26,679 research outputs found

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver

    A study of two transaction-processing architectures for distributed real-time database systems

    Get PDF
    Cataloged from PDF version of article.A real-time data base system (RTDBS) is designed to provide timely response to the transactions of data-intensive applications. Processing a transaction in a distributed RTDBS environment presents the design choice of how to provide access to remote data referenced by the transaction. Satisfaction of the timing constraints of transactions should be the primary factor to be considered in scheduling accesses to remote data. In this article, we describe and analyze two different alternative approaches to this fundamental design decision. With the first alternative, transaction operations are executed at the sites where required data pages reside. The other alternative is based on transmitting data pages wherever they are needed. Although the latter approach is characterized by large message volumes carrying data pages, it is shown in our experiments to perform better than the other approach under most of the work loads and system configurations tested. The performance metric used in the evaluations is the fraction of transactions that satisfy their timing constraints. © 1995

    The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis

    Get PDF
    Datastores today rely on distribution and replication to achieve improved performance and fault-tolerance. But correctness of many applications depends on strong consistency properties - something that can impose substantial overheads, since it requires coordinating the behavior of multiple nodes. This paper describes a new approach to achieving strong consistency in distributed systems while minimizing communication between nodes. The key insight is to allow the state of the system to be inconsistent during execution, as long as this inconsistency is bounded and does not affect transaction correctness. In contrast to previous work, our approach uses program analysis to extract semantic information about permissible levels of inconsistency and is fully automated. We then employ a novel homeostasis protocol to allow sites to operate independently, without communicating, as long as any inconsistency is governed by appropriate treaties between the nodes. We discuss mechanisms for optimizing treaties based on workload characteristics to minimize communication, as well as a prototype implementation and experiments that demonstrate the benefits of our approach on common transactional benchmarks

    Issues in providing a reliable multicast facility

    Get PDF
    Issues involved in point-to-multipoint communication are presented and the literature for proposed solutions and approaches surveyed. Particular attention is focused on the ideas and implementations that align with the requirements of the environment of interest. The attributes of multicast receiver groups that might lead to useful classifications, what the functionality of a management scheme should be, and how the group management module can be implemented are examined. The services that multicasting facilities can offer are presented, followed by mechanisms within the communications protocol that implements these services. The metrics of interest when evaluating a reliable multicast facility are identified and applied to four transport layer protocols that incorporate reliable multicast
    corecore