147 research outputs found

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Reconfiguration of field programmable logic in embedded systems

    Get PDF

    High-Speed and Low-Cost Implementation of Explicit Model Predictive Controllers

    Get PDF
    This paper presents a new form of piecewise-affine (PWA) solution, referred to as PWA hierarchical (PWAH), to approximate the explicit model predictive control (MPC) law, achieving a very rapid control response with the use of very few computational and memory resources. This is possible because PWAH controllers consist of single-input single-output PWA modules connected in cascade so that the parameters needed to define them increase linearly instead of exponentially with the input dimension of the control problem. PWAH controllers are not universal approximators but several explicit MPC controllers can be efficiently approximated by them. A methodology to design PWAH controllers is presented and validated with application examples already solved by MPC approaches. The designed PWAH controllers implemented in field-programmable gate arrays provide the highest control speed using the fewest resources compared with the other digital implementations reported in the literature.Ministerio de Economía, Industria y Competitividad TEC2014-57971-

    A high resolution data conversion and digital processing for high energy physics calorimeter detectors readout

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    Circuit solutions to compensate for device degradation in analog design in scaled technologies

    Get PDF
    The continued aggressive scaling of semiconductor devices has had detrimental effects on the performance of those devices as used in analog circuitry. Specifically, the maximum intrinsic gain (MIG) of the devices continues to degrade as the device channel lengths are reduced below 100 nm and beyond. MIG is shown to degrade from 21.6 dB in a 180 nm technology to 12.2 dB in a 65 nm technology despite the application of traditional design techniques including device size scaling and bias voltage increases. This reduction in MIG along with other process scaling effects significantly complicates the design of linear amplifiers in these technologies. This work proposes the use of positive feedback to compensate for MIG degradation in linear amplifier design in scaled technologies. Criteria for stable and process tolerant design are derived and examined in the context of amplifier models of varying degrees of complexity. This analysis defines an all-encompassing positive feedback design methodology for use in linear amplifier design of low-gain high-frequency amplifier design. Additionally, the effects of positive feedback are compared and contrasted to the effects of the commonly studied negative feedback design methodology. Finally, the methodology is applied to a differential amplifier stage in TSMC\u27s 65 nm process using standard threshold voltage, thin oxide CMOS devices. These amplifiers were fabricated and tested to validate the positive feedback design methodology. Simulation shows that 98.4% of positive feedback amplifiers have improved gain over the baseline differential amplifier with an average improvement in gain of 10.3 dB. Silicon measurements of the amplifier gain show improvements of 17.1 dB on average. Similar to the application of negative feedback, gain improvement is achieved at the cost of frequency response. The gain-bandwidth product of the amplifier is reduced by an average of 18.4 GHz from 44.6 GHz. The circuitry required to implement this technique represent a meager 6% increase in silicon area from 460 μm2 to 488 μm2

    Scaling and intrinsic parameter fluctuations in nanoCMOS devices

    Get PDF
    The core of this thesis is a thorough investigation of the scaling properties of conventional nano-CMOS MOSFETs, their physical and operational limitations and intrinsic parameter fluctuations. To support this investigation a well calibrated 35 nm physical gate length real MOSFET fabricated by Toshiba was used as a reference transistor. Prior to the start of scaling to shorter channel lengths, the simulators were calibrated against the experimentally measured characteristics of the reference device. Comprehensive numerical simulators were then used for designing the next five generations of transistors that correspond to the technology nodes of the latest International Technology Roadmap for Semiconductors (lTRS). The scaling of field effect transistors is one of the most widely studied concepts in semiconductor technology. The emphases of such studies have varied over the years, being dictated by the dominant issues faced by the microelectronics industry. The research presented in this thesis is focused on the present state of the scaling of conventional MOSFETs and its projections during the next 15 years. The electrical properties of conventional MOSFETs; threshold voltage (VT), subthreshold slope (S) and on-off currents (lon, Ioffi ), which are scaled to channel lengths of 35, 25, 18, 13, and 9 nm have been investigated. In addition, the channel doping profile and the corresponding carrier mobility in each generation of transistors have also been studied and compared. The concern of limited solid solubility of dopants in silicon is also addressed along with the problem of high channel doping concentrations in scaled devices. The other important issue associated with the scaling of conventional MOSFETs are the intrinsic parameter fluctuations (IPF) due to discrete random dopants in the inversion layer and the effects of gate Line Edge Roughness (LER). The variations of the three important MOSFET parameters (loff, VT and Ion), induced by random discrete dopants and LER have been comprehensively studied in the thesis. Finally, one of the promising emerging CMOS transistor architectures, the Ultra Thin Body (UTB) SOl MOSFET, which is expected to replace the conventional MOSFET, has been investigated from the scaling point of view

    An ultra-low voltage FFT processor using energy-aware techniques

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Page 170 blank.Includes bibliographical references (p. 165-169).In a number of emerging applications such as wireless sensor networks, system lifetime depends on the energy efficiency of computation and communication. The key metric in such applications is the energy dissipated per function rather than traditional ones such as clock speed or silicon area. Hardware designs are shifting focus toward enabling energy-awareness, allowing the processor to be energy-efficient for a variety of operating scenarios. This is in contrast to conventional low-power design, which optimizes for the worst-case scenario. Here, three energy-quality scalable hooks are designed into a real-valued FFT processor: variable FFT length (N=128 to 1024 points), variable bit precision (8,16 bit), and variable voltage supply with variable clock frequency (VDD=1 80mV to 0.9V, and f=164Hz to 6MHz). A variable-bit-precision and variable-FFT-length scalable FFT ASIC using an off-the-shelf standard-cell logic library and memory only scales down to 1V operation. Further energy savings is achieved through ultra-low voltage-supply operation. As performance requirements are relaxed, the operating voltage supply is scaled down, possibly even below the threshold voltage into the subthreshold region. When lower frequencies cause leakage energy dissipation to exceed the active energy dissipation, there is an optimal operating point for minimizing energy consumption.(cont.) Logic and memory design techniques allowing ultra-low voltage operation are employed to study the optimal frequency/voltage operating point for the FFT. A full-custom implementation with circuit techniques optimized for deep voltage scaling into the subthreshold regime, is fabricated using a standard CMOS 0.18[mu]m logic process and functions down to 180mV. At the optimal operating point where the voltage supply is 350mV, the FFT processor dissipates 155nJ/FFT. The custom FFT is 8x more energy-efficient than the ASIC implementation and 350x more energy-efficient than a low-power microprocessor implementation.by Alice Wang.Ph.D

    Design of Multi-Gigabit Network Interconnect Elements and Protocols for a Data Acquisition System in Radiation Environments

    Get PDF
    Modern High Energy Physics experiments (HEP) explore the fundamental nature of matter in more depth than ever before and thereby benefit greatly from the advances in the field of communication technology. The huge data volumes generated by the increasingly precise detector setups pose severe problems for the Data Acquisition Systems (DAQ), which are used to process and store this information. In addition, detector setups and their read-out electronics need to be synchronized precisely to allow a later correlation of experiment events accurately in time. Moreover, the substantial presence of charged particles from accelerator-generated beams results in strong ionizing radiation levels, which has a severe impact on the electronic systems. This thesis recommends an architecture for unified network protocol IP cores with custom developed physical interfaces for the use of reliable data acquisition systems in strong radiation environments. Special configured serial bidirectional point-to-point interconnects are proposed to realize high speed data transmission, slow control access, synchronization and global clock distribution on unified links to reduce costs and to gain compact and efficient read-out setups. Special features are the developed radiation hardened functional units against single and multiple bit upsets, and the common interface for statistical error and diagnosis information, which integrates well into the protocol capabilities and eases the error handling in large experiment setups. Many innovative designs for several custom FPGA and ASIC platforms have been implemented and are described in detail. Special focus is placed on the physical layers and network interface elements from high-speed serial LVDS interconnects up to 20 Gb/s SSTL links in state-of-the-art process technology. The developed IP cores are fully tested by an adapted verification environment for electronic design automation tools and also by live application. They are available in a global repository allowing a broad usage within further HEP experiments

    Turbo decoder VLSI implementations for multi-standards wireless communication systems

    Get PDF
    • …
    corecore