
• Variable mix ratio feature allows adjusting the type of cure.  Adding more A (e.g. 2:1) gives 

a more rigid cure  while adding more B (e.g. 1:2) gives a more forgiving cure. 
• Easily applied; product flows evenly and smoothly without application of pressure, wets 

surfaces and fills volumes quickly and completely.     
• Ambient temperature cures or fast elevated temperature cures as required.   
• High bonding strength to a wide variety of substrates. 
• Superior physical strength properties. 
• Good electrical insulation properties; ideal for potting and encapsulation. 
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• Fully meets UPS Class VI requirements for medical applications. 
• Fully meets FDA requirements for food related applications. 

 
Product Properties 

• Mixing ratio, weight or volume, parts A to B ................................................................................... 1/1 
• Mixed viscosity, 75°F, cps ..................................................................................................7000-8000 
• Working life after mixing, 75°F, 200 gram mass, minutes ..........................................................60-75 

 1 quart mass, minutes .......................................................................................................35-40 
• Cure schedule, room temperature, 90% of maximum strength developed within ............24-36 hours 

 150°F, 90% of maximum strength developed within ....................................................3-4 hours 
• Bond strength, shear, aluminum/aluminum 
  Room temperature cure, 75°F, psi .................................................................................... >2900 
  After 30 days water immersion, 75°F, psi.......................................................................... >2800 
• Tensile strength, 75°F, psi ........................................................................................................... 7600 
• Elongation %, 75°F.......................................................................................................................... 4.8 
• Tensile modulus, 75°F, psi ...................................................................................................... 320,000 
• Hardness, Shore D ......................................................................................................................... >70 
• Coefficient of thermal expansion, in/in x 10-6/°C............................................................................... 53 
• Dielectric constant, 75°F, (1 KHz) ................................................................................................. 2.89 
• Volume resistivity, 75°F, ohm-cm ..................................................................................................10

15 
• 24 hour water boil, % weight gain ................................................................................................... 3.2 
• Service temperature range, °F ..................................................................................  -65°F to +250°F 
• Shelf life at 75°F, in unopened containers (Commercial 

Grade).................................................1 year 
• Shelf life at 75°F, in unopened containers (Food or Medical 

Grade)......................................6 months 
• Parts A and B available in pints, quarts, 1(one) gallon, and 5(five) gallon containers. 

 
Preparation of Compound and Bond Surfaces 
 Master Bond Polymer System EP21LV is prepared for use by thoroughly 
mixing part A with part B in a noncritical one-to-one (1:1) mix ratio by weight or 
volume. Mixing should be done slowly to avoid trapping air.  The working life of a 
mixed 200 gm batch is 60-70 minutes and that of a 1 quart batch is 35-40 
minutes.  It can be further lengthened by using shallow mixing vessels or mixing 
smaller size batches. All bonding surfaces should be carefully cleaned, 
degreased and dried to obtain maximum bond strength. Also when bonding to 
metal surfaces especially, chemical etching should be employed when the 
bonded joints are to exhibit optimal environmental durability. Nonporous surfaces 
can be advantageously roughened with sandpaper or emery paper for hard 
materials. Castings can be accomplished in rubber, plastic or metal molds after 
application of approximate mold releases. 
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Application and Assembly 
 For potting and casting the EP21LV is readily pourable and can be 
processed by conventional methods to produce high quality castings.  For 
bonding or sealing, EP21LV can be conveniently applied with a brush, paint 
roller, spatula, knife, etc. Enough mixed adhesive should be applied to obtain a 
final adhesive bond line thickness of 3-5 mils. This can be accomplished by 
coating one surface with an adhesive film 3-5 mils thick or by coating the two 
surfaces, each with a 1.5 to 2.5 mil thick layer of adhesive. Porous surfaces may 
require somewhat more adhesive to fill the voids than non-porous ones. Thicker 
glue lines do not increase the strength of a joint but do not necessarily give lower 
results as the EP21LV epoxy resin system does not contain any volatiles. The 
parts to be bonded should then be pressed together with just enough pressure to 
maintain intimate contact during cure.  In addition, Master Bond Polymer System 
EP21LV can produce excellent protective coatings on both metallic and 
nonmetallic surfaces.  Since this epoxy resin compound does not contain any 
solvents or other volatiles, thick coatings (10 mils and more) can readily be 
deposited with only one application.  Furthermore, such coatings are free from 
pinholes and other defects. 
 
Cure 
 Master Bond Polymer Adhesive EP21LV can be cured at room 
temperature or at elevated temperatures as desired.  At room temperature, 
Master Bond Polymer Adhesive EP21LV develops 90% of its maximum bond 
strength within 24-36 hours.  The bond strength increases continuously for 1-2 
days.  Faster cures can be realized at elevated temperatures e.g., 3-4 hours at 
150°F, 60-75 minutes at 250°F or 30-40 minutes at 300°F for realizing about 90% 
of ultimate strength.  At room temperature bonds then continue to gain in 
strength with full strength reached within 1 day.  Remove excess adhesive 
promptly before it hardens with a spatula.  Then wipe with a rag and solvent such 
as xylene, toluene or lacquer thinner.  The thinner the layer of epoxy, the slower 
the cure. 
  
Handling and Storage 
 All epoxy resins should be used with good ventilation and skin contact 
should be minimized.  Master Bond EP21LV employs a low toxicity hardener.  To 
remove resin or hardener from skin, use solvent, then wash with mild soap and 
water.  If material enters the eyes, flood with water and consult physician.  
Optimum storage is at or below 75°F in closed containers.  No special storage 
conditions are necessary. Containers should however be kept closed when not in 
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use to avoid contamination.  Cleanup of spills and equipment is readily achieved 
with aromatic or ketone solvents employing proper precautions of ventilation and 
flammability.  
 
 
 
 
 
 

Master Bond Inc. 
Adhesives, Sealants & Coatings • 154 Hobart Street • Hackensack, N.J.  07601-
3922 • Tel: 201-343-8983 

Internet Address: http://www.masterbond.com 
 

Notice:  Master Bond believes the information on the data sheets are reliable and accurate as is technical 
advice provided by the company.  Master Bond makes no warranties (expressed or implied) regarding the 
accuracy of the information, and assumes no liability regarding the handling and usage of this product.  
     I185 
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MUX circuit schematic 
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Power control circuit schematic 
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Signal conditioning circuit schematic (LPF and INA) 
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LED display circuit schematic 
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MCU circuit schematic 
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TX circuit schematic 
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RX circuit schematic 
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Power and reset circuit schematic 
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Clk geneator ctrl switch circuit schematic 
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Led display and dac test circuit schematic 
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ASIC version 1 evaluation schematic 



Appendix B – Schematic and PCB Layout, 162 
 

 
  

 

ASIC version 2 evaluation schematic 
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ASIC system evaluation schematic 



Appendix B – Schematic and PCB Layout, 164 
 

 
  

 

PCB Layout for MUX Board Evaluation 

 

PCB Layout for MCU Board Evaluation
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PCB Layout for TX Board Evaluation 

 

PCB Layout for RX Board Evaluation 
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PCB layout for the ASIC version 1 evaluation
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PCB layout for the ASIC version 2 evaluation 
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PCB layout for the ASIC system evaluation 
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High level design schematic for ASIC
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High level schematic for 30 – 1 MUX
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High level schematic for MUX and its decoder 
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High level schematic for INA
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High level schematic for CLKNET
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High level schematic for SAR ADC 



Appendix C – ASIC Schematics, 175 
 

 
  

 

High level schematic for SAR ADC with PISO register  
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clear all; 
clc; 
  
% Variable Sampling Rate and Number of Samples 
samplingRate = 1250000; 
numSamples = 14000; 
  
% Set up connection to NIDAQ card 
a1 = analoginput('nidaq','Dev1'); 
% Number of Channels 
chan1 = addchannel(a1,0); 
% Voltage input range 
chan1.InputRange = [-10 10]; 
% Set Sampling Rate and Number of Samples 
set(a1,'SampleRate',samplingRate); 
set(a1,'SamplesPerTrigger',numSamples); 
% Determine Threshold level  
run = 1; 
di = zeros(numSamples,1); 
start(a1); 
pause(0.15); 
data = getdata(a1); 
midLevel = min(data)+((abs(min(data))-abs(max(data)))/2); 
for ii = 1:numSamples 
    if data(ii) > midLevel 
        di(ii) = 1; 
    else 
        di(ii) = 0; 
    end 
end 
stop(a1); 
  
% Declare variables to court number of 1s, 0s and Rising Edges 
%  while run == 1; 
     tic     
     start(a1); 
     pause(0.15); 
% Setup matrix for data storage      
     di = zeros(numSamples,1); 
%      code = zeros(numSamples,1); 
     binWidth1 = 0; 
     binWidth0 = 0; 
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%      numREdge = 0; 
     jj = 1; 
         
% Sample data and detemine the logic level and store in di (ditial input) 
     data = getdata(a1); 
        for ii = 1:numSamples 
            if data(ii) > midLevel 
                di(ii) = 1; 
            elseif data(ii) < midLevel 
                di(ii) = 0;             
            end 
             
            if ii > 1 
% At rising edge (di(ii) > di(ii-1)) 
% call function binCourt and court the binWidth0 (number of zeros); and  
% assign binary code to it. The binary data is stored in code. 
% Reset binWidth0 and Start court for binWidth1 
% Record the number of Rising Edge 
                if di(ii) > di(ii-1) 
%                     [binCode, bitinc] = binCourt2(binWidth0, 0);                     
                    [binCode, bitinc] = binCourt(binWidth0, 0); 
                    if isempty(binCode) 
                        continue; 
                    end 
                    code(jj:jj-1+bitinc)=binCode; 
                    jj = jj+bitinc; 
                    binWidth0 = 0;             
                    binWidth1 = binWidth1 + 1; 
%                     numREdge = numREdge + 1; 
% Continue to register number of 1s to binWidth1 until the falling edge                     
                elseif di(ii) == 1 & di(ii-1) == 1 
                    binWidth1 = binWidth1 + 1; 
%                     if binWidth1>93 
%                         binWidth1 
%                     end 
% At falling edge (di(ii) < di(ii-1)) 
% call function binCourt and court the binWidth1 (number of ones); and  
% assign binary code to it. The binary data is stored in code. 
% Reset binWidth1 and Start court for binWidth0                     
                elseif di(ii) < di(ii-1) 
%                     [binCode, bitinc] = binCourt2(binWidth1, 1); 
                    [binCode, bitinc] = binCourt(binWidth1, 1); 
                    if isempty(binCode) 
                        continue; 
                    end 
%                     code(ii:ii+bitinc-1)=binCode; 
                    code(jj:jj-1+bitinc)=binCode; 
                    jj = jj+bitinc; 
                    binWidth1 = 0; 
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                    binWidth0 = binWidth0 +1; 
% Continue to register number of 0s to binWidth0 until the next rising edge                     
                elseif di(ii) == 0 & di(ii-1) == 0 
                    binWidth0 = binWidth0 +1; 
%                     if binWidth0>93 
%                         binWidth0 
%                     end 
                end 
            end 
        end 
    n=0; 
    comma=0; 
    [r_code, c_code] = size(code); 
    for ll = 1:1:c_code-18 
        con1=(code(ll)==1)&(code(ll+1)==1)&(code(ll+2)==0)&(code(ll+3)==0); 
        con2 =(code(ll+4)==1)&(code(ll+5)==1)&(code(ll+6)==0)&(code(ll+7)==0)&(code(ll+8)==1); 
        con3=(code(ll+9)==0)&(code(ll+10)==0)&(code(ll+11)==1)&(code(ll+12)==1); 
        con4= 
(code(ll+13)==0)&(code(ll+14)==0)&(code(ll+15)==1)&(code(ll+16)==1)&(code(ll+17)==1); 
        if con1&con2&con3 
            n=n+1; 
            comma(n)=ll; 
        end 
    end 
% check if there are code missing between two commas     
    nn=0; 
    [row_comma, column_comma]=size(comma); 
    for kk=1:1:(column_comma-1) 
        if comma(kk+1)-comma(kk)~=288 
            nn=nn+1; 
            commaErr(nn)=comma(kk); 
        end 
    end 
    if nn >2 
        continue; 
    end 
%Polarity check 
polWrgCnt=0; 
polWrgMtx=0; 
jjj=0; 
    for iii=comma(1):9:(c_code-18) 
        dataXor12=xor(code(iii),code(iii+1)); 
        dataXor34=xor(code(iii+2),code(iii+3)); 
        dataXor56=xor(code(iii+4),code(iii+5)); 
        dataXor78=xor(code(iii+6),code(iii+7)); 
        dataXor1234=xor(dataXor12, dataXor34); 
        dataXor5678=xor(dataXor56, dataXor78); 
        dataXor=xor(dataXor1234, dataXor5678); 
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        if code(iii+8)==(~dataXor) 
            polWrgCnt=polWrgCnt+1; 
            jjj=jjj+1; 
            polWrgMtx(jjj)=iii;  
        end 
    end 
     
%delete comma bits and save to data matrix 
    kl=comma(1); 
    mm=1; 
    dataNoComma=0; 
    while kl<=comma(column_comma) 
        if mod(kl-comma(1),288)==0 
            kl=kl+18; 
        else 
            dataNoComma(mm)=code(kl); 
            mm=mm+1; 
            kl=kl+1; 
        end 
    end 
  
% delete polarity bits and save data to matrix 
    [row_dataNoComma, column_dataNoComma]=size(dataNoComma); 
%     if column_dataNoComma ~= 540 
%         continue; 
%     end 
    mn=1; 
    ij=1; 
    dataFin=0; 
    while mn<=column_dataNoComma 
        if mod(mn,9)==0 
            mn=mn+1; 
        else 
            dataFin(ij)=dataNoComma(mn); 
            ij=ij+1; 
            mn=mn+1; 
        end 
    end 
     
%convert binary data to decimal data 
    [row_dataFin, column_dataFin]=size(dataFin); 
%     if column_dataFin ~= 480 
%         continue; 
%     end 
    lm=0; 
    dataNu(1)=0; 
    dataAcc=0; 
    for jk=1:8:(column_dataFin-18) 
        lm=lm+1; 
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        for kl=0:1:7 
            dataAcc=dataAcc+dataFin(jk+kl)*(2^kl); 
        end 
        dataNu(lm)=dataAcc; 
        dataAcc=0; 
    end 
  
    [row_dataNu, column_dataNu]=size(dataNu); 
    op=0; 
    channel=0; 
    for op = 1:1:column_dataNu 
%         if column_dataNu ~= 60 
%             continue; 
%         end 
        channel(op)=dataNu(op); 
    end 
% Display total number of rising edge & reset 
%     disp(numREdge); 
%     numREdge = 0; 
% Stop acquisition         
    stop(a1); 
     
     
% Clear figure and plot     
    clf; 
    plot(channel); 
    %axis([1 numSamples -0.5 1.5]) 
    drawnow 
    toc 
%  end %(while loop) 
function[binCode, bitinc] = binCourt(x,y) 
  
u11 = 11; u12 = 14; 
u21 = 21; u22 = 28; 
u31 = 32; u32 = 41; 
u41 = 49; u42 = 54; 
u51 = 62; u52 = 67; 
u61 = 75; u62 = 80; 
u71 = 87; u72 = 93; 
u81 = 97; u82 = 160; 
if  x <=u12 %u11>=11 
    if y == 1 
        binCode = 1; 
    elseif y == 0; 
        binCode = 0; 
    end 
    bitinc = 1; 
end 
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if x >= u21 & x <= u22 
    if y == 1 
        binCode = [1,1]; 
    elseif y == 0 
        binCode = [0,0]; 
    end 
    bitinc = 2; 
end 
  
if x >= u31 & x <= u32 
    if y == 1 
        binCode = [1,1,1]; 
    elseif y == 0 
        binCode = [0,0,0]; 
    end 
    bitinc = 3; 
end 
  
if x >= u41 & x <= u42 
    if y == 1 
        binCode = [1,1,1,1]; 
    elseif y == 0 
        binCode = [0,0,0,0]; 
    end 
    bitinc = 4; 
end 
  
if x >= u51 & x <= u52 
    if y == 1 
        binCode = [1,1,1,1,1]; 
    elseif y == 0 
        binCode = [0,0,0,0,0]; 
    end 
    bitinc = 5; 
end 
  
if x >= u61 & x <= u62 
    if y == 1 
        binCode = [1,1,1,1,1,1]; 
    elseif y == 0 
        binCode = [0,0,0,0,0,0]; 
    end 
    bitinc = 6; 
end 
if x >= u71 & x <= u72 
    if y == 1 
        binCode = [1,1,1,1,1,1,1]; 
    elseif y == 0 
        binCode = [0,0,0,0,0,0,0]; 
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    end 
    bitinc = 7; 
end 
  
if x >= u81 
    if y == 1 
        binCode = [1,1,1,1,1,1,1,1]; 
    elseif y == 0 
        binCode = [0,0,0,0,0,0,0,0]; 
    end 
    bitinc = 8; 
end 
  
if 
x>u12&x<u21|x>u22&x<u31|x>u32&x<u41|x>u42&x<u51|x>u52&x<u61|x>u62&x<u71|x>u72&x<
u81  
    binCode = []; 
    bitinc = []; 
end 
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close all; 
clear all; 
clc; 
  
V_upper = 1589 
V_lower = 200 
  
% read in data file 
  
%serial=csvread('200_1589_100hz_sine.csv',2,0); 
  
% find the dimensions of martix 
[row_serial, column_serial]=size(serial); 
  
% delete unused data (oversampled data), only save the clock and useful data to a(i,j) 
  
k=0; 
  
for j=1:1:(row_serial-1) 
    if serial(j,2)~=serial(j+1,2) 
        k=k+1; 
        a(k,1)=serial(j,2); 
        a(k,2)=serial(j,1); 
    end 
end 
% delelte the data when clock is low, and save the data to b(m) 
[row_a, column_a]=size(a); 
  
m=0; 
  
for i=1:1:(row_a-1) 
    if a(i,1)==1 
        m=m+1; 
        b(m)=a(i,2); 
    end 
end 
  
% find comma, and save comma location to matrix comma(n) 
comma=0; 
n=0; 
  
[row_b, column_b]=size(b); 
  
for l=1:1:(column_b-18) 
    con1=(b(l)==1)&(b(l+1)==1)&(b(l+2)==0)&(b(l+3)==0); 
    con2 =(b(l+4)==1)&(b(l+5)==1)&(b(l+6)==0)&(b(l+7)==0)&(b(l+8)==1); 
    con3=(b(l+9)==0)&(b(l+10)==0)&(b(l+11)==1)&(b(l+12)==1); 
    con4= (b(l+13)==0)&(b(l+14)==0)&(b(l+15)==1)&(b(l+16)==1)&(b(l+17)==1); 
    if con1&con2&con3 
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        n=n+1; 
        comma(n)=l; 
    end 
end 
  
% check if there are code missing between two commas 
nn=0; 
  
[row_comma, column_comma]=size(comma); 
  
for kk=1:1:(column_comma-1) 
    if comma(kk+1)-comma(kk)~=288 
        nn=nn+1; 
        commaErr(nn)=comma(kk); 
    end 
end 
  
% check the ploarity to see how many data is wrong from the first comma 
polWrgCnt=0; 
jj=0 
  
for ii=comma(1):9:(column_b-18) 
    dataXor12=xor(b(ii),b(ii+1)); 
    dataXor34=xor(b(ii+2),b(ii+3)); 
    dataXor56=xor(b(ii+4),b(ii+5)); 
    dataXor78=xor(b(ii+6),b(ii+7)); 
    dataXor1234=xor(dataXor12, dataXor34); 
    dataXor5678=xor(dataXor56, dataXor78); 
    dataXor=xor(dataXor1234, dataXor5678); 
     
    if b(ii+8)==(~dataXor) 
        polWrgCnt=polWrgCnt+1; 
        jj=jj+1; 
        polWrgMtx(jj)=ii;  
    end 
end 
  
%delete comma bits and save to data matrix 
% ll=comma(1); 
% mm=1; 
%  
% while ll<=comma(column_comma) 
%     if mod(ll-comma(1),288)==0 
%         ll=ll+18; 
%     else 
%         dataNoComma(mm)=b(ll); 
%         mm=mm+1; 
%         ll=ll+1; 
%     end 
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% end 
  
% replace comma bits with zeros 
l1=comma(1); 
l2=1; 
  
while l1<=comma(column_comma) 
    if mod(l1-comma(1),288)==0 
        for l3=1:1:18 
            dataNoComma(l2)=0; 
            l2=l2+1; 
            l1=l1+1; 
        end 
    else 
        dataNoComma(l2)=b(l1); 
        l2=l2+1; 
        l1=l1+1; 
    end 
end 
  
  
% delete polarity bits and save data to matrix 
[row_dataNoComma, column_dataNoComma]=size(dataNoComma); 
nn=1; 
ij=1; 
  
while nn<=column_dataNoComma 
    if mod(nn,9)==0 
        nn=nn+1; 
    else 
        dataFin(ij)=dataNoComma(nn); 
        ij=ij+1; 
        nn=nn+1; 
    end 
end 
  
%convert binary data to decimal data 
[row_dataFin, column_dataFin]=size(dataFin); 
lm=0; 
data(1)=0; 
dataAcc=0; 
  
for jk=1:8:(column_dataFin-8) 
    lm=lm+1; 
    for kl=0:1:7 
        dataAcc=dataAcc+dataFin(jk+kl)*(2^kl); 
    end 
    data(lm)=dataAcc; 
    dataAcc=0; 
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end 
  
% data interpolation during comma 
data(1)=[]; 
  
  
for m1=2:1:lm-2; 
    if data(m1)==0 
        data(m1)=data(m1-1)*3/4+data(m1+2)/4; 
        data(m1+1)=data(m1-1)/4+data(m1+2)*3/4; 
    end 
end 
  
% fft of the data 
Y=fft(data); 
N=length(Y); 
Y(1)=[]; 
power=10*log10(abs(Y(1:N/2)).^2); 
power = power - max(power); 
nyquist=1/2; 
freq=(1:N/2)/(N/2)*nyquist;figure(2); 
plot(freq,power), grid on; 
  
% nu_data = round(data(75:4362)); % 400Hz Sine Wave 200 - 1589mV sigbin 20 
% nu_data = round(data(129:4418)); % 200Hz Sine Wave 200 - 1589mV sigbin 10 
nu_data = round(data(50:4338)); % 100Hz Sine Wave 200 - 1589mV sigbin 5 
Y2=abs(fft(nu_data)); 
N2 = length(Y2); 
Y2(1) = []; 
powerAna = Y2(1:end/2)/N*2; 
% powerAna = powerAna - max(powerAna);   
cycles = 4; 
sigbin = cycles + 1; 
noise = [powerAna(1:sigbin-1), powerAna(sigbin+1:end)]; 
SNR = 10*log10(powerAna(sigbin)^2/sum(noise.^2)) 
ENOB = ((SNR)-1.76)/6.02 
  
% nuDataSize = size(nu_data); 
% CourtBin(1:255) = 0; 
% for bin = 1:1:255 
%     for dataCourt = 1:1:nuDataSize(2) 
%         if bin == nu_data(dataCourt) 
%             CourtBin(bin) = CourtBin(bin)+1; 
%         end 
%     end 
% end 
% bar (CourtBin, 'DisplayName', 'CourtBin', 'YDataSource', 'CourtBin'); figure(gcf) 
  
minbin=min(nu_data); 
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maxbin=max(nu_data); 
% histogram 
h= hist(nu_data, minbin:maxbin); 
% cumulative histogram 
ch= cumsum(h); 
% transition levels 
T = -cos(pi*ch/sum(h)); 
% linearized histogram 
hlin = T(2:end) - T(1:end-1); 
% truncate at least first and last bin, more if input did not clip ADC 
trunc=2; 
hlin_trunc = hlin(1+trunc:end-trunc); 
% calculate lsb size and dnl 
lsb = sum(hlin_trunc) / (length(hlin_trunc)); 
dnl = [0 hlin_trunc/lsb-1]; 
misscodes = length(find(dnl<-0.9)); 
% calculate inl 
inl= cumsum(dnl); 
% plot 
figure(3);  clf; 
subplot(2,1,1); 
plot(linspace(minbin+trunc, maxbin-trunc, length(dnl)), dnl, '.'); 
xlabel('code'); 
ylabel('DNL [LSB]'); 
title(sprintf('DNL = +%.2f / %.2f LSB,  std.dev=%.2f,  %d missing codes (DNL <-0.9)', max(dnl), 
min(dnl), std(dnl), misscodes)); 
subplot(2,1,2); 
plot(linspace(minbin+trunc, maxbin-trunc, length(dnl)), inl, '.'); 
xlabel('code'); 
ylabel('INL [LSB]'); 
title(sprintf('INL = +%.2f / %.2f,  std.dev=%.2f', max(inl), min(inl), std(inl))); 
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