20,517 research outputs found

    Enhancing simulation education with intelligent tutoring systems

    Get PDF
    The demand for education in the area of simulation is in the increase. This paper describes how education in the field of simulation can take advantage of the virtues of intelligent tutoring with respect to enhancing the educational process. For this purpose, this paper gives an overview of what constitutes the objectives and the content of a comprehensive course in discrete event simulation. The architecture of an intelligent tutoring system is presented and it is discussed how these sophisticated learning aids offer individualised student guidance and support within a learning environment. The paper then introduces a prototype intelligent tutoring system, the simulation tutor, and suggests how the system might be developed to enhance education in simulation

    Designing intelligent computerā€based simulations: A pragmatic approach

    Get PDF
    This paper examines the design of intelligent multimedia simulations. A case study is presented which uses an approach based in part on intelligent tutoring system design to integrate formative assessment into the learning of clinical decisionā€making skills for nursing students. The approach advocated uses a modular design with an integrated intelligent agent within a multimedia simulation. The application was created using an objectā€orientated programming language for the multimedia interface (Delphi) and a logicā€based interpreted language (Prolog) to create an expert assessment system. Domain knowledge is also encoded in a Windows help file reducing some of the complexity of the expert system. This approach offers a method for simplifying the production of an intelligent simulation system. The problems developing intelligent tutoring systems are examined and an argument is made for a practical approach to developing intelligent multimedia simulation systems

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction

    Design of teacher assistance tools in an exploratory learning environment for algebraic generalisation

    Get PDF
    The MiGen project is designing and developing an intelligent exploratory environment to support 11-14 year-old students in their learning of algebraic generalisation. Deployed within the classroom, the system also provides tools to assist teachers in monitoring students' activities and progress. This paper describes the architectural design of these Teacher Assistance tools and gives a detailed description of one such tool, focussing in particular on the research challenges faced, and the technologies and approaches chosen to implement the necessary functionalities given the context of the project

    An intelligent position-specific training system for mission operations

    Get PDF
    Marshall Space Flight Center's (MSFC's) payload ground controller training program provides very good generic training; however, ground controller position-specific training can be improved by including position-specific training systems in the training program. This report explains why MSFC needs to improve payload ground controller position-specific training. The report describes a generic syllabus for position-specific training systems, a range of system designs for position-specific training systems, and a generic development process for developing position-specific training systems. The report also describes a position-specific training system prototype that was developed for the crew interface coordinator payload operations control center ground controller position. The report concludes that MSFC can improve the payload ground controller training program by incorporating position-specific training systems for each ground controller position; however, MSFC should not develop position-specific training systems unless payload ground controller position experts will be available to participate in the development process

    Pictorial Socratic dialogue and conceptual change

    Get PDF
    Counter-examples used in a Socratic dialogue aim to provoke reflection to effect conceptual changes. However, natural language forms of Socratic dialogues have their limitations. To address this problem, we propose an alternative form of Socratic dialogue called the pictorial Socratic dialogue. A Spring Balance System has been designed to provide a platform for the investigation of the effects of this pedagogy on conceptual changes. This system allows learners to run and observe an experiment. Qualitative Cartesian graphs are employed for learners to represent their solutions. Indirect and intelligent feedback is prescribed through two approaches in the pictorial Socratic dialogue which aim to provoke learners probe through the perceptual structural features of the problem and solution, into the deeper level of the simulation where Archimedesā€™ Principle governs

    Intelligent tutoring systems research in the training systems division: Space applications

    Get PDF
    Computer-Aided Instruction (CAI) is a mature technology used to teach students in a wide variety of domains. The introduction of Artificial Intelligence (AI) technology of the field of CAI has prompted research and development efforts in an area known as Intelligent Computer-Aided Instruction (ICAI). In some cases, ICAI has been touted as a revolutionary alternative to traditional CAI. With the advent of powerful, inexpensive school computers, ICAI is emerging as a potential rival to CAI. In contrast to this, one may conceive of Computer-Based Training (CBT) systems as lying along a continuum which runs from CAI to ICAI. Although the key difference between the two is intelligence, there is not commonly accepted definition of what constitutes an intelligent instructional system

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the studentā€™s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the studentā€™s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85
    • ā€¦
    corecore