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ABSTRACT 
 

Power budget is very critical in the design of battery-powered implantable 

biomedical instruments. High speed, high resolution and low power usually cannot be 

achieved at the same time. Therefore, a tradeoff must be made to compromise every 

aspect of those features. As the main component of the bioinstrument, high conversion 

rate, high resolution ADC consumes most of the power. Fortunately, based on the 

operation modes of the bioinstrument, a reconfigurable ADC can be used to solve this 

problem. The reconfigurable ADC will operate at 10-bit 40 MSPS for the diagnosis mode 

and at 8-bit 2.5 MSPS for the monitor mode. The ADC will be completely turned off if 

no active signal comes from sensors or if an off command is received from the antenna. 

By turning off the sample hold stage and the first two stages of the pipeline ADC, 

a significant power saving is achieved. However, the reconfigurable ADC suffers from 

two drawbacks. First, the leakage signals through the extra off-state switches in the third 

stage degrade the performance of the data converter. This situation tends to be even 

worse for high speed and high-resolution applications. An interference elimination 

technique has been proposed in this work to solve this problem. Simulation results show 

a significant attenuation of the spurious tones. Moreover, the transistors in the OTA tend 

to operate in weak inversion region due to the scaling of the bias current. The transistor in 
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subthreshold is very slow due to the small transit frequency. In order to get a better 

tradeoff between the transconductance efficiency and the transit frequency, 

reconfigurable OTAs and scalable bias technique are devised to adjust the operating point 

from weak inversion to moderate inversion. 

The figure of merit of the reconfigurable ADC is comparable to the previously 

published conventional pipeline ADCs. For the 10-bit, 40 MSPS mode, the ADC attains a 

56.9 dB SNDR for 35.4 mW power consumption. For the 8-bit 2.5 MSPS mode, the ADC 

attains a 49.2 dB SNDR for 7.9 mW power consumption. The area for the core layout is 

1.9 mm2 for a 0.35 micrometer process. 

 



 

 

vi 

 
TABLE OF CONTENTS 

 
CHAPTER 1...................................................................................................................... 1 

INTRODUCTION............................................................................................................. 1 

1.1 RESEARCH MOTIVATION............................................................................................ 1 
1.2 COMPARISON OF ADC TOPOLOGIES .......................................................................... 8 
1.3 RESEARCH OBJECTIVE ............................................................................................. 10 
1.4 ORIGINAL CONTRIBUTION........................................................................................ 10 
1.5 DISSERTATION OVERVIEW ....................................................................................... 11 

CHAPTER 2.................................................................................................................... 13 

LITERATURE REVIEW .............................................................................................. 13 

2.1 RECONFIGURABILITY OF ADC ................................................................................. 13 
2.1.1 Reconfigurability on Conversion Rate............................................................. 13 
2.1.2 Reconfigurability on Conversion Resolution................................................... 15 

2.2 DESIGN EXAMPLES IN PRIOR ARTS .......................................................................... 16 
2.2.1 Gulati’s Design ................................................................................................ 16 
2.2.2 Anderson’s Design........................................................................................... 17 
2.2.3 Audoglio’s Design ........................................................................................... 18 
2.2.4 Ahmed’s Design............................................................................................... 19 

2.3 SUMMARY OF PRIOR ARTS ....................................................................................... 21 
2.4 ADC FIGURE OF MERIT ........................................................................................... 22 
2.5 PROBLEMS IN RECONFIGURABLE ADC .................................................................... 24 

CHAPTER 3.................................................................................................................... 25 

PIPELINE ADC ARCHITECTURE ............................................................................ 25 

3.1 ADC PERFORMANCE METRICS ................................................................................ 25 
3.1.1 ADC Static Performance Metrics .................................................................... 25 
3.1.2 ADC Dynamic Performance Metrics............................................................... 26 

3.2 PIPELINE ADC ARCHITECTURE................................................................................ 29 
3.2.1 Conventional Pipeline ADC Architecture ....................................................... 29 
3.2.2 Pipeline ADC Analysis .................................................................................... 32 

3.3 SAMPLE AND HOLD AMPLIFIER................................................................................ 34 
3.3.1 Charge Redistribution SHA ............................................................................. 35 



 

 

vii 

3.3.2 Flip-around SHA.............................................................................................. 38 
3.3.3 Bootstrapped Sampling Switch........................................................................ 40 

3.4 SUB-ADC ................................................................................................................ 41 
3.5 MULTIPLYING DAC ................................................................................................. 43 

CHAPTER 4.................................................................................................................... 46 

DESIGN OF RECONFIGURABLE PIPELINE ADC................................................ 46 

4.1 CONFIGURATION ON RESOLUTION............................................................................ 46 
4.1.1 Power Distribution in Pipeline Stages ............................................................. 47 
4.1.2 Off-state Switch Model.................................................................................... 49 
4.1.3 Interference Elimination Techniques............................................................... 50 

4.2 CONFIGURATION ON CONVERSION RATE ................................................................. 54 
4.2.1 Transconductance Efficiency and Transit Frequency Tradeoff....................... 55 
4.2.2 Reconfigurable OTA........................................................................................ 57 

CHAPTER 5.................................................................................................................... 61 

NONIDEALITIES IN RECONFIGURABLE PIPELINE ADC ................................ 61 

5.1 NOISE LIMITATION IN RECONFIGURABLE PIPELINE ADC......................................... 61 
5.1.1 Thermal Noise in Pipeline ADC...................................................................... 62 
5.1.2 Flicker Noise in Pipeline ADC ........................................................................ 70 
5.1.3 Thermal Noise and Quantization Noise........................................................... 75 

5.2 MATCHING LIMITATION IN RECONFIGURABLE PIPELINE ADC................................. 76 
5.2.1 Mismatch Model in Transistors ....................................................................... 76 
5.2.2 Current Mirror Mismatch................................................................................. 77 
5.2.3 Offset Voltage due to Mismatch ...................................................................... 78 
5.2.4 Capacitor Mismatch ......................................................................................... 80 

5.3 OTHER NONIDEALITIES IN RECONFIGURABLE ADC................................................. 80 
5.3.1 Error Caused by Finite OTA Gain ................................................................... 80 
5.3.2 Error Caused by Finite OTA Bandwidth ......................................................... 82 
5.3.3 Error Caused by OTA Slew Rate..................................................................... 83 
5.3.4 Error Caused by Charge Injection.................................................................... 84 

CHAPTER 6.................................................................................................................... 87 

PROTOTYPE IMPLEMENTATION .......................................................................... 87 

6.1 OTA DESIGN............................................................................................................ 87 
6.1.1 Folded Cascode OTA in SHA.......................................................................... 88 
6.1.2 Telescopic Cascode OTA in First Two Pipeline Stages .................................. 94 
6.1.3 Reconfigurable Telescopic Cascode OTA....................................................... 96 

6.2 COMPARATOR DESIGN ............................................................................................. 98 



 

 

viii 

6.3 GLOBAL BIAS GENERATION AND DISTRIBUTION.................................................... 100 
6.4 DIGITAL CORRECTION............................................................................................ 101 
6.5 LAYOUT DESIGN .................................................................................................... 102 

CHAPTER 7.................................................................................................................. 105 

PROTOTYPE MEASUREMENT............................................................................... 105 

7.1 TEST ENVIRONMENT SETUP ................................................................................... 105 
7.1.1 Test Boards .................................................................................................... 105 
7.1.2 Test Instruments............................................................................................. 106 
7.1.3 Components ................................................................................................... 108 
7.1.4 Test Software ................................................................................................. 108 
7.1.5 Test Setup....................................................................................................... 109 

7.2 TEST RESULTS........................................................................................................ 110 
7.2.1 Test Results of 10b, 40MSPS Mode.............................................................. 110 
7.2.2 Test Results of 8b, 2.5MSPS Mode............................................................... 117 

7.3 PERFORMANCE SUMMARY ..................................................................................... 124 
7.4 ADC PERFORMANCE COMPARISON........................................................................ 126 

7.4.1 Comparison of Reconfigurable ADC............................................................. 126 
7.4.2 Comparison of Reconfigurable ADC with Conventional Pipeline ADC ...... 126 
7.4.3 Comparison of Reconfigurable ADC with All ADC..................................... 129 

CHAPTER 8.................................................................................................................. 132 

CONCLUSIONS ........................................................................................................... 132 

8.1 DISCUSSIONS.......................................................................................................... 132 
8.2 CONCLUSIONS ........................................................................................................ 135 

CHAPTER 9.................................................................................................................. 137 

FUTURE WORK.......................................................................................................... 137 

9.1 REFERENCE AND REFERENCE BUFFERS.................................................................. 137 
9.2 RECONFIGURABLE ADC APPLICATION IN SIGNAL PROCESSING IC........................ 139 
9.3 CLOCK SCHEME AND OTHER WORK ...................................................................... 140 

REFERENCES.............................................................................................................. 142 

VITA............................................................................................................................... 148 



 

 

ix 

 
LIST OF TABLES 

 
Table 1.1 Comparison of ADC Topologies ........................................................................ 9 
Table 2.1 Reconfigurable ADC Performance Summary .................................................. 20 
Table 5.1 Minimum DC gain requirements for 7~10b 40MSPS ADC............................. 83 
Table 5.2 Minimum Bandwidth requirements for 7~10b 40MSPS ADC ........................ 84 
Table 6.1 Comparison between folded cascode OTA and telescopic cascode OTA........ 97 
Table 7.1 Test Instruments.............................................................................................. 107 
Table 7.2 Test Board Components.................................................................................. 108 
Table 7.3 DNL and INL with input amplitude at 811 KHz ............................................ 112 
Table 7.4 DNL and INL with input frequency ............................................................... 113 
Table 7.5 DNL and INL with input frequency ............................................................... 119 
Table 7.6 Reconfigurable ADC Performance Summary ................................................ 125 
Table 7.7 Comparison of Reconfigurable ADC Performance ........................................ 127 

 



 

 

x 

 
LIST OF FIGURES 

 
Figure 1.1 Knee joint balance between Medial Collateral Ligament (MCL) and Lateral 
Collateral Ligament (LCL). The right one shows an imbalance joint due to the loose 
LCL. .................................................................................................................................... 4 
Figure 1.2 Traditional space blocker (left) and newly designed sensor and ASIC 
technique enhanced space blocker model (right)................................................................ 5 
Figure 1.3 Sensor signal processing chip block diagram.................................................... 6 
Figure 2.1 Block diagram of Gulati’s design.................................................................... 17 
Figure 2.2 Block diagram of anderson’s design ............................................................... 18 
Figure 2.3 Block diagram of Audoglio’s design............................................................... 19 
Figure 2.4 Timing and Block diagram of Ahmed’s design .............................................. 20 
Figure 3.1 Differential nonlinearity (a) and integral nonlinearity (b)............................... 26 
Figure 3.2 Conventional ADC Architecture and its transfer function. ............................. 30 
Figure 3.3 1.5b per stage architecture transfer function. .................................................. 32 
Figure 3.4 Pipeline stage block diagram (a) and its equivalent model (b). ...................... 33 
Figure 3.5 Pipeline ADC model........................................................................................ 34 
Figure 3.6 Charge redistribution Sample and hold amplifier ........................................... 36 
Figure 3.7 Charge redistribution SHA equivalent circuit during sampling phase (a) and 
hold phase (b).................................................................................................................... 36 
Figure 3.8 Flip-around Sample and hold amplifier........................................................... 39 
Figure 3.9 Flip-around SHA equivalent circuit during sampling phase (a) and hold phase 
(b)...................................................................................................................................... 39 
Figure 3.10 Bootstrapped clock generation circuit. .......................................................... 42 
Figure 3.11 Boosted clock with the input signal............................................................... 42 
Figure 3.12 Block diagram of sub-ADC........................................................................... 43 
Figure 3.13 The Multiplying DAC in each pipeline stage................................................ 44 
Figure 4.1 Power consumption of pipeline ADC stages................................................... 48 
Figure 4.2 Two reconfiguration schemes for pipeline ADC............................................. 48 
Figure 4.3 An off state switch (a) and its equivalent circuit (b). ...................................... 50 
Figure 4.4 The isolation of an off-state switch versus frequency. .................................... 51 
Figure 4.5 Interference elimination circuit in pipeline stage 3. ........................................ 52 
Figure 4.6 FFT analysis of the output signal before (red) and after (blue) interface 
elimination technique........................................................................................................ 53 
Figure 4.7 Matlab simulation result of off-state switch transfer function with OTA....... 54 
Figure 4.8 Transconductance efficiency (gm/ID) versus overdrive voltage in 0.35 μm 
process............................................................................................................................... 56 
Figure 4.9 Transit frequency (fT) versus overdrive voltage in 0.35 μm process............... 57 



LIST OF FIGURES 

 

 

xi 

Figure 4.10 A reconfigurable telescopic cascode OTA used in stage 3 to stage 8. .......... 60 
Figure 5.1 Sample and hold circuit (a) and its equivalent model during sample period. . 62 
Figure 5.2 Switch capacitor MDAC in pipeline stages..................................................... 64 
Figure 5.3 The equivalent circuit of MDAC for sampling phase (a) and for hold phase (b)
........................................................................................................................................... 64 
Figure 5.4 Input referred noise components in MDAC .................................................... 68 
Figure 5.5 Pipeline ADC model for noise analysis........................................................... 70 
Figure 5.6 Sample and hold amplifier in MDAC ............................................................. 81 
Figure 5.7 Static error due to finite OTA gain.................................................................. 82 
Figure 5.8 Bottom plate sampling and its timing diagram................................................ 85 
Figure 5.9 Fully differential implementation of bottom plate sampling........................... 86 
Figure 6.1 A folded cascode OTA used in sample and hold stage. .................................. 89 
Figure 6.2 Switch capacitor common mode feedback circuit........................................... 92 
Figure 6.3 Bias circuit for folded cascode OTA............................................................... 93 
Figure 6.4 bode plot of folded cascode OTA for 4 pF load.............................................. 93 
Figure 6.5 A telescopic cascode OTA used in stage 1 and 2. ........................................... 95 
Figure 6.6 Bias circuit for telescopic OTA....................................................................... 97 
Figure 6.7 Bias circuit for reconfigurable OTA................................................................ 98 
Figure 6.8 A comparator used in sub flash ADC.............................................................. 99 
Figure 6.9 Reconfigurable bias generation circuit.......................................................... 100 
Figure 6.10 Bias replica and distribution........................................................................ 101 
Figure 6.11 Digital correction circuit.............................................................................. 102 
Figure 6.12 Reconfigurable ADC layout. ....................................................................... 103 
Figure 6.13 Micrograph of reconfigurable ADC chip .................................................... 104 
Figure 7.1 Input matching network for ADC Test.......................................................... 106 
Figure 7.2 Reconfigurable ADC Test Board. ................................................................. 107 
Figure 7.3 Test Setup for testing of ADC. ...................................................................... 110 
Figure 7.4 Differential nonlinearity (0.3890/-0.6156 LSB)............................................ 111 
Figure 7.5 Integral nonlinearity (0.8669/-0.8789 LSB).................................................. 111 
Figure 7.6 16,384 points FFT analysis at 1,119 KHz ..................................................... 114 
Figure 7.7 16,384 points FFT analysis at 10,700 KHz with BPF................................... 114 
Figure 7.8 SNR and SNDR with input signal frequency. ............................................... 115 
Figure 7.9 SFDR and THD with input signal frequency. ............................................... 116 
Figure 7.10 ENOB with input signal frequency. ............................................................ 116 
Figure 7.11 SNR with input signal frequency at 10,700 KHz with BPF........................ 117 
Figure 7.12 Differential nonlinearity (512K data points, 0.1577/-0.0483)..................... 118 
Figure 7.13 Integral nonlinearity (512K data points, 0.2442/-0.2477)........................... 118 
Figure 7.14 8,192 points FFT analysis at 361 KHz ........................................................ 121 
Figure 7.15 8,192 points FFT analysis at 1619 KHz (spectrum fold back due to larger 
than Nyquist frequency).................................................................................................. 121 



LIST OF FIGURES 

 

 

xii 

Figure 7.16 SNR and SNDR with input signal frequency .............................................. 123 
Figure 7.17 SFDR and THD with input signal frequency .............................................. 123 
Figure 7.18 ENOB with input signal frequency ............................................................. 124 
Figure 7.19 SNR with input amplitude at 361 KHz input frequency. ............................ 125 
Figure 7.20 Comparison of reconfigurable ADC ........................................................... 127 
Figure 7.21 Bandwidth Comparison of reconfigurable ADC with pipeline ADC ......... 128 
Figure 7.22 FOM1 comparison of reconfigurable ADC with pipeline ADC ................. 128 
Figure 7.23 FOM2 comparison of reconfigurable ADC with pipeline ADC ................. 129 
Figure 7.24 Bandwidth comparison of reconfigurable ADC with all ADC ................... 130 
Figure 7.25 FOM1 comparison of reconfigurable ADC with all ADC. ......................... 131 
Figure 7.26 FOM2 comparison of reconfigurable ADC with all ADC. ......................... 131 
Figure 9.1 Circuit used to generate the reference voltages. ............................................ 138 

 



 

 

xiii 

 

ABBREVIATIONS 
 

3G  Third Generation 

ADC  Analog to Digital Converter 

ASIC  Application Specific Integrated Circuit 
ASK  Amplitude Shift Keying 

BPF  Band Pass Filter 

BW  Bandwidth 

CDMA Code Division Multiple Access 

CMFB  Common Mode Feedback 

CMRR  Common Mode Reject Ratio 

DAC  Digital to Analog Converter 

DNL  Differential Nonlinearity 

DR  Dynamic Range 

ENOB  Effective Number of Bits 

ESSCIRC European Solid-State Circuits Conference 

FDA  Food and Drug Administration 

FFT  Fast Fourier Transform 

FOM  Figure of Merit 

GSM  Global System for Mobile Communication 

IA  Instrumentation Amplifier 

IC  Integrated Circuit 

ICMR  Input Common Mode Range 

INL  Integral Nonlinearity 

ISSCC  International Solid-State Circuits Conference 

JSSC  Journal of Solid-State Circuits 



ABBREVIATIONS 

 

 

xiv 

LCL  Lateral Collateral Ligament 

MCL  Medial Collateral Ligament 

MDAC Multiplying Digital to Analog Converter 

MIS  Minimum Invasive Surgery 

MSPS  Mega Samples per Second 

MTTF  Mean Time To Failure 

NMOS  N-type Metal Oxide Semiconductor (Field Effect Transistor) 

OTA  Operational Transconductance Amplifier 

PDK  Process Design Kit 

PMOS  P-type Metal Oxide Semiconductor (Field Effect Transistor) 

PTAT  Proportional To Absolute Temperature 

RMS  Root Mean Square 

SAR  Successive Approximation Register 

SFDR  Spurious Free Dynamic Range 

SHA  Sample and Hold Amplifier 

SMA  Subminiature version A 

SNDR  Signal to Noise and Distortion Ratio 

SNR  Signal to Noise Ratio 

SOC  System On Chip 

THA  Total Hip Arthroplasty 

THD  Total Harmonic Distortion 

VLSI  Very Large Scale Integration 

 



 

 

1 

 
CHAPTER 1 

 
INTRODUCTION 

 

In this chapter, the biomedical background of the project is introduced in section 

1.1. Then, the reconfigurable ADC concept, used to solve the power-speed-resolution 

tradeoff, is discussed with the operation modes of the bioinstrument in this section as 

well. The pipeline ADC architecture is selected after a comparison among the most 

popular ADC topologies in section 1.2. The research goal and contribution of this work is 

also listed in sections 1.3 and 1.4, respectively. The overview of the whole dissertation is 

given in section 1.5. 

 
1.1 Research Motivation 

The use of prosthetic joint implants to treat patients with severe osteoarthritis and 

other joint degenerative diseases began in the early 70s. During the knee joint implant 

surgery, surgeons needed to perform accurate resections depending on various 

instruments such as spacer block, tensioner and tram adapter. These instruments provided 

valuable information about the gap shape and size during the bone resection process. 

However, the feedback of these instruments, such as the spacer block, is qualitative and 
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the degree of tightness of the ligaments is inaccessible [1]. 

Despite the rapid development of in vivo telemetry sensor based instruments in 

biological and physiological areas, only a few of these systems [2-5] have been designed 

for orthopedic applications and none of them can be used for Minimum Invasive Surgery 

(MIS) [6]. 

 

The first published research [2] on using sensors and biotelemetry in orthopedics 

focused on obtaining in vivo data from Total Hip Arthroplasty (THA) patients. Bergmann 

et al used 3 strain gauges to measure the 3 orthogonal force components acting on the 

prosthetic head postoperatively [2]. All the electronic components (14 active and 21 

passive) were integrated using thick film hybrid technology instead of monolithic 

integrated circuit. Due to the large volume and geometry of the implant, it was not 

difficult to allocate adequate space for the sensors and electronics. At the same time, 

Davy et al  [7] and Kotzar et al  [8] developed a similar hip prosthesis to monitor various 

loading conditions of patients. In 2002, Claes et al reported an 18-channel strain gauge 

measurement system for stress monitoring system for dental implants [5]. The system can 

monitor up to 18 strain gauge channels (six abutments) during a two days period. 

Furthermore, an ASIC chip also has been developed for the monitor system after the 

prototype developed using commercial chips [9]. 
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The trend of using ASIC to replace the commercial chips in design of biomedical 

instruments shows the great advantage of ASIC in the following features: 

--Small size: In order to develop a fully functional biomedical instrument, several 

different functional commercial chips and off-chip components are needed which lead to 

a large device area. On the other hand, part of the functionality of the chip will never be 

used and lead to low cost efficiency. 

--Low-power consumption: Power consumption is very critical for battery-

powered instruments, especially for implantable instruments that do not the provision to 

replace the battery. ASIC can be designed to use minimum power with the same 

functionality of the commercial chips. 

--Flexible functionality: The functions of the ASIC can be tailored to fulfill 

exactly the necessary function without redundancy. 

--Long term reliability: The Mean Time To Failure (MTTF) of ASIC is much 

better than the MTTF of board-level and thick-film-hybrid based instruments. 

 
The spacer block, used to adjust the Medial Collateral Ligament (MCL) and the 

Lateral Collateral Ligament (LCL) during the bone resection in figure 1.1, can give 

surgeons qualitative feedback about the flatness of the bone. The balance of the MCL and 

LCL can only be adjusted by the experience of the surgeons.  
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Figure 1.1 Knee joint balance between Medial Collateral Ligament (MCL) and Lateral 

Collateral Ligament (LCL). The right one shows an imbalance joint due to the loose 

LCL. 
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Figure 1.2 Traditional space blocker (left) and newly designed sensor and ASIC 

technique enhanced space blocker model (right) 

 
 
A new spacer block [1], shown in figure 1.2 with a traditional one, is designed by 

taking advantage of the sensor, the ASIC and the telemetry technology. The sensors and 

chips are on the top surface with a battery inside the spacer block, and the antenna is also 

designed to fit in the handle. The surface of the instrument was encapsulated by epoxy 

with full FDA compliance. 

 

The system block diagram is shown in figure 1.3 [10]. The system can be 

partitioned into three parts based on their functions. The first part is the sensor array. 

There are 30 strain-sensing micro-cantilevers distributed evenly on the two sides of the 

spacer block’s top plate. The Wheatstone bridge configured sensors convert the physical 

strain to a resistance change and then to a voltage signal under a DC excitation. 
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Figure 1.3 Sensor signal processing chip block diagram 

 

 
The signal processing part shown in the middle of figure 1.3 includes two chips, 

one chip for signal processing [10] and another for signal transmission. The signal-

processing chip amplifies the signal from the sensors and digitizes the analog signal to 

digital domain. The transmitter chip sends out the signal using ASK modulation with 

335MHz carrier frequency. The receiver part receives and recovers the data remotely. 

Then the data will be post-processed by software and shown graphically on the display. 

 
Three versions of the signal-processing chip [10-12] have been developed for this 

project. All of them have an embedded SAR ADC for signal digitizing. The 8-bit 1.54 

MSPS SAR ADC is power-efficient and suitable for medium conversion rate and 
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medium resolution, but with the increasing number of sensors and high accuracy 

requirement, SAR ADC is no longer the best choice for this application. A high 

resolution, high speed ADC should be developed to replace it. It is well known that high 

resolution, high speed ADC consumes huge power. For battery-powered or implantable 

instruments, power consumption is very critical. A trade-off must be made to 

compromise every aspect of the system. Fortunately, the instruments underdeveloped are 

not necessary to work all the time. Their operations can be categorized into three 

different modes: diagnosis mode, monitor mode, and off mode.  

During the diagnosis mode, surgeons need to know the pressure profile in the 

knee with high resolution, so all the sensor data are collected with a large bandwidth. For 

the monitor mode, most of the sensors will be turned off and only some of the sensor data 

are collected with coarse resolution to monitor the pressure range. When the patients are 

sleeping or not moving, the system is completely turned off. The multi-mode operations 

of this bioinstrument require the ADC to have corresponding actions. Therefore, the 

requirements for the ADC are reconfigurable both in conversion rate and in resolution.  

 

Besides the biomedical application, reconfigurable ADCs have extensive 

applications in sensor signal processing, SOC and telecom area. In some autonomous 

wireless ‘listening’ devices (acoustic, vibration, etc) [13, 14] where the incoming signal 

is inactive most of the time, it is desirable to tune the ADC to low speed and low 
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resolution to save power, and increase the speed and resolution only when an active 

signal is detected. For wireless mobile communications, different networks, such as 

GSM, CDMA2000, WCDMA, are co-existed in the same area. This fact leads to a need 

for multi-standard mobile terminals. Such mobile terminals will have to accommodate to 

wideband wireless local area networks as well as 3G standards [15, 16]. The ADCs in 

such mobile terminals have to handle different baseband signals as well as different 

dynamic range requirements. Typically, the bandwidth may vary from 200kHz to 20-40 

MHz and dynamic range may vary roughly between 6-12 bits, depending on the standard 

supported. A reconfigurable ADC fulfilling these requirements is in great demand. 

 

1.2 Comparison of ADC Topologies 

Since there are many ADC topologies and each of them have different 

applications, a comparison of these ADCs can help us to choose the most suitable 

architecture. The comparison of ADC topologies is shown in table 1.1. 

 

After the ADC concept was initially published in the middle 50’s [17, 18], 

different topologies have been developed since then. Flash ADC is good for high speed, 

low resolution applications. The number of comparators will increase exponentially with 

the number of bits, leading to a huge amount of power and area consumption. Integration-

type ADC is in the opposite direction. The resolution can be high, but the conversion 

time increases exponentially with the number of bits. As mentioned previously, SAR  
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Table 1.1 Comparison of ADC Topologies 

 Flash Pipeline Cyclic SAR Σ Δ Integration

Speed Fastest Fast Medium Medium Low-
medium 

Low 

Resolution Lowest Medium Medium Medium High Medium-
high 

Area Largest Medium Smallest Small Medium Medium 

Power Efficiency Lowest Highest Low High Medium Medium 

Reconfigurability Low High Highest Medium High Medium 

 

 

ADC is good for medium speed and medium resolution applications [19]. 

 

In addition, there are two other very important types of ADC: sigma-delta ADC 

and pipeline ADC. Both of them are very popular with sigma-delta mainly focusing on 

high resolution and pipeline focusing on high speed. Moreover, they are also very easy to 

reconfigure in resolution and conversion rate but in different manners. 

 
Sigma-delta ADC uses oversampling to trade bandwidth with low noise (high 

resolution), so the resolution can be very high but the input signal bandwidth it can 

processing is low. Sigma-delta ADCs can be used in either high resolution, small 

bandwidth or low resolution, large bandwidth applications. Instead, pipeline ADCs fit the 

requirements perfectly. It can work in high resolution, high conversion rate and low 
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resolution, low conversion rate mode. A brief summary for different types of ADC is 

shown in table 1. It should be noted that not all the topologies of ADC are compared 

here. Some structures such as folding were not compared due to popularity. 

 

1.3 Research Objective 

The research goal of this work is to design a reconfigurable pipeline ADC that can 

be embedded in the sensor signal-processing chip. In the mean time, the ADC should 

only add a small extra cost in terms of power and area without degrading the performance 

when compared with traditional pipeline ADCs. In other words, it should be cost-

efficient. Moreover, this reconfigurable ADC should have three different modes 

corresponding to the bioinstrument operations:  

a) High speed, high resolution mode: ADC works at 40 MSPS sampling rate with 

10-bit resolution. 

b) Low speed, low resolution mode: ADC works at 2.5 MSPS sampling rate with 

8-bit resolution. 

c) Power off mode: ADC is completely off. 

 

1.4 Original Contribution 

A reconfigurable ADC that can work in either high speed, high resolution mode 

or low speed, low resolution mode is proposed in this work. For the reconfigurable ADC, 
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the following techniques are used to improve the performance in different configurations. 

a) Interference elimination technique for the reconfiguration stage. 

This technique is treated in detail in section 4.1. 

b) Reconfigurable OTA for transistor operation region adjustment. 

This technique is treated in section 4.2. 

c) Reconfigurable scalable bias technique for different configurations. 

This method is treated in section 4.1 and section 6.1.3. 

1.5 Dissertation Overview 

In Chapter 1, some biomedical background for this work and the problems met 

during the design of a sensor signal processing system are introduced. Then, some 

popular ADC topologies are reviewed with different aspects of characteristics. Once the 

ADC structure is chosen, a thorough search for reconfigurable ADCs are carried out, and 

their design methods and performance are compared in Chapter 2. Pipeline ADC 

structure and theories are treated in Chapter 3. Based on prior designs, an improved 

design with new features such as interference elimination technique, reconfigurable 

opamp, and scalable bias technique are developed. The details about the development are 

given in Chapter 4. Nonidealities with emphasis on fundamental limitations, such as 

noise and matching, are treated in Chapter 5. The prototype implementation is presented 

in Chapter 6. High performance OTAs, high-speed comparators, bias generation and 

distribution circuit and layout design are given in this chapter as well. Measurement 
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results of the reconfigurable pipeline ADC are illustrated in Chapter 7 with the 

comparison with different ADCs. Discussions and conclusions are summarized in 

Chapter 8. The future work is listed in Chapter 9. 
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CHAPTER 2 

 
LITERATURE REVIEW 

 

As a key component of modern electronic products, ADC is in high demand in 

communication, consumer electronics, biomedical instruments, and various measurement 

instruments. Different requirements for different applications keep pushing ADC to 

higher speed and higher resolution. A large volume of literatures about ADC has been 

published in the past 30 years but very few of them are related to reconfigurable ADCs. 

In this chapter, the ADC reconfigurability is described in section 2.1. Some of the best 

papers about reconfigurable ADCs are selected and their features are explained in section 

2.2. The performance parameters of these ADCs are also summarized in section 2.3. In 

order to compare these designs, different figure of merits are introduced in section 2.4. 

The problems generated during the reconfiguration are listed in section 2.5. 

 

2.1 Reconfigurability of ADC 

2.1.1 Reconfigurability on Conversion Rate 

The most famous example about reconfigurable ADC on conversion rate is the 

time-interleaved ADC [20]. For this type of ADC, identical channels are combined 
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together in the time-interleaved manner and every channel is a complete ADC. The 

conversion can take place several times in one clock cycle depending on how many 

channels in the system. The conversion rate can be varied by altering the number of 

parallel channels but this approach suffers from distortions caused by mismatch among 

the different parallel channels [21]. Furthermore, sampling clock skews for different 

channels will finally limit the linearity to 10 bits for 20 MHz input frequency [22]. One 

solution for this problem is using only one sample and hold circuit for all the channels, 

but this solution will make the design of sample and hold extremely challenge since it 

will work in a much higher frequency. 

 

There are some other configurations on the conversion rates. For a pipeline ADC, 

by turning off the latter stages and connecting the outputs of the first several stages to 

their inputs, the ADC changes to a algorithm cyclic ADC and the conversion rate is 

decreased [23]. By scaling the OTA bias current, the conversion rate can be scaled 

accordingly [24, 25]. If the conversion rate reconfiguration range is very large, the OTA 

tends to work in weak inversion, hurting the transit frequency. In order to alleviate this 

problem, the ADC can be designed to work in one clock period and then rest in the 

following several clock periods. The speed can be decreased and the average power 

consumption is decreased too. The combination of power scaling the period skipping 

technique is used in [26]. The penalty of this method is that a complex clock scheme 

should be generated.  
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For sigma-delta ADC, the configuration is easier. By keeping the oversampling 

ratio constant and changing the sampling frequency, the signal bandwidth can be altered 

[16, 27, 28]. A combination of pipeline mode and sigma-delta mode ADC was presented 

in [29]. The dynamic range is high but the signal bandwidth is small due to oversampling. 

The design is very complex with a considerable area overhead due to the configuration 

between pipeline mode and sigma-delta mode. 

 

2.1.2 Reconfigurability on Conversion Resolution 

One approach for reconfigurable on conversion resolution is using the sigma-delta 

modulator. The resolution of the sigma-delta ADC is decided by decimation filtering and 

different decimation filters can be implemented for different resolutions. It is possible to 

trade signal bandwidth for accuracy by adjusting the oversampling ratio [30-34]. 

However, it is very challenge to implement the decimation filter due to the high 

oversampling ratio. Therefore, this approach is usually used for the low signal bandwidth.  

 

For the pipeline ADC, there are two approaches to configure the resolution. First 

one is turning off the latter stages [23, 35]. Another one is turning off the first several 

stages and reroute the input signal to the configuration stages [36]. These two approaches 

each have their own pros and cons. The first method is very easy and needs minimum 

hardware to configure, but gains no power benefit from it. The second one will need 

some extra hardware, such as wires and switches but huge power can be saved because 
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the first several stages are power hungry blocks. However, these extra routing wires and 

switches bring some interference to the configuration stages and deteriorate the overall 

performance. 

 

2.2 Design Examples in Prior Arts 

2.2.1 Gulati’s Design 

Gulati’s design was published in 2001 [29]. This design can change its 

architecture between pipeline and sigma-delta modes. It can also vary its circuit 

parameters, such as size of capacitors, length of pipelines, and oversampling ratio. 

Moreover, the bias currents are varied in proportion to the sampling frequency. Opamp 

scaling and opamp sharing between two consecutive stages are used in pipeline mode.  

 

The ADC can be configured in the range of 6-16 bits. The ADC architecture is 

illustrated in figure 2.1. The main concept of this design is that since the basic 

construction units (OTAs, comparators) of both pipeline ADC and sigma-delta ADC are 

almost the same, they can be regrouped to have different functions. The method has 

several disadvantages. First, since the OTAs and the comparators are optimized for some 

particular situations, they may not have maximum efficiency in other operation mode. 

Second, reconfigurations between two completely different modes (pipeline and sigma-

delta) need more switches to switch back and forth, leading to a large area and more 

interference.  
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Figure 2.1 Block diagram of Gulati’s design [29] 

 
 
2.2.2 Anderson’s Design 

Anderson’s design was published in 2005 [23, 37]. This design has 8 

configurations with top performance of 10-bit 80MSPS. This design has reconfigurability 

in both conversion rate and resolution. The resolution reconfiguration was realized by 

turning off the latter stages and the conversion rate reconfiguration was implemented by 

changing stage 2 and stage 4 for cyclic ADC. The block diagram of this design is shown 

in figure 2.2. One of the drawbacks of this design is there is no OTA power scaling 

involved [38], so the power efficiency is low. 

 



 

 
18 

 
Figure 2.2 Block diagram of anderson’s design [23] 

 

2.2.3 Audoglio’s Design 

Audoglio’s design was published in Sept. 2006 in ESSCIRC [36]. This design has 

4 different configurations in resolution. The maximum sample rate is 20 MSPS. This 

design can only vary the resolution, but the method used to reconfigure the ADC is very 

similar to this work. The pipeline is power-efficient due to power scaling in consecutive 

stages. Turning off the first several stages instead of later stages leads to huge power 

savings. Even the structure of this work is similar to Audoglio’s design, but the concept 

was already developed before this paper. The block diagram of the design is illustrated in 

figure 2.3. In this design, opamp sharing between two consecutive stages is extensively 

involved. Very sophisticated digital background calibrations were implemented in this 

design to improve the ADC performance. 
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Figure 2.3 Block diagram of Audoglio’s design [36] 

 

2.2.4 Ahmed’s Design 

Ahmed’s design was published in Dec. 2005 on JSSC[26]. This ADC can only be 

configured on conversion rate. However, this design has the largest range on conversion 

rate. It can work from 50 MSPS to 1 KSPS. The conversion rate ratio is up to 50K. It’s 

very hard to scale the power corresponding to each conversion rate only depending on the 

bias scaling over such a large ratio. The author uses two methods to solve this problem. 

First, for low conversion rate, the ADC only works for one clock period and rests for 

several clock periods depending on the configuration. The average power can be 

decreased since the ADC is off during most of the time. Second, since the OTA in the 

ADC is working periodically, they should be powered on rapidly when employed. The 

timing and block diagram of the ADC is shown in figure 2.4. 
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Figure 2.4 Timing and Block diagram of Ahmed’s design [26] 

 
Table 2.1 Reconfigurable ADC Performance Summary 

Ref. Bits 
(b) 

fs 
(MHz) 

Power 
(mW) 

VDD 
(V) 

ENOB 
(b) 

Area 
(mm2) 

Process 
(μm) 

Configuration Comments 

[25] 14 10-
40 

72.8 2.8 10.4 1.15 0.18 Rates Calibration 

[24] 12 20-
140 

97 1.8 10.4 0.86 0.18 Rates  

[26] 10 1k-
50 

35 1.8 8.8 1.2 0.18 Rates  

2.62 24.6 4.6  Pipeline [29] 6-16 
10 17.7 4.6  

79.8 0.6 Rates, 
resolution Σ Δ 

[39] 9 40 425 1.8 6.9 5.9 0.25 Interchange 
stage 

 

[23] 6,8,10 80 94 1.8 9.1 1.9 0.13 Rates, 
resolution 

Cyclic, 
pipeline 

[36] 6-10 20 8 1.8 9.1 3.2 0.18 Rates Opamp 
share, 
calibration 

[16] - 20 37 1.8 9.3 1 0.18 Rates, 
resolution 

Σ Δ 

This 
work 

8,10 2.5-
40 

35.4 2.5 9.2 1.9 0.35 Rates, 
resolution 

Pipeline 
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2.3 Summary of Prior Arts 

Besides the designs mentioned in the previous several sections, there are still 

some innovative designs, but they will not be treated in detail. The performances of the 

best designs are listed in table 2.1.  

 

Since each design has different configurations, different processes and supply 

voltage, it is very hard to justify which one is the best, but some crude observations based 

on table 2.1 are listed below. 

a) Design [39] consumes largest power and has the lowest ENOB. The area is also 

relatively large when compared with other designs. The reason is that this design can 

interchange stages between any two stages. More switches and wires are needed to route 

among stages, leading to a large area and low resolution. 

b) Design [36] has the lowest power consumption. This design uses a large-scale 

digital calibration circuit to improve the analog performance. The OTA usually consumes 

most of the power in ADC for fast settling, but in design [36], small OTAs were 

implemented and errors caused by unsettled signals were measured with a digital circuit 

and finally subtracted from the digital output word. 

c) This work’s power consumption is not the lowest, but still very low. 

d) Design [29] has the largest area. Part of the reason is that this design uses a 0.6 

µm process. Another reason is due to complex configuration between pipeline and sigma-

delta. 
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e) This work’s area is not lowest, but part of the reason is to account for the large 

feature size of the process. The process used in this work is TSMC 0.35 μm, but the 

minimum size for this PDK is 0.4 μm. The area is the smallest in all designs when 

normalized with the process feature size. 

f) The reconfigurable ADC of this work is cost-efficient due to relatively low 

power and small area. 

 

2.4 ADC Figure of Merit 

For traditional ADCs, figure of merit (FOM) is used to evaluate similar designs 

[40]. However, for reconfigurable ADCs, one ADC may have several FOM values for 

different configurations. Fair comparison among these ADCs remains a formidable 

mission. In this section, different figure of merits are first introduced. Based on the 

previous FOMs, a new FOM that can be used to evaluate the reconfigurable ADC is 

devised. 

 

If we consider the speed and accuracy of the ADC, the basic performance metric 

for ADC can be defined as [41] 

sf
PFOM =1                                                     (2.1) 

where fs is the sampling frequency. FOM1 is mainly considering the energy consumed for 

one conversion. Another figure of merit, which involves the quantization steps, can 
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represent the power-speed-accuracy tradeoff better. It can be defined as [42] 

ENOB
sf

PFOM
2

2
⋅

=                                                (2.2) 

 

The FOM2 can be treated as “energy per conversion-step”. It is well known that 

for each extra bit in the resolution, the power consumption will increase four times to 

maintain the same speed. A figure of merit that considered this factor has been proposed 

as [43] 

ENOBc
sf

PFOM ⋅⋅
=

2
3                                                (2.3) 

However, in practice, c=1 is good enough to compare ADCs over many 

technologies, topologies, speeds and resolutions [41]. 

 

The FOMs expressed in equation 2.2 and 2.3 only consider the power constraint 

for data converters. However, the area factor is also an important parameter to evaluate 

the cost efficiency of a data converter. For different technologies, the area for the same 

design will be different. The area must be normalized by its feature size in order to reflect 

the area efficiency. The new figure of merit is expressed in equation 2.4. It becomes 

obvious that the more complicated the reconfiguration, the larger the area and the smaller 

the FOM4. 
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2
min2

4
Lf

APFOM ENOB
s ⋅⋅

⋅
=                                               (2.4) 

 

2.5 Problems in Reconfigurable ADC 

High performance ADCs are very sensitive to noise and interference. Any noise 

source could dominate the overall performance. Reconfigurable ADCs are more 

vulnerable than traditional ones due to more wires and switches for reconfiguration. For 

example, for an off-state switch, if the isolation of the switch is -60 dB and there is a 10 

dBm signal at one terminal, one will get a –50 dBm signal at the other terminal. This 

interference may potentially limit the resolution one can get from an ADC. For high 

speed and high resolution data converters, the isolation is even worse due to the 

capacitive characteristic between source and drain terminals. In this work, dummy 

switches [44] are used to eliminate these interferences with minimum penalties. 

 

Another important issue in conversion rate reconfiguration is how to scale the bias 

in OTAs for a large conversion rate ratio. Since the OTAs are usually optimized to 

operate in the highest conversion rate, they may not work appropriately when the bias is 

scaled down for lower speed because the device sizes are not scaled accordingly. A 

reconfigurable OTA and reconfigurable bias scheme are also developed to solve this 

problem. 
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CHAPTER 3 

 
PIPELINE ADC ARCHITECTURE 

 

In this chapter, the performance metrics used to evaluate the ADC converters are 

described in section 3.1. The conventional pipeline ADC architecture and transfer 

function is treated in detail in section 3.2. The important sub-circuits of the pipeline ADC 

are illustrated in section 3.3. 

 

3.1 ADC Performance Metrics 

3.1.1 ADC Static Performance Metrics 

Due to non-ideal circuit elements in the actual implementation of ADC, the code 

transition points in the transfer function will be moved back and forth as illustrated in 

figure 3.1. The step size in the non-ideal data converter deviates from the ideal size Δ and 

this error is called the differential nonlinearity (DNL). The total deviation of an analog 

value from the ideal value is called integral nonlinearity (INL). These two parameters 

include the errors from quantization noise, thermal noise, flicker noise, mismatch, 

distortions, temperature-induced short-term drift, aging and offset. 
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The quantization step Δ can be expressed as 

B
FSV

2
=Δ                                                           (3.1) 

where VFS is the full-scale input range and B is the resolution of the converter. The 

quantization step is the same as the voltage range of Least Significant Bit (LSB). Then 

the function DNL and INL can be defined as 

Δ
Δ−−

= − )()(
)( 1iiniin DVDV

iDNL                                            (3.2) 

∑
=

=
i

k
kDNLiINL

1
)()(                                                  (3.3) 

where )( iin DV  and )( 1−iin DV  represent the input voltage corresponding the output code Di 

and Di-1. 

 

 
Figure 3.1 (a) Differential nonlinearity and (b) integral nonlinearity 

3.1.2 ADC Dynamic Performance Metrics 
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3.1.2.1 Signal-to-noise Ratio 

The Signal-to-noise Ratio (SNR) is the ratio of the power of the fundamental 

frequency and the total noise power, excluding the harmonic components. For a 

sinusoidal signal, the average power of maximum input amplitude is given by 

2
)2( 21 Δ⋅

=
−B

sP                                                        (3.4) 

where B is the bits of data converter. For a uniformly distributed spectrum of quantization 

noise, the variance can be expressed as 

12

2
2

2

2
2 Δ

=
Δ

= ∫
Δ+

Δ−
deee                                                  (3.5) 

The SNR can be calculated as 

dBB
e
P

SNR

B

s  76.102.6

12

2
)2(

log10log10 2

21

2 +=
Δ

Δ⋅

==

−

                      (3.6) 

 

 

3.1.2.2 Dynamic Range 

The Dynamic Range (DR) is the input power range for which the SNR is greater 

than zero, i.e. 

Power Signal DetectableSmallest 
Power Signal  Maximumlog10=DR                             (3.7) 
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3.1.2.3 Spurious Free Dynamic Range 

The Spurious Free Dynamic Range (SFDR) is the ratio of the power of the signal 

and the power of the largest spurious frequency. It can be expressed in dBc as 

2

2
1log10

Power SpurisousLargest 
Power Signallog10

sX
XSFDR ==                    (3.8) 

 
where X1 is the RMS value of the fundamental frequency and Xs is the RMS value of the 

largest spurious frequency. The harmonic tones usually limit the SFDR in data 

converters. 

 

3.1.2.4 Total Harmonic Distortion 

The Total Harmonic Distortion (THD) is the ratio of the total harmonic distortion 

power and the power of the fundamental frequency. It can be expressed as 

)log(10
Power Signal

Power Distortion Harmonic Totallog10 2
1

2

2

X

X
THD i

i∑
∞

===            (3.9) 

 
where Xi is the RMS value of the k-th harmonic component. 

 

3.1.2.5 Signal-to-noise and Distortion Ratio and Effective Number of Bits 

The Signal-to-noise and Distortion Ratio (SNDR) is the ratio of the power of the 

fundamental frequency and the total noise and distortion power. The SNDR is a more 

realistic parameter to evaluate the merit of a data converter. The relationship between 
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SNR and SNDR can be expressed as SNDR=SNR-THD, where all these parameters are in 

their absolute values. The effective number of bits (ENOB) is a measure based on the 

SNDR of an ADC with a full-scale sinusoidal input signal. They can be expressed as 

PowerDistortionandNoise
Power Signallog10=SNDR                        (3.10) 

 

02.6
76.1−

=
SNDRENOB                                            (3.11) 

 

3.2 Pipeline ADC Architecture 

3.2.1 Conventional Pipeline ADC Architecture 

The conventional pipeline ADC is illustrated in figure 3.2. The ADC has several 

stages, each containing a sub-ADC, a DAC, a subtractor and a residue gain amplifier.  

Each stage performs a sample and hold operation and a coarse analog-to-digital 

conversion to generate n bits digital output. The quantization result is converted back into 

analog domain and used to compute the residue. The quantization error (residue) was 

amplified 2n times to bring the amplitude to full-scale range. The residues propagate 

through subsequent stages to resolve further less significant digital output. All the digital 

output from each stage are finally combined together to obtain the digital output. 

 

The transfer function for a 2-stage pipeline ADC is also shown in the lower right 

corner of figure 3.2. Two bits are resolved for each stage. The blue line is the residue of 
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Figure 3.2 Conventional ADC Architecture and its transfer function. 

 

the first stage and the green line is the residue of the second stage. If no amplification 

between each stage, the signal level will decrease 2n times, making the latter stages 

susceptible to noise and interference. The quantization noise is not noise-look for a ramp 

input. The first reason is that the random assumption is only valid for a large amount of 

quantization steps. The second reason may be that the signal is not “active” enough. 

 

How to choose the best resolution for each stage is still an unsolved problem. The 

number of bits per stage has a large impact on the speed, power and accuracy 

requirements of each stage [45]. The rule of thumb is choosing lower bits per stage for 
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high-speed data converters and choosing larger bits per stage for high-resolution data 

converters. For lower bits per stage, the sub-ADC comparators and the gain amplifier 

requirements are more relaxed, and the speed of each stage is faster due to smaller 

feedback factor for a given technology. For larger bits per stage, the matching can be 

relaxed for the front-end of the ADC. It can be proved that for additional bit in first stage, 

the DNL can be improved by 1 LSB and the INL can be increased by 0.5 LSB [46, 47]. A 

more detail analysis about the resolution per stage can be found in [45]. 

 

If each stage resolves only one bit, the transfer function is inherently linear. There 

is only one comparator required for the sub-ADC. The offset of the comparator will move 

the decision level from the ideal location causing saturation in the residue for the 

subsequent stage. One solution for this problem is introducing redundancy in the sub-

ADC. One comparator is added in the sub-ADC for one more decision level. If the gain 

of the residue amplifier is still two, then the effective bit for this stage is still one. 

However, the resolution for the sub-ADC is 59.13log2 = . For simplicity, this 

architecture is usually called as 1.5b per stage architecture [45, 48, 49]. 

 
The 1.5b per stage architecture sub-ADC has two thresholds and can tolerate the 

offset of comparators as large as Vref/8. Each stage resolves two bits with one bit 

redundancy. The transfer function of this architecture [45] is shown in figure 3.3. 
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Figure 3.3 1.5b per stage architecture transfer function. 

 

 

3.2.2 Pipeline ADC Analysis 

Each pipeline stage has the function to resolve n bit for digital output, and then 

generate the residue voltage for further process. The block diagram for each stage is 

shown in figure 3.4a with its equivalent model in figure 3.4b. The DAC, subtraction 

block and gain element are usually referred as Multiplying DAC (MDAC) [50]. 

 
The residue Vres and digital output D can be expressed as 

qDACinres GVVGV ε⋅−=−⋅−= )(                                    (3.12) 

qinVD ε+=                                                   (3.13) 

where εq is the quantization noise added by the sub-ADC. 
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Figure 3.4 Pipeline stage block diagram (a) and its equivalent model (b). 

 

The pipeline ADC model based on stage analysis is shown in figure 3.5. The 

output of the pipeline ADC is calculated by 
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where εi (i=1~n) is the quantization noise added by each stage. If the analog gain Gi 

(i=1~n-1) matches the digital gain Gdi (i=1~n-1) exactly, all the quantization noise, 

except the last stage, will be canceled out, leading to the digital output expression as 
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where Bn is the number of bits of the last stage. Some observations from the above 

expressions can be summarized as follow: 

1) The only difference between the analog input and digital output is the  
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Figure 3.5 Pipeline ADC model 

 
 
quantization noise from the last stage. The quantization noise is the limitation that 

prevents the designer getting a higher resolution in ideal analysis. In reality, one can 

cascade more stages in the pipeline, but the resolution usually is limited to 12 bits due to 

the mismatch or other noise sources. Those issues will be addressed in the next chapter. 

2) The aggregate resolution is only determined by the overall gain between each stage. 

The resolution by simply adding the number of bits from each stage is usually larger than 

the aggregate resolution due to redundancy. The redundancy can be removed by digital 

correction which will be addressed in chapter 6. 

 
3.3 Sample and Hold Amplifier 

Sample and Hold Amplifier (SHA) is a controversial block in pipeline ADC. In 

theory, it is not a required element because the gain amplifier for the first stage also have 

sample and hold function. Furthermore, SHA, to some extent, is not welcome because it 

suffers from significant power, noise, area and distortion penalties. A design example 
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without dedicated SHA can be found in [51]. However, in practice, a dedicated SHA was 

implemented to relax the dynamic requirements for the following stage. Unlike the latter 

stages which deal with settled DC signal, the first stage will have to process a high 

frequency input signal up to the Nyquist frequency (maybe even larger for down-

sampling application) if no SHA exists. The comparators must distinguish the small input 

signal within the time period, where the change of the input signal is less than Vref/8 for 

1.5b per stage architecture. Moreover, the on-resistance of the sampling switch must be 

small enough to minimize the voltage drop on the switch in order to decrease the signal-

dependent charge injection. A SHA can give the ADC a large tolerance to component 

nonidealities by providing a stable settled voltage.  

 
3.3.1 Charge Redistribution SHA 

The charge redistribution SHA [52] is shown in figure 3.6. The circuit is 

implemented in full differential circuit but is shown in single-ended mode for analysis. 

The operation of the SHA can be divided into two clock phases, the sampling phase Φ1 

and the hold phaseΦ2. The equivalent circuit for each phase is illustrated in figure 3.7. 

 

During the sampling phase Φ1, the input signal is sampled to the capacitor Cs 

passively. The OTA is disconnected from the input and can be used to set the common 

mode voltage during this half cycle. At the end of Φ1, the charge stored in Cs is Vi*Cs. 
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Figure 3.6 Charge redistribution Sample and hold amplifier 

 

 

 
Figure 3.7 Charge redistribution SHA equivalent circuit during sampling phase (a) and 

hold phase (b). 
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During the hold phase Φ2, the OTA force the summing node voltage to be equal to 

positive input terminal except a small error voltage. The charge stored in Cs will transfer 

to Cf. Based on the charge conservation law, the output voltage of the OTA can be 

expressed as 

f

s
io C

C
VV =                                                      (3.17) 

 

Unlike the flip-around SHA, the input common-mode voltage of charge 

redistribution SHA will not change during the transition from the sampling to the hold 

phase. This characteristic is particularly favored by the telescopic OTA since it does not 

have large Input Common Mode Range (ICMR). This will lead to a slightly larger output 

range and dynamic range. However, this architecture does suffer from two penalties, 

matching and settling [22].  

 

Matching [53, 54] limitation is dominant in high resolution pipeline ADC. From 

the above expression, the gain of the SHA depends on the matching of two capacitors, Cs 

and Cf. For modern fine-line technologies, a 0.1% or even better matching is achievable. 

Unfortunately, this matching limit only allows the pipeline ADC to gain 10 bits 

resolution without digital calibration.  

 

Charge redistribution SHA also suffers from slow settling when compared with 
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flip-around SHA. The feedback factor for clock phase Φ2 can be expressed as 

pfs

s

CCC
C

F
++

=                                               (3.18) 

and the –3 dB bandwidth of figure 3.6(b) is  

F
C
gF
Leff

m
udB =⋅=− ωω 3                                            (3.19) 

where fLLeff CFCC )1( −+= . From the equation above, one can conclude that the small 

feedback factor leads to a small –3 dB bandwidth, resulting in slow settling. 

 

3.3.2 Flip-around SHA 

The same capacitor is used for both sampling and hold in flip-around SHA [47, 

55]. During the sampling phase Φ1, input signal is sampled into the capacitor Cs and for 

the hold phase Φ2, the input terminal of sampling capacitor is disconnected from the 

input and then connected to the output. The other terminal is disconnected from ground 

and connects to the OTA summing node. The flip-around SHA is shown in figure 3.8 

with its two phase equivalent circuits shown in figure 3.9. 

 
The feedback factor of the flip-around SHA hold phase Φ2 can be expressed as 

ps

s

CC
CF
+

=                                                     (3.20) 
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Figure 3.8 Flip-around Sample and hold amplifier. 

 
 

 
Figure 3.9 Flip-around SHA equivalent circuit during sampling phase (a) and hold phase 

(b). 
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and the –3 dB bandwidth for figure 3.9b is 

F
C
gF
Leff

m
udB =⋅=− ωω 3                                            (3.21) 

where sLLeff CFCC )1( −+= . When compared with charge redistribution SHA, flip-

around SHA has a large feedback factor and a small effective load, and both leading to a 

fast settling. 

 

For the flip-around SHA, the sampling and hold capacitor are the same. 

Therefore, there is no matching problem. However, it does suffer from a penalty. One 

should notice that the polarity of the capacitor would change during the transition from 

sampling and hold. The outcome is that the common mode voltage for the OTA input will 

change during the transition as well. This drawback will exclude the use of the telescopic 

OTA in the flip-around SHA due to lack of large ICMR and CMRR. 

 

3.3.3 Bootstrapped Sampling Switch 

For low voltage applications, the on-resistance of the complementary switch 

(PMOS and NMOS pair) is very large and also signal dependent, leading to a longer 

settling time and a larger distortion. If there is a small battery with one terminal tied to 

the input signal and another terminal tied to the sampling switch gate, then there is 

always a fixed voltage between the gate and the source. The on-resistance of the 

sampling switch will keep constant and the linearity is improved. However, the gate 
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voltage can exceed the supply voltage, bringing more stress on the gate oxide, but this 

method is proved to be safe for long-term use in practice [46, 47, 56]. Since the voltage 

between the gate and the source is always equal to the power supply voltage, the on-

resistance is small and thus a smaller NMOS transistor instead of complementary switch 

can be used as the sampling switch. 

 

A charged capacitor has a similar function as of a battery, and can be used to 

fulfill this task. The clock boosting circuit [57, 58] is shown in figure 3.10. In this 

scenario, C1 is first charged to VDD during the hold period, and then disconnected from 

the ground and the power supply at the end of the hold period, and then connected to the 

gate and source of the sampling switch during the sampling period. Therefore, a constant 

voltage is applied on the switch despite the changing of the input signal level. The 

waveform of the gate voltage when a sinewave is applied is shown in figure 3.11 [56]. 

 

3.4 Sub-ADC 

As shown in figure 3.2, each pipeline stage contains a sub-ADC. The sub-ADC is 

a low-resolution flash ADC. For 1.5b per stage architecture, there are 2 comparators and 

3 decision levels. The sub-ADC is illustrated in figure 3.12. When the input signal is 

larger than Vref/2, the output digital code is 11. When the input signal is larger than –Vref/2 

and smaller than Vref/2, the output digital code is 01. When the input signal is smaller 

than -Vref/2, the output digital code is 00. 
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Figure 3.10 Bootstrapped clock generation circuit. 

 

 
Figure 3.11 Boosted clock with the input signal. 
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Figure 3.12 Block diagram of sub-ADC. 

 

The analog-to-digital conversion and digital to analog conversion in each stage 

must finish in a half clock cycle (during the sampling phase). The speed of comparators 

in the sub-ADC should be very fast in order to avoid metastability. Fortunately, the offset 

voltage of the comparators can be as large as Vref/8 due to the redundancy. 

 

3.5 Multiplying DAC 

As shown in figure 3.2, the circuitry including a DAC, a subtractor and a sample 

and hold amplifier is also referred as Multiplying DAC (MDAC) [50]. The MDAC used 

in this work is shown in figure 3.13.  

 

During phase Φ1, the input is sampled in the two sampling capacitors Cs and Cf, 

and the low resolution ADC will also resolve the digital output. Then, during the hold 
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Figure 3.13 The Multiplying DAC in each pipeline stage. 

 

phase Φ2, based on the ADC result, the switch S3 will connect to +Vref, -Vref or ground 

and the switch S4 will connect to the output. The charge on Cs will transfer to Cf. Since 

the charge is conserved during these two clock periods, the expression for the output 

voltage can be calculated as 

)
2

)(1( ref
iin

f

s
o

V
DV

C
C

V ⋅−+=                                          (3.22) 

where Di is derived base on the sub-ADC result. If the sampling capacitors Cs is equal to 

Cf, the interstage gain will be equal to 2. From the above equation, the digital output is 

converted back to analog domain and then subtracted from the input signal, and amplified 

twice to obtain the residue voltage Vo. 



 

 
45 

As mentioned in section 3.2.2, the quantization noise for each stage except the last 

stage is cancelled out if the analog interstage gain is equal to the digital gain. The 

mismatch between Cs and Cf  alters the gain slightly from its ideal value, thus mix the 

quantization from each stage to the residue signal. For a 10 bits ADC, the matching of the 

first pipeline stage requires a 9-bit accuracy, and for each following stage, the accuracy 

will relax for one more bit. These requirements usually are easy to satisfy when only 

matching is considered as the main error source. 
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CHAPTER 4 

 
DESIGN OF RECONFIGURABLE PIPELINE 

ADC 
 

In this chapter, the reconfiguration method on resolution was described in section 

4.1. The problem resulting from the reconfiguration and its solving method are also 

treated in detail in this section. Then, the bias scaling and the reconfigurable OTA 

techniques for reconfiguration on conversion rate are illustrated in section 4.2. 

 

4.1 Configuration on Resolution 

As mentioned in previous chapters, two configurations on resolution are 

implemented with a 10-bit configuration for diagnosis mode and an 8-bit configuration 

for monitor mode. There are two ways to configure the ADC resolution either by turning 

off the last stage or the first two stages and the sample hold stage. The former method is 

very simple to implement and will not affect other pipeline stages. The latter one will cut 

the signal path and re-route the input signal to the third stage. By doing this, maximum 

power can be saved but extra interference can potentially degrade the performance. An 

analysis related with power and interference is carried out in detail.  
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4.1.1 Power Distribution in Pipeline Stages 

In a pipeline ADC, the requirements for the sample and hold stage are the strictest 

and then gradually relaxed for the latter stages. For example, for a 10-bit ADC, the 

sample and hold output must have a 10-bit accuracy (0.1% error is allowed) and for the 

first stage, the output of the gain amplifier must have a 9-bit accuracy (0.2% error is 

allowed). In order to achieve this accuracy, a large amount of current must be pumped 

from the OTA to get both a large bandwidth and a large slew rate. For the latter stages, 

the power of OTAs can be scaled down by compromising the tradeoff between power and 

noise. The power consumption of each stage in this ADC is illustrated in figure 4.1. 

Therefore, it is advantageous to turn off the first two stages and the sample hold stage 

instead of the last stage in terms of power efficiency. The reconfiguration scheme is 

shown in figure 4.2 

 

In figure 4.2a, the last stage does not need to generate residue. Therefore, only a 

two bits flash ADC is implemented. Less benefit will be achieved by turning off this 

stage. On the contrary, in figure 4.2b, stage 1 and 2, the two most power hungry stages, 

can be shut down to achieve the same function. Moreover, for low speed application, the 

sample and hold stage can also be eliminated due to the slow input signal, leading to 

further power saving. 
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Figure 4.1 Power consumption of pipeline ADC stages. 

 
 

 
Figure 4.2 Two reconfiguration schemes for pipeline ADC. 
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4.1.2 Off-state Switch Model 

The second reconfigurable method was chosen for its power efficiency in this 

work. However, extra routing switches and wires bring interferences to the third stage. In 

the conventional architecture, the third stage only receives a pair of differential signals 

(residue) from the second stage, but it will need one more input pair from the original 

signal for reconfiguration. Even if the switches in one pair of signals are off during a 

certain configuration, the signals still can leak from one terminal to another terminal.  

 

The off switch is modeled as in figure 4.3. There are 4 parasitic capacitors 

associated with the switch. Two parasitic paths exist from the source terminal to the drain 

terminal. One path is from source to gate by Cgs and then gate to drain by Cgd. In this 

path, one can increase the driver size to give a better ground for the gate but it cannot 

increase too much due to the charge sharing in the clock boost circuit. Another path is 

from the source to the body by Cbs and then body to the drain by Cbd. The leakage caused 

by this path can be reduced by increasing the number of body contacts. The signal 

leakage problem will be aggravated for the high conversion rate due to the small 

impedance at high frequency. 

 
Figure 4.3b shows the equivalent circuit of an off state MOS switch with the load. 

Zs models the impedance seen by the off-state switch. The load includes the sampling 
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Figure 4.3 An off state switch (a) and its equivalent circuit (b). 

 
 
switch, the sampling capacitor and the switch used for bottom plate sampling. The 

transfer function from the input to the output of the off-state switch can be expressed as 

GB
Cs

GA
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b
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R
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1 . The Matlab 

simulation result indicates that the isolation of the off state switch tends to be worse for 

higher frequency. The simulation result is illustrated in figure 4.4. 

 
4.1.3 Interference Elimination Techniques 

Since the leakage problem cannot be avoided, a method must be devised to 

alleviate it. It is well known that one of the OTA’s important characteristics is high input 
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Figure 4.4 The isolation of an off-state switch versus frequency. 

 

Common Mode Reject Ratio (CMRR). If the leakage signal can be converted to a 

common mode signal appearing on both input terminals of the OTA, the interference will 

be attenuated and the leakage problem of reconfiguration can be ignored. A crude 

estimation of the attenuation can give us a qualitative understanding of this method. If the 

isolation of the off switch is –50 dB (an exaggeration); the CMRR of OTA is 60 dB; and 

the signal power on the source terminal is 10 dBm (710 mV RMS for 50Ω impedance), 

then the interference power on the drain terminal is –100 dBm (2.32 μV RMS for 50Ω 

impedance). This interference level is much smaller than the thermal noise and can be 

ignored. 
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A circuit [44] that can transfer the single-ended interference to a common mode 

signal is shown in figure 4.5. For the 10-bit configuration mode, the Φ8b will turn off the 

main switch but part of signal ‘sig8bp’ still can pass through the ‘off’ switch, appearing 

on the positive terminal of the OTA. In the mean time, the same amount of signal 

‘sig8bp’ leakage will show up on the OTA’s negative terminal through an always-off 

dummy switch. Then, the common mode signal is rejected by the OTA. The same 

attenuation mechanism also happens for the signal ‘sig8bn’. Figure 4.6 shows the FFT 

analysis before (red line) and after (blue line) interference elimination for the same input 

signal. The harmonic tones before interference elimination is clearly larger than the blue 

line, which is after interference elimination. 

 

 
Figure 4.5 Interference elimination circuit in pipeline stage 3. 
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Figure 4.6 FFT analysis of the output signal before (red) and after (blue) interface 

elimination technique. 
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Figure 4.7 Matlab simulation result of off-state switch transfer function with OTA 

 

The off-state switch leakage signal transfer function with OTA is expressed as 

o
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where the first term is the previous derived expression for off-state switch without OTA 

and the second term is the CMRR of the OTA. The Matlab simulation result is illustrated 

in figure 4.7. 

 
 

 

4.2 Configuration on Conversion Rate 
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4.2.1 Transconductance Efficiency and Transit Frequency Tradeoff 

The OTAs in the pipeline stages are optimized for 40MSPS to achieve the best 

performance. When the ADC operates in the 2.5 MSPS mode, the bias current is scaled 

down to save power [59]. The overdrive voltage for the transistors in the OTA can be 

expressed as 

W
L

C
IV
ox

ov ⋅=
μ
2                                                   (4.3) 

If the bias current I is scaled down and the aspect ratio is still kept constant, the 

overdrive voltage will decrease and the operation region of MOS transistors will change 

from strong inversion to moderate inversion, or even to weak inversion. In figure 4.8, the 

green dotted line shows the 2/Vov expressed in the above equation. However, the real 

transconductance efficiency (blue line) is significantly deviated from the green line when 

Vov is smaller than 0.15 V. The reason is that for moderate or weak inversion, the square 

law for I-V characterization is no longer valid. The transistor acts more like a bipolar 

transistor other than as a MOS transistor. The expression for a transistor operating in 

weak inversion is described as 

)exp(0
T

gs
dds nV

V
L

WII =                                               (4.4) 

T

ds
m nV

I
g =                                                          (4.5) 

The main difference of the above expression when compared with a bipolar  
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Figure 4.8 Transconductance efficiency (gm/ID) versus overdrive voltage in 0.35 μm 

process. 

 

transistor is the extra factor n. This value depends on technologies but usually is very 

close to 1.5. 

 

In the weak inversion region, the transconductance efficiency (gm/ID) is very high 

as shown in figure 4.8 [60, 61]. Low power can be achieved if the MOS transistors are 

biased in this region. However, the transit frequency fT of the device degrades 

considerably when operating in weak inversion. The main reason is that the parasitic 

capacitors do not change, but the currents are decreased. The transit frequency fT is 

shown in figure 4.9 with the overdrive voltage Vov (also known as Vdsat in some other 

literatures). 



 

 
57 

 

Figure 4.9 Transit frequency (fT) versus overdrive voltage in 0.35 μm process 

 
 

The tradeoff between the transconductance efficiency and the speed must be made. The 

optimum operating point is in the moderate inversion region. High transconductance 

efficiency still can be achieved without losing a significant amount of speed. 

 

4.2.2 Reconfigurable OTA 

If the MOS transistors in OTA are expected to work in moderate inversion region 

regardless of the bias condition, they should be sized accordingly, namely, the OTA need 

some kind of reconfigurability.  

 

The OTAs in SHA and first two stages only work in high speed and high 

resolution mode and are turned off for low speed and low resolution application. They do 
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not need to be reconfigured. However, the OTAs in pipeline stage 3 through stage 8 have 

to work in both modes and need to be reconfigured. Unlike digital circuits which have 

large noise margin, analog circuits are hard to be reconfigured due to being vulnerable to 

noise and interference. The OTA cannot afford frequent reconfiguration due to the extra 

wires and switches. Therefore, the OTAs have two configurations corresponding to two 

operation modes of the ADC in this work. The reconfigurable OTA is illustrated in figure 

4.10. 

 

If the square law model is assumed to be still valid for the moderate-inversion 

operation, the aspect ratio can be calculated as 
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                                                (4.6) 

where lL
W )( , lovV ,  and lI  are the transistor aspect ratio, overdrive voltage and bias 

current for low speed mode, respectively. hL
W )( , hovV ,  and hI  are the transistor aspect 

ratio, overdrive voltage and bias current for high speed mode, respectively. If the 

overdrive voltage is 200 mV for high-speed mode and 100 mV for low speed mode, and 

the bias current is scaled down by 16 times, the aspect ratio for low speed mode should 

be 1/4 of the high speed mode based on equation 4.6. Namely, 3/4 of the transistors 

should be turned off. Since the operation in moderate inversion deviate from the ideal 
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square law mode, some adjustment should be made based on the simulation results. 

However, the estimation by the above equation should be a good start point in practice. 

 

During reconfiguration, the rules of thumb to avoid distortions and interferences 

are listed below. 

a) No switch can be added to the signal path where large DC current will flow 

through. In the OTA, if we add a switch in series with the transistors, then large quiescent 

current will flow through this switch leading to a large voltage drop across it. In order to 

minimize the voltage drop, the size of the switch must be increased leading to a large 

parasitic capacitor. These capacitors finally limit the speed again and make the situation 

even worse. 

b) Only PMOSs in the active load can work in weak inversion since they are not 

in the signal path. The nondominant poles associated with those PMOSs will also 

decrease but only have minor effect on the unity gain bandwidth. 

c) For a MOSFET, the main parasitic capacitor is the gate to channel capacitor. 

The parasitic capacitor can be minimized by preventing generation of the inversion layer 

in the channel. In order to do that, the gates of the disabled transistors should be properly 

connected to a certain potential to avoid the form of inversion layer. 

 

The topology of reconfigured OTAs in stage 3 through stage 8 is shown in figure 

4.10. Gain boosting amplifiers are not used due to the relaxed accuracy requirement and 
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relatively large DC gains for low bias current. The device in the red rectangle will be 

turned off during 8-bit low speed mode. 

 
 
 

 
Figure 4.10 A reconfigurable telescopic cascode OTA used in stage 3 to stage 8. 
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CHAPTER 5 

 
NONIDEALITIES IN RECONFIGURABLE 

PIPELINE ADC 
 

In this chapter, the nonidealities in pipeline ADC are treated in great detail with 

the emphasis on noise and matching. The overall input referred thermal noise and flicker 

noise expressions are derived in section 5.1. The random mismatch of transistor and 

capacitors are analyzed in section 5.2. All the other nonidealities, including finite OTA 

gain, finite OTA bandwidth, slew rate and charge injection are discussed in section 5.3. 

 
5.1 Noise Limitation in Reconfigurable Pipeline ADC 

Noise and matching are two fundamental limitations of data converters [22]. They 

cannot be eliminated but can be reduced by pumping more current for lower noise and 

enlarge the device size for a better matching. 

 

There are several types of noise sources appearing in the pipeline ADC. Thermal 

noise and flicker noise are two dominate noise sources. Thermal noise is white noise and 

is distributed evenly with frequency up to 1000 GHz [62]. Flicker noise, also known as  
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Figure 5.1 Sample and hold circuit (a) and its equivalent model during sample period. 

 

1/f noise or pink noise, will decrease with the increasing of the frequency. 

 
5.1.1 Thermal Noise in Pipeline ADC 

5.1.1.1 Thermal Noise in Sampling Circuit 

A simple sample and hold circuit is illustrated in figure 5.1a, and its equivalent 

model is shown in figure 5.1b. When the Switch M is off, the signal Vin is sampled on the 

capacitor Cs. However, the noise generated by the equivalent on-resistance of M is also 

sampled on the sampling capacitor. The thermal noise power spectral density function 

and the total noise voltage on the Cs can be shown as [63] 
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where k is Boltzmann constant and T is absolute temperate.  

 

From the above equation, one should know that the only way to decrease the 
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noise is to increase the value of the sampling capacitor and moreover, the total noise is 

not related to the value of the switch on-resistance. Another important observation is that 

since the sampling transistor is working in the triode region, the thermal noise expression 

is onkTR4  instead of 
mg

kT
3
8 . 

 

5.1.1.2 Thermal Noise in OTA 

The input-referred noise spectral density of the OTA can be expressed as 

)1(
3
82)( t

m

n
g
kTfS +⋅⋅=                                             (5.3) 

where nt models the noise contribution from transistors other than the input pair, gm is the 

transconductance of the input transistor. Since fully differential OTAs were used in this 

work, the noise is doubled. In order to decrease the thermal noise in the OTA, a larger gm 

is preferred for the input differential pair. 

 

5.1.1.3 Thermal Noise in MDAC 

There are two main noise sources in the MDAC shown in figure 5.2. One is from 

the sampling switch and another is from the OTA. The noise of the sampling switch is 

already sampled into the input sampling capacitor. Therefore, only the OTA noise needs 

to be referred back to the input. The noise voltages during the sampling period and the 

hold period are uncorrelated and their noise power should be added together. The 

equivalent circuits for different clock phase are shown in figure 5.3. 
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Figure 5.2 Switch capacitor MDAC in pipeline stages. 

 

 

 
Figure 5.3 The equivalent circuit of MDAC for sampling phase (a) and for hold phase (b) 
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During sampling phase Φ1, the feedback factor of the OTA is F1=1. The 

equivalent load capacitor is CL,1=Cc+Cp. The Unity gain bandwidth for a one pole OTA 

is 1,/ Lmu Cg=ω . The –3 dB bandwidth is 13 FudB ⋅=− ωω  and the noise bandwidth is  
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The total noise power can be calculated as 
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During the hold phase Φ2, the feedback factor of the OTA is
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The equivalent load capacitor is CL,1=CL+(1-F2)Cf. The noise bandwidth is 
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The total noise power can be calculated as 
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Based on the charge conservation law, the total noise voltage appearing on the 

output at the end of hold phase is 
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where the first term corresponds to the output referred OTA noise during the hold phase 

and the second term corresponds to the output referred OTA noise during the sampling 

phase. As mentioned previously, these two terms are not correlated and the noise power 

will be added together. The noise can be referred to the input by dividing the voltage gain 

1+Cs/Cf. The input referred noise can be expressed as 
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From the above equation, it should be noticed that the parasitic capacitor 

associated with the summing node plays a very important role in the noise performance 

of MDAC. If the parasitic capacitor Cp is zero, then the OTA thermal noise in the 

sampling noise will not contribute to the total input referred noise. The OTA thermal 

noise in the hold phase is also smaller due to the large feedback factor. The parasitic 

capacitor is mainly from the Cgs of the input differential pair. Since the channel width of 

the input pair is very large in order to get a large transconductance, the Cgs of the input 

pair is comparable with the sampling and feedback capacitor. 

If we count the thermal noise of the sampling switch, the input referred noise 

from the MDAC can be expressed as 
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The above expression is not very meaningful for observation. A reasonable 

simplification can give the direction for the optimization of the noise performance. The 

following assumptions are given for simplification: Cs=Cp/3=Cf=C, Cc=CL. The load 

capacitor has three parts. The dominant one is the sampling capacitor of the following 

stage. If the pipeline stage is scaled by a factor 2/3, this part will contribute 4C/3. If the 

capacitor from the common mode feedback circuit and sub-ADC contribute 2C/3, the 

load capacitor CL is equal to 2C. If the excessive noise factor is 0.5 for telescopic OTA, 

then the above expression can be rewritten as 

C
kT

C
kT

C
kT

C
kTv MDACinn ⋅≈⋅+⋅+⋅≈ 74.05.001.023.02

,,                 (5.11) 

 

In the above expression, the first term is the noise from the hold phase of the 

OTA. The second term is the noise from the sampling phase of the OTA and the third 

term is the noise from the sampling switch. The second term is very small and can be 

neglected without introducing much error. 

 

The effects of the parasitic capacitor on the noise performance are illustrated in  
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Figure 5.4 Input referred noise components in MDAC 

 

figure 5.4. Minimizing the parasitic capacitor can improve the noise performance. 

The noise analysis in this section and latter sections are based on a single ended 

version of fully differential structures for simplifications. The noise results should be 

multiplied by two for a fully differential circuit. 

 
5.1.1.4 Thermal Noise in SHA 

The thermal noise analysis in SHA is very similar with in MDAC. The flip-

around SHA and its equivalent circuits are shown in figure 3.8 and 3.9 in chapter 3. The 

derivation for the noise performance is not repeated here and only the final result is given 
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Similar assumptions can be made for the SHA. The noise factor is 1 for folded-

cascode OTA. The sampling capacitor Cs is equal to 2C for the same noise level as the 

MDAC of the stage 1. The parasitic capacitor Cp is still C/3. CL and Cc keep same value 

of stage 1 MDAC. Then the expression can be simplified as 
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5.1.1.5 Thermal Noise in Pipeline ADC 

Once the noise expressions for SHA and each stage are obtained, the overall input-

referred noise can be derived. Since there is a gain (2x) between two consecutive stages, 

the noise contribution from latter stages will be attenuated by the gain. If the sampling 

capacitors are kept the same for all the stages, the noise from the last several stages is 

negligible, but the power efficiency is low for this scenario. If the sampling capacitor is 

scaled by a factor of two, each stage will have equal noise contribution and the total input 

referred noise is very large leading to high thermal noise level and low resolution. The 

detail analysis on the sampling capacitor and power scaling can be found in [38]. In this 

design, a factor of 0.75 was chosen to account for the tradeoff between the noise and the 

power. The noise mode for the pipeline ADC is illustrated in figure 5.5, and  
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Figure 5.5 Pipeline ADC model for noise analysis. 

 

the total input referred noise expression is given by 
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If the noise and gain in the above expression were replaced by the value 

calculated in the last two sections, the new expression can be given as 
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The noise power should be doubled and the noise voltage is multiplied by 2  for full 

differential pipeline ADC. 

 

5.1.2 Flicker Noise in Pipeline ADC 

Flicker noise is the dominant noise for the low frequency range and its effects are 

not well discussed in the prior literature due to two reasons. First, for some 

communication applications, the signals are modulated on the carrier frequency and 

bandpass filters are usually employed to remove the flicker noise. Second, one can use 
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Correlated Double Sampling (CDS) technique to cancel the low frequency noise [64]. 

However, for some applications, which deal with wide band signals, flicker noise must be 

taken into account. 

 

The input referred flicker noise power spectral density function for a MOSFET 

can be expressed as 

fWLC
KfS
OX

F 1)( 2=                                                  (5.16) 

where KF is a process-dependent parameter and has a value of 10-32 C2/cm2 for PMOS 

and 4×10-31 C2/cm2 for NMOS [65]. The flicker noise is decreased with the frequency 

and the corner frequency where the flicker noise is equal to the thermal noise is about 500 

kHz to 1 MHz for sub-micron technologies [62]. Flicker noise is mainly due to the 

random trapping on the silicon surface and PMOS has a lower value than NMOS because 

its channel is buried under the surface. 

 

The corner frequency can be calculated by making the thermal noise power 

spectral and flicker noise power spectral equal. The equation can be expressed as 
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=                                              (5.17) 

If all the parameters in the above expression were substituted by the parameters 

provided by the technology files, the corner frequency can be obtained. In this work, the 
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drain current of the input pair is 300 μA, Cox is 0.9 fF/um2, W is 220 um, L is 0.6 μm and 

Vov is 200 μV. The input pair consists of PMOSFETs. The corner frequency is about 250 

KHz which is very close to the value in [62]. Similarly, the corner frequency for the 

NMOS and PMOS in the cascode stage can be obtained as 12 MHz and 160 KHz, 

respectively. These values will be used as the integral upper limit for the total flicker 

noise.  

 

5.1.2.1 Flicker Noise in OTA 

For flicker noise, one cannot use nt to model the noise contribution from the 

transistors other than the input pair because of different noise bandwidth. The derivation 

for the overall noise expression is very cumbersome. The flicker noise expression for the 

folded-cascode OTA used in SHA is expressed as 
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where the first term is the flicker noise power from the input PMOS pair, the second term 

is the contribution from the PMOS in cascode stage and the third term is the contribution 

from the NMOS in cascode stage. The flicker noise expression for the telescopic OTA 

used in stage 1 and 2 is expressed as 
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where the flicker noise corner frequency is 10 MHz for the OTA NMOS input pair and 
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80 KHz for the PMOS of current sink load. For the OTA used in other stages, the 

expression is same as the above expression, but the corner frequency is 4 MHz for the 

NMOS input pair and 40 KHz for the PMOS load. 

 

5.1.2.2 Flicker Noise in SHA 

Similar derivations are carried out for flicker noise. The only difference between 

the derivation for thermal noise and flicker noise is the noise bandwidth. Since the flicker 

noise corner frequency is much smaller than that of the thermal noise bandwidth, the 

integral upper limit is the corner frequency and the lower limit cannot be zero due to no 

definition for zero’s logarithm. Then the lower limit is set to 10-3 Hz (1000 seconds is a 

reasonable observation period for biomedical applications). The SHA circuit and its 

equivalent circuit are shown in figure 3.8 and 3.9 in chapter 3. 

The total flicker noise power at the input terminal of the OTA during the sampling 

phase and hold phase are the same and can be expressed as 
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by substituting f0=10-3 Hz, f1=250 KHz, f2=160 KHz and f3=12 MHz into the above 

expression. The new expression is expressed as 
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Based on the charge conservation law, the total noise voltage appeared on the 
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output at the end of hold phase is 
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where the first term corresponds to the output referred OTA noise during hold phase and 

the second term corresponds to the output referred OTA noise during the sampling phase. 

Unlike the thermal noise, the flicker noise is a low frequency noise. The noise during 

sampling phase and hold phase are closely related. If the sampling frequency is much 

higher than the flicker noise corner frequency, the noise will be partially cancelled out. If 

the flicker noise phase shift during the sample and hold phase are neglected (a little bit 

optimistic). Then, the above expression can be rewritten as 
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Since the gain for SHA is equal to 1, the input referred flicker noise power is 2
fv . 

 

5.1.2.3 Flicker Noise in MDAC 

The MDAC circuit and its equivalent circuit are shown in figure 5.2 and 5.3. The 

flicker noise expressions during the sampling phase and hold phase are same and can be 

expressed as 
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since the flicker noise during the sampling phase and hold phase are correlated, the 
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flicker noise voltage at the output can be expressed as 
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The noise can be referred back to the input by dividing the gain of MDAC. The gain is 

1+Cs/Cf. 

ff
s

f
infn vv

C
C

v =⋅=,,                                               (5.26) 

 

5.1.2.4 Flicker Noise in pipeline ADC 

Once the flicker noise for each stage and the sample hold stage are known, they 

can be referred back to the input of the ADC. Another way to calculate the input referred 

flicker noise is to normalize the flicker noise of each stage with the thermal noise of this 

stage and then add a factor to thermal noise, and then refer back to the input. 

 

5.1.3 Thermal Noise and Quantization Noise 

These two kinds of noise essentially do not have any relationship. Quantization 

noise is only dependent on resolution. Thermal noise can be increased or decreased by 

design. However, the most power-efficient optimum point is to make them equal. 

Therefore, the overall SNR will decrease by 3 dB, about a 0.5-bit loss. If one tries to 

invest 4X power to cut the noise by half, an extra 0.1~0.2 bit may be gained. If the 

thermal noise is two times larger, a 0.5 bit may be lost. In other words, both over and 
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under design are costly. If other noise sources and nonidealities are also considered, a 

9.0~9.2 ENOB out of 10 bits can be achieved with the maximum power efficiency. 

 

5.2 Matching Limitation in Reconfigurable Pipeline ADC 

The mismatch has been modeled using a statistical analysis which treats the errors 

as random variables. All of the models have assumed that the errors were random, 

uncorrelated and normally distributed. Systematic mismatch is assumed to be eliminated 

by design techniques and will not considered here. 

 

 

5.2.1 Mismatch Model in Transistors 

Due to its random nature, the mismatch is usually described in terms of variance. 

The most widely accepted description of the variation in some parameter P between two 

“identical” rectangular devices could be expressed as [21, 53, 54] 

22
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2 )( DS
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P ⋅+=Δσ                                                 (5.27) 

where AP is a dimension parameter, SP is a space parameter, and D is the distance 

between the two devices. Once the process-dependent constants AP and SP have been 

measured, this relationship can be used to predict matching characteristics of various 

devices. The mismatch due to distance is proved to be very small [53]. Therefore, the 

second term in the above expression can be neglected. 
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There are two important parameters for a MOS transistor. They are threshold 

voltage VT and gain factor K. The mismatch of these parameters should be considered as 

the main sources of mismatch. Threshold voltage mismatch is mainly due to oxide 

thickness, substrate doping, etc. Gain factor mismatch is a result of differences in oxide 

thickness and mobility. Its typical value can be as high as 10% [65]. The threshold 

voltage mismatch can be described by 
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where 2
TVA  is a process dependent parameter and obtained by experiment. The gain factor 

includes both the K’ (μCox) and the transistor dimensions W and L. The variance can be 

written as 
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5.2.2 Current Mirror Mismatch 

In fully differential OTA, properly biased current mirrors act like active load for 

the cascode amplifier. The mismatch between the current mirror transistors induce 

current mismatch for different branches. Since the OTA is fully differential, there is no 

systematic mismatch between the two branches. For two transistors in a current mirror, 

mismatch is indicated by ΔVT and ΔK. The relative variation in the output current ΔIo/Io 

is more interesting. The variation of current Io can be calculated by 
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Since in strong inversion, gm can be expressed as 2Io/Vov, the normalized output 

current variation can be expressed as 
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If one wants to make the current variation small, the transistors must be biased at 

large values of Vov. Namely, the transistors need to work in strong inversion, and the W/L 

ratio should be small for a given amount of current. 

 
5.2.3 Offset Voltage due to Mismatch 

The offset voltage of a fully differential OTA is caused by several factors. First 

one is the mismatch of the threshold voltage and the gain factor of input pair. The second 

one is the mismatch of the threshold voltage and the gain factor of current mirror load. 

 

The offset voltage induced by the input pair can be expressed as 
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where the subscript in means the input pair. From the equation 5.32, one can draw an 

opposite conclusion that the bigger the overdrive voltage, the smaller the offset. The 

current mismatch in the active current mirror load will also introduce offset voltage to the 

input. The mismatch current obtained in the previous section will be referred back by the 
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transconductance of the input pair. Then the offset caused by the current mismatch can be 

expressed as 
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where the sub-script cm means current mirror. The overall offset of an OTA is the 

addition of the two offset voltages and is expressed as 
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if the TVΔ  and KΔ  are substituted with the expression defined in section 5.2.1, the more 

fundamental expression for offset voltage is described as 
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for a given process, 
TVA , KWLA  and KA  is fixed. The only thing one can do to minimize the 

offset voltage is altering the aspect ratio of the input pair and current mirror load. 

Increasing the area of the input pair can decrease the offset caused by the threshold 

mismatch. Increasing the W/L ratio of the input pair will decrease the overdrive voltage 

and then lead to a smaller offset. Increasing the overdrive voltage of the current mirror 

load can also reduce the offset. Fortunately, all this methods used to decrease the offset 

have the same optimum directions as decreasing the overall noise performance. 
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5.2.4 Capacitor Mismatch 

For two identical capacitors, similar expressions can be obtained. A 0.1% or 

better matching can normally be achieved for 0.35 µm CMOS process. This matching can 

lead to a 10-bit data converter without using an expensive trimming process. Like noise 

in ADC, capacitor mismatch is also due to random variation and is a fundamental 

limitation for ADC performance. However, mismatch between sampling and feedback 

capacitors can be decreased or even eliminated by digital calibration. 

 

5.3 Other Nonidealities in Reconfigurable ADC 

5.3.1 Error Caused by Finite OTA Gain 

For an ideal OTA, the close loop gain is set exactly by the passive components in 

the feedback network. If the OTA gain is finite, the gain will deviate from the ideal value 

determined by the loop gain T. In the sample and hold amplifier of MDAC (shown in 

figure 5.6), the close loop gain can be calculated as 

)11(
11

1
,

vf

s

v

f

s

i

o
CLv AFC

C

AF
C
C

V
V

A
⋅

−−≅

⋅
+

⋅−==                 (5.36) 

where 
pfs

f

CCC
C

F
++

=  is feedback factor, 
s

o
v V

V
A =  is open loop gain. For the last step 

in the above expression, a Taylor series expansion is applied and all the higher terms are 

omitted.  



 

 
81 

 
Figure 5.6 Sample and hold amplifier in MDAC 

 

If the open loop gain AV is finite, and then the loop gain T (T = FAV) is even 

smaller. Close loop gain will deviate from its ideal value by 1/T. Recall the Dout equation 

3.14 in 3.2.2. If the analog path gain is not equal to the digital path gain, the quantization 

noise from each stage cannot be totally canceled out. More distortion will be brought to 

the residues and subsequently the final result. The completely settled signal is shown with 

the ideal closed loop gain in figure 5.7. The static error should be smaller than 0.1% for 

a10-bits converter. If 0.03% error is allocated for static error due to finite OTA gain, and 

also assumes Cs=Cf=Cp, the minimum OTA open loop gain is 80 dB [66]. The OTA gain 

can be decreased for the latter stage due to the relaxed accuracy requirement. For the 

SHA and the first two pipeline stages, gain boost techniques are used to boost the gain. 

Gain boost techniques are not used for stage 3 to stage 9. 
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Figure 5.7 Static error due to finite OTA gain 

 

 

The OTA open loop gains for different pipeline stages are listed in table 5.1 based 

on several assumptions. The first assumption is that only the errors caused by finite OTA 

gain are considered in this table. Therefore, these values are the minimum value for each 

OTA and a much larger OTA gain may be needed for precision settling. Another 

assumption is that the feedback factor is assumed to be 1/3. 

 
5.3.2 Error Caused by Finite OTA Bandwidth 

For a finite OTA bandwidth, the signal may not be completely settled at the end 

of the sampling period. The unsettled signal will increase the gain error. This error also 

should be smaller than 0.1%. For a linear one pole settling (this is true for the OTA used 

in this work), the output voltage is given by 
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Table 5.1 Minimum DC gain requirements for 7~10b 40MSPS ADC 

B ε OTA (Av) (dB)

7 0.00781 52 

8 0.00391 58 

9 0.00195 64 

10 0.00098 70 

 

)1()( /
,

τst

f

s
stepio e

C
C

VtV −−⋅⋅−=                                      (5.37) 

and τε /ste−= , where ts is half period of sampling clock, 
udB F ωω
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3

, dB3−ω  is –3 

dB bandwidth of the closed loop amplifier, and uω  is the unity gain bandwidth of the 

open loop amplifier. For a 40 MSPS data converter, the bandwidth requirements for OTA 

are listed in table 5.2. 

 
 
5.3.3 Error Caused by OTA Slew Rate 

The results in the previous section are valid if the settling is entirely linear, but for 

most practical cases, the settling is slew rate limited. If slewing happens, the –3dB 

bandwidth must be higher to compensate the time loss during slewing. For the circuit in 

figure 5.6, if a voltage step is applied on the input, then the output step is 
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Table 5.2 Minimum Bandwidth requirements for 7~10b 40MSPS ADC 

B ε ts/τ OTA (fu) (MHz)

7 0.00781 4.85 186 

8 0.00391 5.54 212 

9 0.00195 6.24 239 

10 0.00098 6.93 265 
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The voltage step at the summing node of the OTA is Vs=FVo. Once Vs is larger 

than the overdrive voltage of the input pair, slewing begins [63]. In a typical pipeline 

converter, Vo is usually more than 1 V and F is about 1/3, so Vs is around 330 mV. The 

overdrive voltage of input differential pair is usually 150 mV~200 mV. Therefore, 

slewing is unavoidable in 1.5b per stage architecture. 

 

5.3.4 Error Caused by Charge Injection 

A conducting MOS switch has a large amount of mobile charge stored in its 

channel. This charge is distributed between source and drain terminals based on the 

impedance seen by it during the transistor turning off [67-69]. Moreover, the injected 

charge is also signal dependent. Bottom plate sampling is used to alleviate this problem.  
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Figure 5.8 Bottom plate sampling and its timing diagram. 

 

The model for bottom plate sampling is shown in figure 5.8. 

 
First, the switch S1e is turned off. The charge stored in the channel will inject into 

sampling capacitor Cs, but since the switch is grounded, the amount of charge injected is 

fixed. Then turn off switch S1, no charge will inject into Cs because the bottom plate of 

the capacitor is floating.  

 

For a fully differential circuit, the equal amount injected charge appears on both 

terminals of the OTA and thus is rejected. The fully differential bottom plate sampling 

circuit implementation is illustrated in figure 5.9. 
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Figure 5.9 Fully differential implementation of bottom plate sampling. 
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CHAPTER 6 

 
PROTOTYPE IMPLEMENTATION 

 

For switch capacitor data converters, OTAs and comparators are the fundamental 

building blocks. They are treated in great detail in section 6.1 and section 6.2, 

respectively. Bias generation and distribution networks are also very important and will 

be described in section 6.3. The digital correction circuit to remove the redundancy in the 

digital code is illustrated in section6.4. Some important rules about layout design are 

listed in section 6.5.  

 

6.1 OTA Design 

As mentioned in the previous chapters, the performance of OTAs has a significant 

impact on the overall performance of data converters. The open loop gain, small signal 

bandwidth, large signal slew rate, output range and input CMRR must be maximized 

under certain power and area constraints. On the contrary, the equivalent input referred 

noise should be minimized. 
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6.1.1 Folded Cascode OTA in SHA 

In this work, three different OTAs are implemented to fit different stage 

requirements. A gain-boosted folded cascode OTA was implemented for the sample and 

hold stage. This selection was based on the sample and hold topology. The flip-around 

sample and hold circuit will change its input common mode voltage during the transition 

from the sample period to the hold period. The telescopic OTA is not suitable due to its 

small input common range. Since sample and hold stage is in front of all pipeline stages, 

it is worthwhile to use a folded cascode OTA and invest more power to improve its 

performance. The OTA used in the sample and hold stage is shown in figure 6.1. 

 

There are two disadvantages to use folded cascode OTAs. The first one is power 

penalty. The folded cascode OTA consumes twice the power than its telescopic 

counterpart to get the same symmetrical slew rate. The other penalty is larger excess 

noise factor nt. For the circuit shown in figure 6.1, both M3 and M5 contribute excess 

noise. Therefore, it is a good practice to make the transconductance of M3 and M5 small 

to reduce the excess noise factor without degrading the output range. However, the bias 

for this OTA is easier to design and the input common range and CMRR are larger. 

 

For the 0.35 µm process used in this work, the intrinsic gain (gmro) is roughly 

15~20 for 250 mV~300 mV VDS. The overall gain is about (gmro)2, namely, 52 dB without 

gain boosting. This value is too small for high resolution data converters. The gain can be  
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Figure 6.1 A folded cascode OTA used in sample and hold stage. 
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improved to (gmro)4, namely, 104 dB with the aid of gain boosting technique [70]. 

One drawback of the gain boosting technique is the potential slow settling due to the 

doublet, but one can always eliminate it by moving the doublet to some place where it is 

larger than closed loop –3dB bandwidth and smaller than open loop nondominant pole 

[70]. The gain boosting amplifier is also a folded cascode OTA but with a smaller bias 

current. 

The input common mode range is roughly from zero to VDD-Vtp-3Vovp. The output 

common mode range is from 2Vovn to VDD-2Vovp. The unity gain bandwidth is expressed 

as 

L

m
u C

g 1=ω                                                           (6.1) 

where CL is the output load capacitor which is not shown in figure 6.1. The slew rate is 

given by 

L
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C
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SR =                                                           (6.2) 

where Ib is the bias current for the input differential pair. The dynamic settling is limited 

by either small signal bandwidth or large signal slew rate whichever is smaller. For linear 

one pole settling, in order to avoiding slewing, the slew rate must be larger than the 

maximum slope at the output [22], i.e. 
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The equation 6.3 can be rearranged to get a better understanding of the condition 

to avoid slewing. 
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This constraint is hard to be satisfied because the input transistor is usually biased 

at low overdrive voltage to get larger transconductance. Therefore, slewing is 

unavoidable. 

 

The input referred noise spectral density function is given by 
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In order to minimize the noise, the transconductance of input transistors should be 

maximized and the transconductance of M3 and M5 should be minimized. If equal 

currents are flowing through M1, M3 and M5, overdrive voltage can be used to optimize 

the noise performance of the OTA as well. 

 

For a fully differential OTA, a Common Mode Feedback (CMFB) circuit is 

required to stabilize the output common mode voltage. For the main amplifier, a switch 

capacitor CMFB circuit is used for a large output range. The switch capacitor CMFB 

circuit is shown in figure 6.2. The value of C1 and C2 in CMFB is chosen in such a way  
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Figure 6.2 Switch capacitor common mode feedback circuit. 

 

that they will not significantly load the OTA and also maintain a large loop gain for 

common mode feedback path. A continuous time CMFB circuit [71] is implemented in 

the gain-boosting amplifier since large output range is not required. 

 
The bias circuit for folded cascode OTA is illustrated in figure 6.3. The two 

currents are originated from the global bias generation circuit which will be introduced in 

section 6.3. vpc (vcmp) is the output common mode voltage for the PMOS booster. vnc 

(vcmn) is the output common mode voltage for the NMOS booster. vct is the reference 

voltage for the switch mode CMFB. The simulated frequency response bode plots are 

shown in figure 6.4. 
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Figure 6.3 Bias circuit for folded cascode OTA 

 

 
Figure 6.4 bode plot of folded cascode OTA for 4 pF load. 
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6.1.2 Telescopic Cascode OTA in First Two Pipeline Stages 

In the first and second pipeline stages, telescopic cascode OTAs with gain 

boosting are implemented. There are 5 transistors stacked from the power rail to the 

ground rail in this architecture. The output range is about 300 mV smaller than the folded 

cascode OTA, but fortunately, the excess noise factor is much smaller than the folded 

cascode OTA. Therefore, the overall dynamic range (DR) of a telescopic cascode OTA is 

larger than the folded one. The telescopic cascode OTA circuit is shown in figure 6.5. 

 

The input common mode range is roughly from 2Vovn+Vtn to Vop(n)+Vtn-Vovn. This 

range could be very small when output swing is large. The output common mode range is 

from 3Vovn to VDD-2Vovp. The unity gain bandwidth is still expressed as 

L

m
u C

g 1=ω                                                           (6.6) 

where CL is the output load capacitor which is not shown in figure 6.5. The slew rate is 

given by 

L

b

C
I

SR =                                                           (6.7) 

where Ib is the bias current for the input differential pair.  

 

The input referred noise spectral density function is given by 
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Figure 6.5 A telescopic cascode OTA used in stage 1 and 2. 

 

 

 



 

 
96 

It is obvious that the noise factor for telescopic OTA is smaller than folded OTA from 

equation 6.8.  

 

The bias circuit for the telescopic OTA shown in figure 6.6 is more complicated 

than the folded OTA. Since the bias voltage for the low side cascode transistor is floated 

and changes with the input common mode voltage, this bias voltage must have the ability 

to track the input common mode change. In figure 6.6, vcmn is the common mode voltage 

for the NMOS booster, vcmp is the common mode voltage for the PMOS booster, vct is 

the reference voltage for the switch mode CMFB and VX is the common source node of 

the input differential pair which can track the input common mode voltage. 

 

The simulated parameters of OTAs in section 6.1.1 and 6.1.2 are illustrated in 

table 6.1. 

 

6.1.3 Reconfigurable Telescopic Cascode OTA 

The design of reconfigurable OTA has been described in section 4.2.1 and will 

not be discussed here. The bias circuit of the reconfigurable ADC also needs to change its 

aspect ratio to accommodate the bias current change. The bias current is scaled down 16 

times and the aspect ratio for the NMOS transistors only shrinks 4 times. The overdrive 

voltage is about 100 mV and the NMOS transistors are operating in moderate inversion. 
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Figure 6.6 Bias circuit for telescopic OTA 

 

Table 6.1 Comparison between folded cascode OTA and telescopic cascode OTA 

 Folded cascode OTA Telescopic cascode OTA 

Av (dB) 104 117 

fu (MHz) 254* 309* 

PM ( ˚) 78 76 

nt 1.25 0.52 

DR (dB) 75 73 

Power (mW) 5.6 3.3 

* test results with 4pF load capacitor and 2.5 V power supply. 
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Figure 6.7 Bias circuit for reconfigurable OTA. 

 

The principles for the reconfiguration are still applied here. The reconfigurable bias 

circuit is shown in figure 6.7. 

 

6.2 Comparator Design 

High performance comparators should have the ability to amplify a small input 

voltage to a level large enough to be detected by digital circuits within a short time [22]. 

Therefore, both high gain and high bandwidth is needed. These two requirements are 

usually contradictory. High gain yields low bandwidth and vice versa. Fortunately, unlike 

OTA, comparators do not need feedback and therefore have no stability problem. One 

can always use several cascaded low gain stages to get a large gain and fast speed.  
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Positive feedback latches can improve the gain and speed dramatically but their 

input offsets are relatively large, in the range of 15~25 mV. Therefore, the best 

architecture for comparators is several low gain cascaded pre-amplifiers followed by a 

digital latch [72]. For pre-amplifiers, the overall gain is the multiplication of individual 

stage gain as shown in equation 6.9 and he speed decreases with stage number linearly 

instead of exponentially as shown in equation 6.10.  

i
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Π=                                                                (6.9) 
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Metastability will happen when the output of pre-amplifier is smaller than the 

offset of the latch. A gain of 16~20 for the pre-amplifiers is large enough to avoid 

metastability. The comparator used in this work is shown in figure 6.8. 

 

 
Figure 6.8 A comparator used in sub flash ADC. 
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6.3 Global Bias Generation and Distribution 

For all the pipeline stages, the biases are from the same source. The quality of this 

current source affects all the OTAs’ performance. The circuit shown in figure 6.9 is used 

to generate the current reference. The voltage at the negative input terminal of OTA is a 

bandgap voltage reference. The current flow through the resistor R is given by vcmi/R. 

Since the on-chip resistor can have as large as ±20~30% deviation and large temperature 

coefficient, an off-chip resistor is used to achieve a stable current reference.  

 

It is advantageous to deliver current instead of voltage over long distance due to 

voltage drop and interference. The current is mirrored and distributed to each pipeline 

stage by the distribution network. The distribution network is shown in figure 6.10. 

 

 
Figure 6.9 Reconfigurable bias generation circuit. 
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Figure 6.10 Bias replica and distribution. 

 

6.4 Digital Correction 

For a 1.5b per stage architecture, the digital output lines coming out of each stage 

are two in number but the effective bit is only one. Therefore, there is some redundancy 

in the digital output code. Digital correction circuit [73] can be used to remove the 

redundancy, but before correction can be made, delays must be added to the digital output 

of the previous stages to remove the timing skew. In figure 6.11, the first and second 

stages need delay 5 clock cycles for a 10-bit data converter. The third and fourth stages 

need delay 4 clock cycles and the later stages have similar delay procedures. Therefore, 

the final digital output is valid 5 clocks later than the analog input. This is one of the 

drawbacks of pipeline ADCs. A 10 bits full adder is implemented to remove the 

redundancy. Since the propagation of the carry is fast, no carry look-ahead structure is 

used in the adder design. 
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Figure 6.11 Digital correction circuit. 

 

6.5 Layout Design 

The layout design is very critical in the implementation of a data converter. The 

first step is a floorplan under a specific area constraint. A small, compact layout is always 

favored due to the high cost of silicon real estate. The data converter can be partitioned 

into analog part and digital part. These two parts are placed well separated. Moreover, in 

each pipeline stage, the sub-ADC is considered as a digital circuit and the residue gain 

amplifier is a very sensitive analog circuit. These two blocks are placed on each side of 

the sampling and feedback capacitors.  

 

The global clock and bias are placed in the middle of the data converter. Since 

pipeline stages are relatively independent, they can be put together sequentially. Four 

global reference signals, Vcmi, Vcmo, Vrefp, Vrefn, are routed around the pipeline stages. The 
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line width of these four signals is very wide since they will carry a significant amount of 

current during settling. These metal lines are composed of several small metal lines 

connected to each other every 100 μm. Common centroid symmetrical layout, dummy 

device, nwell shielding, guard ring and on-chip MOS cap are extensively used throughout 

the layout design process. The final layout is shown in figure 6.12. The micrograph of the 

chip is shown in figure 6.13. 

 
 
 

 
Figure 6.12 Reconfigurable ADC layout. 
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Figure 6.13 Micrograph of reconfigurable ADC chip
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CHAPTER 7 

 
PROTOTYPE MEASUREMENTS 

 

In section 7.1, the measurement environment setup is introduced with emphasis 

on both hardware and software. The performance parameters are described in detail in 

section 7.2 for 10-bit and 8-bit configuration, respectively. Then, the performance is 

summarized in section 7.3. The comparison of this work with other reconfigurable ADCs, 

conventional pipeline ADCs and all ADCs are carried out in section 7.4. 

 

7.1 Test Environment Setup 

7.1.1 Test Boards 

Test board design is very critical for high speed, high-resolution data converter 

measurements. A good layout of various components and critical paths can improve the 

signal integrity which leads to better test results.  

 

There are mainly four important signal paths in this design. The first one is the 

power supply and ground. The DC voltage coming form the power supply is very noisy 

due to the built-in switching mode characteristics. A linear regulator can greatly reduce 
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voltage ripples in the power supply. Furthermore, a low pass filter isolates the digital and 

analog power supplies. The digital and analog ground planes are also separated by an 

inductor. The second signal path is for the input signal. The input signal is connected to 

the board by a SMA female connector and then converted to a differential signal by a 

balun. The input impedance for the ADC is matched to 50 Ω to reduce reflection. The 

input matching network is shown in figure 7.1. The third signal path is the clock which is 

generated by a square wave crystal oscillator. The path from the oscillator to the chip is 

kept as short as possible. The fourth paths are for the reference voltages, the input and the 

output common mode voltages. These four voltage references are buffered and filtered by 

opamps and big tantalum capacitors. A two layer FR-4 PCB with ground plane on both 

sides is shown in figure 7.2. 

 
7.1.2 Test Instruments 

See Table 7.1 

 

 
Figure 7.1 Input matching network for ADC Test. 
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Figure 7.2 Reconfigurable ADC Test Board. 

 

Table 7.1 Test Instruments 

TYPE Features 
Tektronix TLA 5204B Logic Analyzer 136 channels, 2G Timing, 32M 

memory for each channel. 
Agilent E3631A Triple Output DC 
Power Supply 

0~6V; 0~25V; 0~-25V. 

Agilent 33220A Waveform Generator Maximum 20 MHz Sinewave. 
Tektronix AFG3102 Arbitrary Function 
Generator 

Maximum 100 MHz sinewave 

Agilent 34401A Digit Multimeter 6.5 bits 
Agilent MSO6052A Mixed Signal 
Oscilloscope 

500MHz Bandwidth, 4Gsample per 
second. 

Lenovo Thinkpad Laptop With Matlab V6.1.450 
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Table 7.2 Test Board Components 

Component Type Value Digikey No. Comment 
ADC Chip - - - DUT 
PCB - - - Two layer, FR4 
Balun ADT 1-1 WT - - Minicircuits 
Band Pass 
Filter 

SBP-10.7+ 10.7MHz center 
frequency 

- Minicircuits 

Clock 
Oscillator 

CB3-3C-
40M0000 

40MHz CTX280CT-ND Surface mount 

Regulator TPS79601 - 296-13761-1-ND Output adjustable
Amplifier AD8032 - AD8032ARZ-ND 2 opamps 

ADR380 2.048 V ADR380ARTZ-
REEL7CT-ND 

 Voltage 
Reference 

ADR381 2.5 V ADR381ARTZ-
REEL7CT-ND 

 

Resistor - Various values - Metal film 
Capacitor - Various values  Ceramic,tantalum
Inductor - 1 μH PCD1187CT-ND  

 

7.1.3 Components 

See Table 7.2 

 
7.1.4 Test Software 

In order to measure the static parameters of data converters, a low speed signal 

should be applied to the ADC input to minimize the dynamic effects. INL and DNL are 

two main parameters to evaluate how good the linearity is. One can apply a ramp voltage 

to the input to obtain the INL and the DNL. However, a very linear ramp generator is 

very difficult to build and this method is not practical for measurement of high-resolution 

data converters. In practice, a high purity sinewave is relatively easy to achieve. The 
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histogram method (Code Density Measurement) [74] based on statistics is used to 

calculate the DNL and INL. The Matlab program for the DNL and INL measurements is 

mainly based on the Maxim application note 2085 [75]. When using this method, the 

applied sinewave amplitude must exceed the full scale of the input signal. The result is 

somewhat amplitude dependent, but this effect is minor. 

 

The dynamic parameters are obtained by Fast Fourier Transform (FFT) analysis. 

Since noncoherent test is used, the number of periods in one measurement period is not 

an integer. Therefore, a window function must be employed to decrease the spectrum 

leakage. A Hann window is used for its good tradeoff between spectrum leakage and 

spectrum resolution. By summing up the frequency bins of the signal, the harmonics and 

the noise separately, SNR, SNDR, SFDR and THD can be calculated. The Matlab program 

for dynamic data processing is based on another Maxim application note 729 [76]. 

 

7.1.5 Test Setup 

 See Figure 7.3 for a photo of the test setup. 
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Figure 7.3 Test Setup for testing of ADC. 

 

7.2 Test Results 

7.2.1 Test Results of 10b, 40MSPS Mode 

7.2.1.1 Static Test Results 

Figure 7.4 and Figure 7.5 illustrate the DNL and INL when applying a 193 KHz 

sinewave to the ADC input. An accurate result is achieved by collecting 2,097,152 data 

points. The DNL and INL usually indicate the static linearity of the ADC. It mainly 

reflects the matching of the sampling and hold capacitors and the gain error caused by the 

OTA DC voltage gain. For the test results in this chapter, there is no calibration involved. 

The low DNL and INL indicate that the ADC has good matching. 

 

Since the DNL and INL is amplitude dependent for code density measurement, 

the results in table 7.3 show that the DNL and INL will change with the input amplitude 
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Figure 7.4 Differential nonlinearity (0.3890/-0.6156 LSB) 

 
Figure 7.5 Integral nonlinearity (0.8669/-0.8789 LSB). 
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Table 7.3 DNL and INL with input amplitude at 811 KHz 

Input Amplitude (FS) DNL (LSB) INL (LSB) 
1.0021 0.3980/-0.6031 0.7254/-0.8123 
1.0039 0.3612/-0.6036 0.7170/-0.7774 
1.0057 0.4215/-0.6313 0.6902/-0.7899 
1.0090 0.3788/-0.6187 0.7433/-0.8294 

 

but do not show strong positive or negative correlation with the amplitude when the 

amplitude is just above the full scale. 

 

The DNL and INL is mainly an evaluation of the nonlinearities for the low 

frequency input signal. When operating for the high frequency input signal, the DNL and 

INL tend to be worse due to the error caused by settling and charge injection. The DNL 

and INL for the lower frequency are also large as shown in table 7.4. The main reason is 

that the input signal is AC coupled before feeding into the balun. Therefore, distortion is 

introduced by this zero for the low frequency input. 

 

7.2.1.2 Dynamic Test Results 

In order to get a better frequency resolution, a 16,384 points FFT analysis was 

carried out. Figure 7.6 illustrates the FFT plot for a 1,119 KHz input sinewave. Figure 7.7 

illustrates the FFT plot for a 10,700 KHz input sinewave with a Band Pass Filter (BPF). 

The signal generator used during the measurement has a large 3rd order harmonic for high 

frequency. A band pass filter was used to decrease the third order harmonic. In these FFT  
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Table 7.4 DNL and INL with input frequency 

Input Frequency (KHz) DNL (LSB) INL (LSB) 
137 0.5354/-0.6939 2.2545/-3.1807 
161 0.5205/-0.7174 1.1405/-1.8529 
193 0.3890/-0.6156 0.8669/-0.8789 
225 0.3996/-0.6421 1.0845/-0.8408 
251 0.4182/-0.6251 1.2529/-1.1290 
315 0.3907/-0.7143 1.1583/-0.9098 
428 0.5510/-0.6673 1.2498/-1.0103 
811 0.3980/-0.6031 0.7254/-0.8123 
1675 0.4984/-0.6783 1.4230/-0.7797 
3824 0.5207/-0.7126 0.9543/-1.4952 
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Figure 7.6 16,384 points FFT analysis at 1,119 KHz 

 
Figure 7.7 16,384 points FFT analysis at 10,700 KHz with BPF 
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SNR & SNDR versus Frequency
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Figure 7.8 SNR and SNDR with input signal frequency. 

 

plots, 2nd to 9th order harmonics are also labeled with different symbols and colors. 

 

Figure 7.8 shows the SNR and SNDR with the input frequency derived from FFT 

analysis. The decrease of SNDR with input frequency in figure 7.8 is mainly caused by 

the increase of the distortions. The harmonics power is increased with the frequency as 

shown in figure 7.9 (Minus sign before THD is removed in order to plot with SFDR). The 

red triangle and green dot in figure 7.8 indicate the SNDR and SNR at 10,700 KHz input 

signal with band pass filter. The 2-3 dB SNDR and SNR loss due to nonlinearity of the 

input signal make the test results at high frequency worse than its real values. 

 

The ENOB with the frequency is shown in figure 7.10. The EONB is decreased  
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SFDR & THD versus Frequency
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Figure 7.9 SFDR and THD with input signal frequency. 
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Figure 7.10 ENOB with input signal frequency. 
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SNR versus Input Amplitude
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Figure 7.11 SNR with input signal frequency at 10,700 KHz with BPF. 

 

gradually with the input frequency. As mentioned previously, using of the BPF can 

improve the ENOB by 0.5 bit. 

 
The SNR with the input amplitude at 10,700 KHz with band pass filter is shown in 

figure 7.11. The SNR drops at high input amplitude due to distortions caused by 

saturation.  

 

7.2.2 Test Results of 8b, 2.5MSPS Mode  

7.2.2.1 Static Test Results 

Figure 7.12 and Figure 7.13 illustrate the DNL and INL when applying a 247 

KHz sinewave to the ADC input. An accurate result is achieved by collecting 524,288  
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Figure 7.12 Differential nonlinearity (512K data points, 0.1577/-0.0483) 

 

 
Figure 7.13 Integral nonlinearity (512K data points, 0.2442/-0.2477). 
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data points. The DNL in figure 7.12 is 0.1577/-0.0483 LSB. The INL in figure 13 is 

0.2442/-0.2477. 

 

Several codes have significant larger DNL than other codes. The possible reason 

is that the random mismatch of sampling and hold capacitors in one of the middle stages 

is relatively larger than the others. One may also notice that the average of DNL is 

deviated from zero. However, this effect does not show up in the INL function. The 

reason is due to the algorithm used to calculate the INL. Two algorithms are popular to 

calculate the INL. One is the end-point fit algorithm and another is the best-straight-line 

fit algorithm. The latter one was used in this work. 

 

The DNL and INL value for different input frequencies are summarized in table 

7.5. The DNL and INL do not show strong correlation with the input frequency when 

compared to table 7.4. The DNL and INL tend to be worse when sampling clock 

frequency and input signal frequency are correlated. Attention must be paid when  

 

Table 7.5 DNL and INL with input frequency 

Input Frequency (KHz) DNL (LSB) INL (LSB) 
247 0.1577/-0.0483 0.2442/-0.2477 
351 0.2332/-0.1453 0.2918/-0.3644 
517 0.2080/-0.1082 0.2554/-0.3117 
777 0.2093/-0.1433 0.2695/-0.4097 
1000 0.1827/-0.0445 0.2758/-0.3206 
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selecting the input frequency. Otherwise, not only the DNL and INL but also SNR and 

SNDR will be deteriorated. 

 

7.2.2.2 Dynamic Test Results 

In order to get a better frequency resolution, an 8,192 points FFT analysis was 

carried out. Figure 7.14 illustrates the FFT plot for a 361 KHz input sinewave. Figure 

7.15 illustrates the FFT plot for a 1,619 KHz input sinewave. Since 1619 KHz input 

frequency is larger than half of the sampling frequency (Nyquist frequency), the FFT 

spectrum is folded back and overlapped with 881 KHz spectrum.  

 

The 2nd to 9th order harmonics are also labeled on the figures with different 

symbols and colors. All the dynamic parameters such as SNR, SNDR, THD, SFDR and 

ENOB can be extracted from FFT analysis at each input frequency. 

 
The power of the harmonics for same input frequency is in the same level when 

figure 7.6 and 7.7 are compared with figure 7.14 and 7.15. However, the noise floor is 

increased about 15 dB. There are two reasons for this extra 15 dB noise floor increase. 

The first one is due to the 12 dB quantization noise difference between 8 bits and 10 bits. 

Another one is due to the data points of the FFT analysis. The decrease of FFT data 

points from 16,384 to 8,192 adds extra 3 dB on the noise floor. 
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Figure 7.14 8,192 points FFT analysis at 361 KHz 

 

 
Figure 7.15 8,192 points FFT analysis at 1619 KHz (spectrum fold back due to larger 

than Nyquist frequency) 
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The first data point in figure 7.16 shows smaller SNR and SNDR values. The main 

reason is still due to the distortion caused by the input-matching network. This effect will 

diminish with the increase of the input frequency. The SNR and SNDR values are almost 

kept constant as shown in figure 7.16 excluding the first data point. It indicates that the 

distortions caused by dynamic settling only have minor effects on the final results. 

 

Since the ADC is fully differential, the even order harmonics should be canceled. 

The third harmonic is the main spurious tone. The entire test results in this work show 

that the third harmonic limits the Spurious Free Dynamic Range. However, due to 

random mismatch, the second harmonic also contributes a significant power to the total 

harmonic distortion. The SFDR and the THD are plotted in figure 7.17 as a function the 

input frequency. The minus sign of the THD is removed intentionally to plot the SFDR 

and the THD in the same figure. However, the THD is always negative by definition. 

 
Figure 7.18 shows the ENOB with input signal frequency for different chips. The 

ENOB is almost constant for the entire frequency range except the first data point due to 

distortion caused by the zero of the input matching network. The ENOB is also related to 

the DNL and INL. The low DNL and INL in table 7.5 have good agreement with the high 

ENOB in figure 7.18. 
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SNR & SNDR versus Frequency
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Figure 7.16 SNR and SNDR with input signal frequency 

SFDR & THD versus Frequency
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Figure 7.17 SFDR and THD with input signal frequency 
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ENOB versus Frequency
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Figure 7.18 ENOB with input signal frequency 

 

Figure 7.19 shows the SNR with the input amplitude at 361 KHz input frequency. 

Since the quantization noise and thermal noise will not change with the input signal 

amplitude, the SNR will change linearly with the input signal power in dB. The curve in 

figure 7.19 shows a perfect match with the prediction by the theory. 

7.3 Performance Summary 

The performance of the reconfigurable ADC is summarized in table 7.6. The 

dynamic parameters were obtained when ADC operated at 1,119 KHz input signal for 

10b, 40 MSPS mode and at 361 KHz input signal for 8b, 2.5 MSPS mode. The static 

parameters were obtained when ADC operated at 193 KHz input signal frequency for 10b 

40 MSPS mode and at 247 KHz input signal frequency for 8b, 2.5 MSPS mode. 
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SNR versus Input Amplitude
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Figure 7.19 SNR with input amplitude at 361 KHz input frequency. 

 

Table 7.6 Reconfigurable ADC Performance Summary 

 

 

Sample Rate (MHz) 40 2.5 Sample Rate (MHz) 40 2.5 
Resolution (b) 10 8 Resolution (b) 10 8 

SNR (dB) 58.31 49.55 DNL (LSB) 0.39/-0.62 0.16/-0.05
SNDR (dB) 56.91 49.20 INL (LSB) 0.87/-0.88 0.24/-0.25
ENOB (b) 9.17 7.88 Supply Voltage (V) 2.5 2.5 

SFDR (dBFS) 63.52 62.56 Power (mW) 35.4 7.9 
THD (dB) -62.47 -60.36 FOM1 (pJ) 885 3160 

Reference pk-pk (V) 1.94 1.94 FOM2 (pJ) 1.51 13.23 
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7.4 ADC Performance Comparison 

7.4.1 Comparison of Reconfigurable ADC 

The reconfigurable ADC listed in table 2.1 is redrawn in table 7.7 with the FOM4 

and the test results of this work. From table 7.7, reference [24] has the smallest value of 

FOM4, this work has the second smallest value of FOM4. The unit for FOM4 is 

energy·area per conversion. That means how much energy and area one should invest in 

order to get a conversion. The small value of FOM4 indicates the more cost-efficient of 

the converters. The FOM4 for each reconfigurable ADC is also shown in figure 7.20 with 

its SNDR. 

 

7.4.2 Comparison of Reconfigurable ADC with Conventional Pipeline ADC 

The bandwidth of this work’s ADC is illustrated with the entire pipeline ADCs 

published in the past eleven years in ISSCC and VLSI conference in figure 7.21. The 

trend shows that the SNDR will decrease with the increase of the bandwidth. The ADC of 

this work lies in the middle of this trend [77]. 

 

FOM1 shown in figure 7.21 is the evaluation of energy per conversion. With the increase 

of resolution, the energy needed to invest to get a conversion is increased. The correlation 

between the power consumption and resolution is positive. This design is also in that 

trend but with relatively low power efficiency when compared with the latest state-of-art 

ADC published in ISSCC. 
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Table 7.7 Comparison of Reconfigurable ADC Performance 

Ref. Bits 
(b) 

fs 
(MHz) 

Power 
(mW) 

VDD 
(V) 

ENOB 
(b) 

Area 
(mm2) 

Process 
(μm) 

Configuration FOM4 

[25] 14 10-
40 

72.8 2.8 10.4 1.15 0.18 Rates 47.8 

[24] 12 20-
140 

97 1.8 10.4 0.86 0.18 Rates 13.6 

[26] 10 1k-
50 

35 1.8 8.8 1.2 0.18 Rates 58.2 

2.62 24.6 4.6   [29] 6-16 
10 17.7 4.6  

79.8 0.6 Rates, 
resolution  

[39] 9 40 425 1.8 6.9 5.9 0.25 Interchange 
stage 

8398.3 

[23] 6,8,10 80 94 1.8 9.1 1.9 0.13 Rates, 
resolution 

240.7 

[36] 6-10 20 8 1.8 9.1 3.2 0.18 Rates 72.0 
[16] - 20 37 1.8 9.3 1 0.18 Rates, 

resolution 
90.6 

This 
work 

8,10 2.5-
40 

35.4 2.5 9.2 1.9 0.35 Rates, 
resolution 

23.3 
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Figure 7.20 Comparison of reconfigurable ADC 
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comparsion of reconfigurable ADC with pipeline ADC (BW)
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Figure 7.21 Bandwidth Comparison of reconfigurable ADC with pipeline ADC 
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Figure 7.22 FOM1 comparison of reconfigurable ADC with pipeline ADC 
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comparsion of reconfigurable ADC with pipeline ADC (FOM2)
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Figure 7.23 FOM2 comparison of reconfigurable ADC with pipeline ADC 

 

FOM2 is the evaluation of energy per conversion-step. It looks like that the 

FOM2 in figure 7.23 is more random than FOM1 and BW in figure 7.22 and 7.21. 

However, smaller FOM2 always means better power efficiency. 

 

7.4.3 Comparison of Reconfigurable ADC with All ADC 

The trend of the negative correlation between BW and SNDR is making more 

sense when compared with all the ADCs regardless of the architectures. For the previous 

plot in figure 7.21, the span of SNDR and BW is too small for pipeline ADC. The 

performance of this work is still comparable with other ADCs as shown in figure 7.24. 
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comparsion of reconfigurable ADC with all ADC
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Figure 7.24 Bandwidth comparison of reconfigurable ADC with all ADC 

 

The power efficiency of data converters with SNDR for all the ADCs is shown in 

figure 7.25. The positive correlation is clearly shown in this figure. For the same SNDR, 

the lower the data point, the higher the power efficiency. 

 

It seems that there is no correlation between FOM2 and SNDR as shown in figure 

7.26. However, the latest published results in ISSCC and VLSI have lower FOM2 

regardless of the SNDR. The trend is that the FOM2 moves down for the latest design. 

This design is also considered a good design when compared with other ADCs. 
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comparsion of reconfigurable ADC with all ADC (FOM1)
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Figure 7.25 FOM1 comparison of reconfigurable ADC with all ADC. 
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Figure 7.26 FOM2 comparison of reconfigurable ADC with all ADC.
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CHAPTER 8 

 
CONCLUSIONS 

 

Design methodology, prototype implementation and measurement results are 

presented in the previous chapters. In this chapter, some unaddressed issues are first 

discussed in section 8.1, and then conclusions are drawn based on the measurement 

results in section 8.2.  

 
8.1 Discussions 

The configurations on the conversion rate and resolution described in this work can 

be extended to other forms depending on applications. For this work, two configurations 

are implemented based on the requirements of the bioinstrument. With the help of the 

interference elimination technique, one can always route the input signal to the stage 2 or 

the stage 4, then a 7~10 bits reconfigurable ADC can be realized. If more configurations on 

the conversion rate are needed, a low-resolution current steering DAC can be designed, by 

turning on or off those switches, different bias current could be obtained. One problem with 

the OTAs is that they cannot afford complicated reconfigurations and their power 

efficiency may not be very high for every speed configuration. 
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The integrated circuit chip developed in this work will either work in operating 

rooms or stay inside human bodies. The temperature variation in both cases is very small, 

so no temperature compensation circuits were employed in this work. The temperature 

range is targeted from 0 to 70 °C. 

 

For the OTA bias, the bias currents are generated from the voltage reference and 

off-chip resistors. For wide range temperature applications, one can use constant gm bias 

scheme to replace the bias generation circuit in this work.  

 

Since noncoherent sampling is employed, a window function must be applied 

before the FFT analysis. Different window functions have different effects on resolution 

and spectrum leakage. A Hann window function (another name is raised cosine) was 

applied during the FFT analysis of this work. There is a possibility that other windows 

may lead to better results.  

 

The voltage reference [78] and reference buffer are not implemented on chip. For 

a pipeline ADC, two voltage references are required to give an upper and lower bound for 

full-scale signal. The voltage references should be very stable. The pipeline stages may 

draw a large amount of transient current during the conversion. Therefore, the impedance 

of reference buffers must be very small. The –3 dB bandwidth and slew rate must be 

large for fast transient response. 
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The pipeline ADC requires a differential input. Therefore, a balun (or 

transformer) is used to convert the signal from single-ended to differential with AC 

coupling. However, attention must be paid on the signals which applied on the input. For 

low frequency signals, a significant attenuation and distortion will corrupt the signals. For 

high frequency signals, attenuation is observed during the measurement. 

 

The signal generator (Tektronix AFG 3102) has a very large third order 

harmonics. This harmonic tone in the signal tends to limit the linearity of the test results. 

For 10.7 MHz signal, a band pass filter was applied during the measurements. The SNDR 

gains 3 dB (0.5 bit in ENOB) with the BPF. The measurement results beyond 10.7 MHz 

in this work could improve a 0.5 bit by using BPF. 

 
The telescopic OTAs in pipeline stages require different common mode voltages 

for input and output. The input common voltage is set to 1 V and output common voltage 

is set to 1.25 V. 

 

There is also another possible way to maintain the inversion coefficient of the 

transistors in OTA [79, 80]. Chen et al report an innovative circuit that can alter the 

transistor bias by tracking the temperature change to keep it operating in constant 

inversion coefficient. This circuit has a better tradeoff on decreasing the variation of 
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small signal bandwidth and large signal slew rate over constant current and constant gm 

bias schemes. The only problem with that circuit is that the floating NPN transistors are 

used to generate the PTAT voltage which may not be available in most of the CMOS 

technologies. 

 
8.2 Conclusions 

The developed ADC chip in this work achieves 0.39/-0.62 LSB DNL, 0.87/-0.88 

LSB INL, 56.9 dB SNDR and 9.2 bits ENOB under 2.5 V power supply for 10b, 

40MSPS mode with 35.4 mW power consumption and 0.16/-0.05 LSB DNL, 0.24/-0.25 

LSB INL, 49.2 dB SNDR and 7.9 bits ENOB for 8b, 2.5MSPS mode with 7.9 mW power 

consumption. The total area for this chip is about 1.9 mm2 with a 0.35 µm technology. 

 

The performance of the reconfigurable ADC can fulfill the requirements of the 

bioinstrument in terms of resolution, conversion rate, linearity, power and area 

constraints. 

 

The FOM4 of this work is the second best among all the reconfigurable ADCs 

reported. The FOM1 and FOM2 of this work are among the best when compared to the 

published results in ISSCC and VLSI in the past 11 years. 
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The interference elimination technique for reconfiguration is proved to be very 

useful. This technique will work even better for high-resolution applications. Moreover, 

this technique can be used for more configurations in resolution in theory. 

 

The reconfigurable OTA and scalable bias technique make an optimum tradeoff 

between power efficiency and speed. This technique can be extended to more 

configurations by careful design. 
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CHAPTER 9 

 
FUTURE WORK 

 

In this chapter, the future work of this design is addressed. A number of 

suggestions for future works related to this dissertation are presented. In particular, three 

components are identified and discussed in details. The reference and reference buffers 

are treated in section 9.1. The possible integration of the reconfigurable pipeline ADC 

with the signal processing IC is illustrated in section 9.2. The clock scheme and all the 

other potential works are listed in section 9.3. 

 

9.1 Reference and Reference Buffers 

In this design, the reference voltages are generated using off-chip components. 

The reference buffer is also off-chip. These circuit blocks can be integrated on-chip to 

decrease the number of off-chip components. There are 4 reference voltages needed in 

the reconfigurable ADC. They are vrefp, vrefn, vcmi and vcmo. The values for these 

references are 1.75 V, 0.75 V, 1 V and 1.25 V, respectively. These reference voltages can 

be generated using the circuit shown in figure 9.1.  
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Figure 9.1 Circuit used to generate the reference voltages. 

 

In this circuit, the bandgap reference voltage can be generated by combing a 

PTAT voltage with a negative TC Vbe voltage. The circuit used to generated this voltage 

can be found in [10]. 

 

The OTA used in figure 9.1 can be a one-stage or a two-stage OTA. For a two-

stage OTA, the compensation could be a problem due to three gain stages in the feedback 

loop. For a one-stage OTA, the voltage gain is relatively small, leading to an inaccurate 

static voltage. Since only the difference voltage between vrefp and vrefn is the main 

concern, the absolute inaccurate static voltage will not affects the results as long as these 

voltages are in the OTA output voltage range. 
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The requirements for the reference buffers are high bandwidth, large slew rate and 

high gain. These requirements are very challenge to be fulfilled especially under certain 

power constraints. There are total 4 reference buffers needed and the input voltage range 

is from 0.75 V to 1.75 V. If one buffer design can fit this voltage range, the input stage 

should be a complementary input pair. Moreover, in order to obtain high gain, cascode 

structure can be used. The slew rate can be improved by increasing the tail current of the 

input stage. The output stage should provide large transient current while only maintain a 

small quiescent current. Then a class AB output stage could be the best choice to meet 

the requirements. 

 

9.2 Reconfigurable ADC Application in Signal Processing IC 

As mentioned in chapter 1, the reconfigurable ADC developed in this work is 

mainly used to replace the SAR ADC in the cantilever array signal-processing IC. 

However, changes must be made for the other components in the IC to incorporate the 

reconfigurable pipeline ADC. The reconfigurable pipeline ADC requires a differential 

input and the signal for the previous SAR ADC is single ended. There are two ways to 

solve this problem. First method is converting the signal from single-ended to differential 

using a balun and another way is using a full differential instrumentation amplifier to 

replace the classic three opamp IA. Moreover, the digital circuit used to process 8-bit 

signal should be revised accordingly in order to process either 8-bit or 10-bit data 

depending on the ADC operation mode. 
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9.3 Clock Scheme and Other Work 

The reconfigurable ADC of this work requires two clocks for different 

configurations. They are 40 MHz and 2.5 MHz. The 2.5 MHz clock can be obtained by 

dividing the 40 MHz using a simple divider. In this work, this divider was not 

implemented because various clock frequencies other than these two clock frequencies 

were used to test the reconfigurable ADC. 

 

For the reconfigurable ADC, some pins are dedicated for testing. For field 

applications, these pins can be removed and the whole chip can be packaged in a 24-pin 

SOP package to reduce the volume of bioinstrument. 
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