
ELSEVIER

A Study of Two Transaction-Processing
Architectures for Distributed Real-Time
Data Base Systems

ijzgiir Ulusoy

A real-time data base system (RTDBS) is designed to
provide timely response to the transactions of data-
intensive applications. Processing a transaction in a
distributed RTDBS environment presents the design
choice of how to orovide access to remote data refer- _.._._- _. .._.. __ I-.----- _-_--_ __ ._. .___ ____ ._ _.
enced by the transaction. Satisfaction of the timing
constraints of transactions should be the primary fac-
tor to be considered in scheduling accesses to remote
data. In this article, we describe and analyze two
different alternative approaches to this fundamental
design decision. With the first alternative, transaction
operations are executed at the sites where required
data pages reside. The other alternative is based on
transmitting data pages wherever they are needed.
Although the latter approach is characterized by large
message volumes carrying data pages, it is shown in
our experiments to perform better than the other ap-
proach under most of the work loads and system
configurations tested. The performance metric used in
the evaluations is the fraction of transactions that
satisfy their timing constraints.

1 INTRnnl ICTlf-lN1I_V.._..

Transactions processed in real-time data base sys-
tems (RTDBS) are associated with timing con-
straints, typically in the form of deadlines. Com-
puter-integrated manufacturing, the stock market,
banking, and command and control systems are sev-
eral examples of RTDBS applications in which the
timeliness of transaction response is as important as
the consistency of data. In processing RTDBS trans-

actions, it is very difficult to provide schedules guar-
anteeing all transaction deadlines. This difficulty
comes from the consistency requirement of the un-
derlying data base. The performance goal in RTDBS
scheduiing is to minimize the number of transac-
tions that miss their deadlines.

Processing a transaction in a distributed RTDBS
environment presents the design choice of how to
provide access to remote data referenced by the
transaction. In this article, we analyze two different
alternatives to this fundamental design decision. The
first alternative is the distributed transaction architec-
ture, in which transaction operations are executed at
the sites where required data pages’ reside. The
other alternative is the mobile data architecture, so
named because, in this case, remote data pages
required by a transaction are moved to the site of
the transaction. A potential disadvantage of this
approach is the communication overhead due to
transmission of data pages between sites. However,
the availability of new communication techniques
thnt nmvirlp. hioh-sneerI Inrrre-vnh~rn~ data &an&r .____ =--. --_ ‘__D-’ lr ---, ___D_ .- ______ --_-
reduces the communication overhead (Frieder,
1989). In both architectures, the primary factor con-
sidered in scheduling data accesses is the timing
constraints of transactions.

This article presents a comprehensive simulation
study that compares the performance of distributed
RTDBS under those two different transaction-
processing architectures. A detailed performance

Address correspondence to ProjI dzgiir Ulusoy, Computer Engi-
neering and Information Sciences, Bilkent Uniuersity, Bilkent, Ankara
06533, Turkey.

In both design approaches, a page is considered as the unit of
buffering and data access.

J. SYSTEMS SOFTWARE 1995; 31:97-108
0 1995 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/95/$9.50
SSDI 0164-1212(94)00090-A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52924426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

98 J. SYSTEMS SOFTWARE
1995; 31:97-108

6. Ulusoy

model of a distributed RTDBS was used in the
evaluation of the architectures. The performance
model captures the basic characteristics of a dis-
tributed data base system that processes transac-
t;nno ,=oph .,crnr;.,t,=rl -r&h 9 t;m;nrr ,.nnctr&nt in th,= l.,“IKi, VLltill U.Xi”~~UC”” nlLll u Llllllll5 ti”IIULIIlIIIL 111 C&l”
form of a deadline. A unique priority is assigned to
each transaction based on its deadline. The transac-
tion-scheduling decisions are basically affected by
transaction priorities. Various simulation experi-
ments were carried out to study the relative perfor-
mance of transaction-processing architectures under
different work loads and system configurations. We
also tried to find out how the locality of data refer-
ences affects the performance of each architecture.
The performance metric used in the evaluations is
success-ratio, which gives the fraction of, transac-
tions that satisfy their deadlines.

To the best of our knowledge, no detailed in-
vestigation of transaction-processing architectures in
RTDBS has been performed so far. As described in
the following paragraphs, there have been some
performance studies related to transaction schedul-
ing in RTDBS; however, these studies were not
specifically concerned with the performance of un-
derlying transaction-processing architectures.

The first attempt to evaluate the performance of
transaction-scheduling algorithms in RTDBS was
provided in Abbott and Garcia-Molina (1988, 1989).
The authors described and evaluated through simu-
lation a group of real-time scheduling policies based
nn Pnfnrrinn rlQto mnrictpnrrr hv 11~~ nf I hlm_nhlrp “I1 ““I”‘V”‘6 vucu V”“Y’“C”“V, “J LAY” “1 u C..“~~“‘UY”
locking concurrency control mechanism. Huang et
al. (1991) developed a new lock-based concurrency
control protocol by combining some existing schemes
to capitalize on the advantages of each of those
schemes. Haritsa et al. (1990,1992) studied, by simu-
lation, the relative performance of two-well known
classes of concurrency control algorithms (locking
protocols and optimistic techniques) in an RTDBS
environment. Agrawai et ai. (1992j proposed a new
locking approach, referred to as ordered sharing,
which attempts to eliminate blocking of read and
write operations in RTDBS. Son et al. (1992) exam-
ined a priority-driven locking protocol that decom-
poses the problem of concurrency control into two
subproblems, namely, read-write synchronization and
write-write synchronization, and integrates the solu-
tions with two subproblems considering transaction
priorities. In Kim and Srivastava (1991), new multi-
version concurrency control algorithms were pro-
posed to increase concurrency in RTDBS. We de-
scribed several real-time concurrency control proto-
cols and reported their relative performance in a
single-site RTDBS (Ulusoy and Belford, 1993).

The remainder of the article is organized as fol-
lows. The next section describes the transaction-
processing architectures studied. Section 3 provides
the structure and characteristics of a distributed
‘13TnFzc mnrlpi .lcp,-r in thp nrrOi..n+;~n nf thp 0Pnh;m L.IUYU III”UtiI uoI/u 11. cuti ~“~I~QCI”II “1 c111, 41n1.-
tectures. Section 4 describes a set of experiments
and our initial findings. Finally, Section 5 summa-
rizes the conclusions of our work.

2. TWO ALTERNATIVE TRANSACTION-
PROCESSING ARCHITECTURES

Two different architectures for nrocessine RTDBS T_-__“___O -__-_-L
transactions are studied: distributed transaction (DT)
and mobile data (MD). In the DT architecture, a
transaction executes a cohort at each site that stores
one or more data pages required by the transaction.
This architecture was already studied for traditional
distributed data base management systems by a
number of researchers [e.g., Kohler and Jeng (19861,
Garcia-Molina and Abbott (19871, Carey and Livny
II #-loo\, *
~YUOIJ. A uistrmuteu trdnsdcuon -was mod&d as a >:,I_lL..I _ J L..C _. _lc -LI - ._

collection of cohort processes to be executed at
various data sites. As detailed in the next subsection,
we extend this transaction model to a real-time
environment in which the timing constraints of
transactions are involved in scheduling local and
remote data access requests of transactions.

The MD architecture, on the other hand, is based
on transmitting data pages to wherever they are
needed. This method is typically used in client/
server data base management systems. In a client/
server system, the data base resides on the server
site, and items in the data base are accessed by
application programs running on client sites (Wang
and Rowe, 1991; Franklin et al., 1992). Data items
required by the programs are shipped to the clients
running the programs. We generalize this model to a
distributed data base system in which each site can
have its own data base and data items can be trans-
ferred among sites are needed. Timing constraints of
transactions again play the major role in data ac-
cess-scheduling decisions.

Both transaction-processing architectures de-
scribed in the following subsections assume that
there exists exactly one copy of each data page in
the system.

2.1 DT Architecture

Each DT in this architecture exists in the form of a
master process that executes at the originating site
of the transaction and a collection of cohort pro-

A Study of Two Architectures .I. SYSTEMS SOFTWARE 99
1995; 31:97-108

cesses that execute at various sites where the re-
quired data pages reside. Each transaction is as-
signed a globally unique priority based on its real-
time constraint. This priority is carried by all of the
cohorts of the transaction to be used in scheduling
cohorts’ executions. There can be at most one co-
hort of a transaction at each data site. If there exists
any local data in the access list of the transaction,
then one cohort is executed locally. The operations
of a transaction are executed in a sequential man-
ner, one at a time. For each operation executed, a
global data dictionary is referred to to find out which
data site stores the data page referenced by the
operation. A cohort process is initiated at that site
(if it does not exist already) by the master process by
sending an initiate cohort message to that site. If a
cohort of the transaction already exists at that site,
then it is activated only to perform the operation.
Before accessing a data page, the cohort needs to
obtain a lock on the page. In the case of a lock
conflict (i.e., the lock has already been obtained by
another cohort), if the lock-holding cohort has higher
priority than the priority of the cohort that is re-
questing the lock, then the latter cohort is blocked.
Otherwise, the lock-holding cohort is aborted and
the lock is granted to the high-priority lock-request-
ing cohort. There is no possibility of blocking dead-
lock, because a high-priority transaction is never
blocked by a lower priority transaction. After the
successful completion of an operation, the result of
the operation is sent to the master process, and the
next operation of the transaction is executed by the
appropriate cohort. When the last operation is com-
pleted, the transaction can be committed.

Upon the abort of a cohort, a message is sent to
the master process of the aborted cohort to restart
the whole transaction. The master process notifies
the schedulers at all relevant sites to cause the
cohorts of that transaction to abort. Then it waits for
abort confirmation messages from each of these
sites. When all the abort messages are received, the
master can restart the transaction.

The effects of a distributed transaction on the
data must be made visible at all sites in an all-or-
nothing fashion. The so-called atomic commitment
property can be provided by a commit protocol,
which coordinates the cohorts such that either all of
them or none of them commit. We used the central-
ized two-phase commit protocol (Bernstein et al.,
1987) for the atomic commitment of the distributed
transactions. For the commitment of a transaction
T, the master process of T is designated as coordi-
nator, and each cohort process executing T’s opera-
tions acts as a participant at its site. Following the

execution of the last operation of transaction T, the
coordinator (i.e., the master process of T) initiates
phase 1 of the commit protocol by sending a uote-
request message to all participants (i.e., cohorts of
T) and waiting for a reply from each of them. If a
participant is ready to commit, then it votes for
commitment; otherwise, it votes for abort. An abort
decision terminates the commit protocol for the
participant. After collecting the votes of all partici-
pants, the coordinator initiates phase 2 of the com-
mit protocol. If all participants vote for commit,
then the coordinator broadcasts a commit message
to them; otherwise, if any participant’s decision is
abort, then it broadcasts an abort message to the
participants that voted for commit. If a participant,
waiting for a message from the coordinator, receives
a commit message, then the execution of the cohort
of T at that site finishes successfully. After the
successful commit of T, each cohort can write its
updates (if any) into the local data base of its site.
An abort message from the coordinator causes the
cohort to be aborted. In that case, the data updates
performed by the cohort are simply ignored.

The blocking delay of two-phase commit (i.e., the
delay experienced at both the coordinator site and
each of the participant sites while waiting to receive
messages from each other) is explicitly simulated in
conducting the performance experiments.

2.2 MD Architecture

This architecture is characterized by the movement
of data pages among the sites. With this approach,
each transaction is executed at a single site (the site
at which it originated). Whenever a remote data
page is needed by a transaction, the page is trans-
ferred to the site of the transaction. Besides the
global data dictionary, which shows the origin of
each data page in the system, each data site also
maintains a relocation table to keep track of the
pages transferred from/to that site. More specifi-
cally, for each data page P whose origin is site Si
and current location is site Sj, a record is main-
tained in the relocation table of each of the sites Si
and S;. The record in the relocation table of Si
shows that P has been sent to S,, and the record in
the relocation table of S, shows that P has been
transferred from S,.

Similar to the DT architecture, the operations of a
transaction are executed one at a time. For each
operation of a transaction T executed at site Si, the
data dictionary of Si is referred to to find out the
origin of the required data page P. If page P origi-
nated at site Si but currently resides at another site,

100 J. SYSTEMS SOFTWARE
1995; 31:97-108

6. Ulusoy

then a request message is sent to that site. If P has
a remote origin, say, site Sj, and its current location
is not Si, then a request message is sent to Sj.. The
message includes the id of transaction T, its priority,
the id of originating site Si, and the id of the
requested data page P. If P has been shipped to
another site S,, then the request message is for-
warded to S,.

Similar to DT, access to a data page is controlled
on the basis of transaction priorities. Transaction T
can obtain a lock on a page only if either the page is
not being accessed by any other transaction, or T’s
priority is higher than the priority of the transaction
currently accessing the page.’ If the lock is granted,
then the reply message contains both the grant and
the requested page; otherwise, the message causes
the transaction to become blocked until the re-
quested lock becomes available. When the execution
of a transaction finishes successfully, it can be com-
mitted locally. All updates performed by the transac-
tion are stored on the local disk.

2.2.1 Management of relocation tables. Whenever a
data page P with originating site Si is transmitted to
site Si, the relocation tables at both sites are up-
dated to keep track of the relocation information. A
record is inserted into the relocation table of Si to
store the current location of P (i.e., Sj>. The corre-
sponding record inserted into the relocation table of
Sj stores the origin of P (i.e., SJ If page P later
needs to be transmitted to another site Sk, then the
related record is removed from the relocation table
of Sj, and the id of originating site Si is sent to S,
within the message containing data page P. Upon
receiving that message, a new record is inserted into
the relocation table of Sk. Another message from
site Sj is sent to site Si containing the new location
of P so that the related record of the relocation
table of Si can be updated appropriately. It is en-
sured that the current location of a data page can
always be found out by communicating with the
originating site of that page.

3. DISTRIBUTED RTDBS MODEL

This section provides the model of a distributed
RTDBS that we used to evaluate the transaction-
processing architectures described in the preceding
section. In the distributed system model, a number
of data sites are interconnected by a local communi-

*This leads to a priority abort; the low-priority transaction
currently accessing the page is aborted.

cation network. Each site contains a transaction
generator, a transaction manager, a resource man-
ager, a message server, a scheduler, and a buffer
manager.

The transaction generator is responsible for gen-
erating the work load for each data site. The arrivals
at a data site are assumed to be independent of the
arrivals at the other sites. Each transaction in the
system is distinguished by a globally unique transac-
tion id. The id of a transaction is made up of two
parts: a transaction number, which is unique at the
originating site of the transaction, and the id of the
originating site, which is unique in the system.

Each transaction is characterized by a real-time
constraint in the form of a deadline. The transaction
deadlines are soft; i.e., each transaction is executed
to completion even if it misses its deadline. The
transaction manager at the originating site of a
transaction assigns a real-time priority to the trans-
action based on the earliest-deadline-first priority
assignment policy; i.e., a transaction with an earlier
deadline has higher priority than a transaction with
a later deadline. If any two transactions originating
from the same site carry the same deadline, then a
scheduling decision between those two transactions
prefers the one that has arrived earlier. To guaran-
tee the global uniqueness of the priorities, the id of
the originating site is appended to the priority of
each transaction. The transaction manager is re-
sponsible for the implementation of any of the
transaction-processing architectures (i.e., DT or MD)
described in the preceding section. With the MD
architecture, the management of the relocation table
at each site is also the responsibility of the transac-
tion manager.

There is no globally shared memory in the system,
and all sites communicate via message exchanges
over the communication network. A message server
at each site is responsible for sending/receiving
messages to/from other sites.

With the DT architecture, when a cohort com-
pletes its data access and processing requirements, it
waits for the master process to initiate two-phase
commit. The master process commits a transaction
only if all the cohort processes of the transaction
run to completion successfully; otherwise, it aborts
and later restarts the transaction. A restarted trans-
action accesses the same data pages as before. The
MD architecture, on the other hand, does not need
to use an atomic commitment protocol, because
each transaction is executed locally.

IO and CPU services at each site are provided by
the resource manager. IO service is required for
reading or updating data pages, whereas CPU ser-

A Study of Two Architectures

vice is necessary for processing data pages, perform-
ing various page access control operations (e.g., con-
flict check, locking, etc.), and processing communica-
tion messages. Both CPU and IO queues are orga-
nized on the basis of real-time priorities, and pre-
emptive-resume priority scheduling is used by the
CPUs at each site. The CPU can be released by a
transaction (or a cohort in the DT architecture)
either resulting from a preemption, or when the
transaction commits, or it is blocked/aborted be-
cause of a data conflict, or when it needs an IO or
communication service. Communication messages
are given higher priority at the CPU than other
processing requests.

Reliability and recovery issues are not addressed
here. We assumed a reliable system, in which no site
failures or communication network failures occur.
Also, we did not simulate in detail the operation of
the underlying communication network. It was sim-
ply considered as a switching element between sites
with a certain service rate.

Data transfer between disk and main memory is
provided by the buffer manager. The FIFO page
replacement strategy is used in the management of
memory buffers.

3.1 Distributed RTDBS Model Parameters

The set of parameters described in Table 1 is used
in specifying the configuration and work load of the

.I. SYSTEMS SOFTWARE 101
1995;31:97-108

distributed RTDBS. It is assumed that each site has
one CPU and one disk. The seek time at each disk
access is chosen randomly between 0.5 * DiskSeek-
Time and 1.5 * DiskSeekTime. Parameters Locality-
SetSize and LocalityProb are used to study the im-
pact of locality of data pages on the performance of
the system. Section 4.3 is devoted to evaluating the
effects of locality. The mean interarrival time of
transactions to each of the sites is determined by the
parameter MT. Arrivals are assumed to be Poisson.
The number of pages to be accessed by a transaction
is determined by use of the parameter XactSize. The
distribution of the number of pages is exponential.
SlackRate is the parameter used in assigning dead-
lines to new transactions (see the next section).

3.2 Deadline Calculation

The slack time of an RTDBS transaction specifies
the maximum length of time the transaction can be
delayed and still satisfy its deadline. In our system,
the transaction generator chooses the slack time of a
transaction randomly from an exponential distribu-
tion with a mean of SlackRate times the estimated
minimum processing time of the transaction. Al-
though the transaction generator uses the estima-
tion of transaction-processing times in assigning
deadlines, we assume that the system itself lacks the
knowledge of processing time information. The

Table 1. Distributed RTDBS Model Parameters

Parameter

Configuration
NrOjS’ites
DBSize
MemSize
PageSize
CPURate
InstrProcessPage
DiskSeekTime
DiskTransTime
InstrInitDisk
NWBandwidth
CtrfMesSize
InstrInitMes
InstrPerMesByt
Locali&&etSize
LocalityProb

Transaction
IAT
XactSize
UpdateRate
RemoteAccessRate
InstrStarcVact
InstrEndXact
SlackRate

Definition

Number of sites in the system
Data base size at each site (pages)
Size of the memory buffers used to hold data pages at each site (pages)
Page size (bytes)
Instruction rate of CPU at each site (million instructions per second)
Number of instructions to process each page
Average disk seek time (milliseconds)
Disk transfer time of one page (milliseconds)
CPU cost of initializing a disk access (instructions)
Network bandwidth (mega bits per second)
Size of a control message (bytes)
CPU cost to initialize sending/receiving a message (instructions)
CPU cost of sending/receiving each byte of a message (instructions)
Size of the set of the most recently accessed pages at a site
Probability of accessing a page in the locality set

Mean interarrival time of transactions at each site
Average number of pages accessed by a transaction
Probability of updating the accessed page
Probability of accessing a page with a remote origin
Number of instructions to initialize a transaction
Number of instructions to terminate a transaction
Average rate of slack time of a transaction to its processing time

102 J. SYSTEMS SOFJWARB
1995; 31:97-108

6. Ulusoy

deadline of a transaction T is determined by the
following formula:

deadline(T) = start_time(T)

where

+ minimum_processing_time-estimate(T)

+ slack_time(T)

slack-time(T)

= expon(SlackRate

* minimum-processing-time_estimate(T))

The estimated minimum processing time formula
determines the processing time of a transaction un-
der an ideal execution environment in which the
system is unloaded (i.e., no data and resource con-
flicts occur among transactions), and the transaction
does not require any data page that is remotely
placed. To satisfy the deadline, the delay experi-
enced by the transaction due to conflicts and remote
accesses should not exceed the slack time included
in the deadline formula.

minimum_processing_time_estimate(T)

= CPU_delay(T) + ZO_delay(T)

Let Pages(T) denote the actual number of pages
accessed by transaction T,

10-a
CPU-delay (T) = CpuRate

* (ZnstrStartXact + (1 + UpdateRate)

* Pages(T) * ZnstrProcessPage

+ZnstrEndXact)

IO-delay(T)

MemSize
= l--

DBSize
*Pages(T)

ZnstrZnitDisk

CPURate
* 10e3 + DiskSeekTime

+ DiskTransTime)I I + UpdateRate

ZnstrZnitDisk
* Pages(T) *

CPURate
*10-s

+ DiskSeekTime + DiskTransTime)I
The expression contained in the second pair of
square brackets corresponds to the delay experi-
enced while writing updated pages back into the
disk. The unit of both CPU-delay(T) and
IO-delay(T) is milliseconds.

Table 2. Distributed RTDBS Model Parameter Values

Parameter

NrOjSites
DBSize
MemSize
PageSize
CPURate
InstrProcessPage
DiskSeekTime
DiskTransTime
InstrInitDisk
NWBandwidth

CtrlMesSize
InstrInitMes
InstrPerMesByie
L4T
XactSize
UpdateRate
RemoteAccessRate
InstrStartXact
InstrEndXact
SlackRate

Value

10
1250 pages
200 pages
4 Kbytes
30 million instructions per second
30,000 instructions
20 milliseconds
2 milliseconds
5,000 instructions
10 mega bits per second (e.g., Ethernet),

100 mega bits per second
(e.g., Fiber Distributed Data Interface)

256 bytes
20,000 instructions
3 instructions
400 milliseconds
10 pages
0.5
0.5
30,000 instructions
40,000 instructions
10

4. PERFORMANCE EVALUATION

The details of the distributed RTDBS model and the
transaction-processing architectures described in
previous sections were captured in a simulation pro-
gram. The values of configuration and work load
parameters common to all simulation experiments
are presented in Table 2. All data sites in the system
are assumed identical and operate under the same
parameter values. The settings used for resource-
related parameters were basically taken from the
experiments of Franklin et al. (1992).3 Those values
can be accepted as reasonable approximations of
what can be expected from today’s systems. The
work load parameters were selected to provide a
transaction load and data contention high enough to
bring out the differences between the performances
of transaction-processing architectures. The high
transaction load was obtained by setting the average
interarrival time parameter (i.e, ZAT) to a relatively
small value that leads to CPU and IO utilizations of
> 90%. High levels of data contention were ob-
tained by considering a relatively small data base
size at each site (i.e., DBSize). This small data base
can be considered as the most frequently accessed
fraction of a larger data base. Under low transaction
loads or when data conflicts among transactions
were few, both architectures were observed to be

3There are a few differences between their values and ours,
because their simulator was designed for a client/server DBMS
architecture.

A Study of Two Architectures J. SYSTEMS SOFIWARE 103
1995; 31:97-108

equally successful in satisfying the timing constraints
of almost all transactions.

The performance metric used in the evaluation of
the architectures is success-ratio, i.e., the fraction of
transactions that satisfy their deadlines. The other
important performance metrics that helped us ana-
lyze the results are the average number and volume
of messages required to execute a transaction and
the average network delay and IO delay experienced
by each transaction. In simulating the MD architec-
ture, it is assumed that each data message contains
only one data page.

The simulation program was written in CSIM
(Schwetman, 19801, which is a process-oriented sim-
ulation language based on the C programming lan-
guage. For each configuration of each experiment,
the final results were evaluated as averages over 25
independent runs. Each configuration was executed
for 500 transactions originating at each site. Ninety-
percent confidence intervals were obtained for the
performance results. The width of the confidence
interval of each data point is within 4% of the point
estimate.

4.1 Varying Remote Data Access Rate

In this experiment, we investigated various perfor-
mance characteristics of transaction-processing ar-
chitectures under different levels of remote data
accesses issued by transactions. The level of remote
data accesses is determined by the parameter Re-
moteAccessRate and corresponds to the fraction of
data pages of remote origin in the set of all data
pages accessed by a transaction. It is assumed that
remote data accesses are uniformly distributed
among all remote sites (i.e., site of the remote data
is chosen randomly).

The first set of results examined in this section is
that of the resource requirements experienced by
each transaction under architectures DT and MD.
Those results help us analyze the relative perfor-
mance of the studied architectures. Figures 1 and 2
present, respectively, the average values of the num-
ber and the total volume (in bytes) of messages
exchanged between sites for each transaction. With
architecture DT, more messages are involved in
controlling the execution of a transaction. As de-
tailed in Section 2.1, the master process of a transac-
tion needs to send an initiate cohort message to each
site where a cohort of the transaction is executed.
The execution of a transaction operation at a re-
mote site is started on receiving an activate message
from the master process of the transaction, and the
result of the operation is sent back to the master

70

N - DT

0.0 0.2 0.4 0.6 0.8 1.0

FRACTION OF REMOTE DATA ACCESSES

Figure 1. Average number of messages sent per transac-
tion as a function of the level of remote data accesses.

process within an operation complete message. The
atomic commitment of a transaction also requires a
couple of messages to be exchanged between the
master process and each of the remote cohorts of
the transaction. With architecture MD, a request
message is generated for each operation accessing a
remote page,4 and the reply message contains the
requested page. There is no need to execute an
atomic commitment protocol with MD; transactions
can be committed locally without requiring commu-
nication with other sites.

Another factor that has a considerable influence
on the relative number of messages generated with
both architectures is the priority abort of transac-
tions resulting from priority-based page access con-
trol. With DT, when a cohort of a transaction is
aborted, the master process of the transaction should
send control messages to the sites executing the
cohorts of the transaction to notify them about the
abort decision. Also, when the aborted transaction is
restarted, the master process again requires to com-
municate with other sites to perform remote ac-
cesses, although it might already have communi-
cated with them before being aborted. With MD, on
the other hand, a restarted transaction can find the
previously accessed data pages in local buffers; thus,
it is not required to generate new request messages.

Although more messages need to be exchanged
with DT for the execution of each transaction, the
total volume of those messages is less than the
message volume of a transaction with the MD ap-

41f the requested page is not residing at its originating site,
then the message is forwarded to the current site of the page.

J. SYSTEMS SOFTWARE
1995; 31:97-108

- DT

+-oMD /’
/

4/ /
/

/
/

-

/ /

I

0.0 0.2 0.4 0.6 0.8 1.0

FRACTION OF REMOTE DATA ACCESSES

Figure 2. Average message volume (Kbytes) per transac-
tion as a function of the level of remote data accesses.

preach (Fig. 2). All messages associated with DT are
control messages (256 bytes), whereas with MD,
both control messages and data messages (contain-
ing four-Kbyte pages) are exchanged between sites.

The overhead of messages (in terms of both net-
work delay and CPU time used for processing mes-
sages) per transaction was also measured with the
DT and MD architectures. It was observed that if a
slow network is used, then the overall message cost
of a transaction does not show much difference
under different architectures. Figure 3 displays the
average values of the network delay, the CPU delay,
and the overall (network + CPU> delay of messages
issued for a transaction with both DT and MD. The

100

90

?j 60

: 70

g 60 50

; 40

L

+

30

20

10

0

_ Network de

Overall delay (DT
+ - + Overall delay (MD

0.0 0.2 0.4 0.6 0.8 1.0

FRACTION OF REMOTE DATA ACCESSES

012 014 0.6 018 1

FRACTION OF REMOTE DATA ACCESSES

Figure 3. Average delay (milliseconds) of messages for a
transaction with the slow network (NWBandwidth = 10

Figure 4. Average delay (milliseconds) of messages for a
transaction with the fast network WW&~~dwidth = 100

mega bits per second). mega bits per second).

0. Ulusoy

network delay values were obtained for a slow net-
work (i.e., with NWBandwidth = 10 mega bits per
second). The primary CPU cost of a message is the
initialization time experienced at the source (des-
tination) site for transmitting (receiving) the mes-
sage. Because more messages are generated with the
DT architecture, the CPU cost of the messages is
higher. On the other hand, higher volume of mes-
sages with the MD architecture results in greater
network delay for each transaction. The overall
overhead of messages with MD was shown to be
comparable to that of DT, however, when the exper-
iment was repeated with a faster network (i.e., by
setting ZVIVBundwidth to 100 mega bits per second),
MD was observed to provide lower message delay
(Figure 4). With a fast network, the CPU cost of
messages plays the major role in determining the
average delay of messages for a transaction.

Another resource requirement of transactions is
the disk access to read/write data pages. The impact
of the overhead of disk accesses on the relative
performance of transaction-processing architectures
was also investigated. Examining Figure 5, one can
see that use of MD considerably reduces the disk
access delay of a transaction experienced with DT.
The values presented in the figure include both the
delay of transferring data from/to disk and waiting
times at the disk queues. If all accesses are local,
then there is no difference between disk access
delays of DT and MD. As the friction of remote
data accesses increases, MD produces lower disk
access times for transactions. Remember that all the
updates of a transaction are written to the local disk
together at the commit time of the transaction. With
DT, each remote data page updated by the transac-

100

90

F 80
* Network delay (DT)
+ - o Network delay (MD)
t-f- Overall delay (DT)
+ - + Overall delay (MD)

A Study of Two Architectures J. SYSTEMS SOFlWARE 105
1995; 31:97-108

0.0 (I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

FRACTION OF REMOTE DATA ACCESSES

Figure 5. Average disk access delay (seconds) for a trans-
action.

tion is restored to the disk of data page’s site. A
separate disk access is required at each site storing
the pages updated by the transaction. With MD, on
the other hand, the updated remote pages can be
consecutively placed on the local disk preventing the
delay of separate seek time for each stored page.
The seek time constitutes the major delay of a disk
access (the value used in our experiments is
DiskSeekTime = 20 milliseconds).

With the resource requirement results in mind, we
now turn to the resulting real-time performance of
the transaction-processing architectures. The suc-
cess-ratio results with both a slow network
(hWBandwidth = 10 mega bits per second) and a
fast network (AWlandwidth = 100 mega bits per
second) are presented in Figure 6. When all the
pages accessed by each transaction are local, there is
no difference between the performances of the ar-
chitectures. Because the remote accesses are han-
dled in different ways by the architectures, the dif-
ference between their performances appears when
remote accesses are also considered for the transac-
tions. As more remote pages are accessed more
transactions miss their deadlines with both architec-
tures because of the involvement of communication
messages. If the underlying network is slow, then the
real-time performances of DT and MD are compa-
rable to each other. Under high levels of remote
data accesses, MD provides a slight improvement
over DT. Although each transaction is characterized
by lower resource requirements (in terms of disk
access delay and the number of messages exchanged
among sites to control transaction execution) with
MD, the higher volume of messages due to the
transmission of data pages prevents MD from being

0.9
s
c”
c 0.8

E
s 0.7

A” T 0.6

0.5

- - DT (slow network)

t - l MD (slow network)

- o--o DT (fast network)

+ - 8 MD (fast network)

0.4 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

FRACTION OF REMOTE DATA ACCESSES

Figure 6. Real-time performance in terms of success-ratio
(the fraction of transactions that satisfy their deadlines)
under both a slow and a fast network.

the clear winner. However, if the slow network is
replaced by a faster one, the message delay will no
longer be a bottleneck. As displayed in Figure 6,
with a fast network, DT cannot reach the real-time
performance level attained by MD. The difference
between the number of satisfied deadlines provided
with each architecture increases as the fraction of
remote accesses increases. This observation directly
follows the message and IO delay results obtained
with a fast network. The relative real-time perfor-
mance of the architectures is primarily determined
by the resource requirements of processed transac-
tions.

4.2 Evaluating Architectures Under a
NonreaLTime Environment

It was shown in the previous section that architec-
ture MD is preferable to DT in processing transac-
tions with real-time constraints (i.e., deadlines). The
performance of the architectures was evaluated in
terms of the fraction of satisfied transaction dead-
lines. To see whether there might be any differences
in the performance results if the transactions pro-
cessed are not characterized by timing constraints,
we repeated the experiments in an environment in
which no real-time priority information is involved
in scheduling data accesses of transactions. The
two-phase locking scheme is used in controlling con-
current accesses to data pages. The performance
metric used in the evaluations is the average re-
sponse time of transactions.

The results obtained with architectures DT and
MD are displayed in Figure 7. Again, two different

106 J. SYSTEMS SOFIWARE
1995; 3197-108

0. Ulusoy

-
C-.

R
E 2.5- *
s Q---o

i
s 2.0-

E

DT (slow network)
MD (slow network)
DT (fast network)
MD (fast network)

1.0 ; I I I I
0.0 0.2 0.4 0.6 0.8 1.0

FRACTION OF REMOTE DATA ACCESSES

Figure 7. Average response time (seconds) of transactions
in a nonreal-time environment.

networks with IVWBandwidth = 10 and 100 mega
bits per second, respectively, were used in the evalu-
ations. With the slow network, DT performed a little
bit better (i.e., produced lower average response
time) than MD. With the fast network, on the other
hand, MD achieved better performance; however, if
we compare the results with those presented in the
previous section, the performance improvement pro-
vided by MD over DT, in this case, is very limited. It
can be concluded that MD is not superior to DT in a
real-time environment. One reason is the fact that
no priority aborts occur in a nonreal-time environ-
ment, which lead to much higher message overhead
with DT than with MD, as explained before. Also,
with MD, the updates of a transaction are written to
disk together, therefore another transaction in the
IO queue has to wait until all those writes are
completed. On the other hand, in processing real-
time constrained transactions, IO queues are orga-
nized on the basis of transaction priorities. Thus, a
high-priority transaction can preempt a lower prior-
ity transaction writing its updates. The preemption
can help the high-priority transaction terminate as
soon as possible, whereas the low-priority transac-
tion can still have enough time to satisfy its dead-
line. This might be another factor leading to the
different results obtained in two different environ-
ments with separate performance metrics.

4.3 Sensitivity to the Page Access Locality

So far, the locality concept was not considered in the
experiments, and data pages accessed by each trans-
action were chosen on a random basis. In the experi-
ment discussed in this section, we tested the sensitiv-
ity of real-time performance results to the locality of

V.” ,

.O.l 013 015 017 019

PROBABILITY OF LOCALITY

Figure 8. Real-time performance in terms of success-ratio
(the fraction of transactions that satisfy their deadlines) as
a function of the locality of page references.

page references. To model page reference locality,
we used the locality set concept introduced in Wang
and Rowe (1991). Parameters LocalitySetSize and
LocaZityProb are used to model locality. The locality
set of a site is defined as the last x pages accessed
by the most recent transactions originating at that
site, and x is the value of the parameter LocalitySet-
Size. The parameter LocalityProb specifies the prob-
ability that a page accessed by an active transaction
is in the locality set.

The results displayed in Figure 8 were obtained
by setting LocalitySetSize to 30 pages. The experi-
ment was performed assuming a slow network
(AW4!?andwidth = 10 mega bits per second) and set-
ting the probability of accessing a page with a re-
mote origin (RemoteAccexsRate) to 0.5. The value of
Localityf’rob varied from 0.1 (corresponding to a low
locality) to 0.9 (very high locality) in increments of
0.2. Increasing the locality of page accesses results in
better performance with both architectures. For high
values of locality, because each page referenced by a
transaction has most probably been accessed re-
cently, it is likely that the page can be found in
memory buffers. This prevents the disk access delay,
which is a substantial overhead in transaction execu-
tion. As can be seen from Figure 8, MD benefits
more from increasing locality. This result is due to
the fact that, with MD, recently accessed pages with
remote origin, as well as the local ones, can be
found in local memory buffers. As a result, when
such a page needs to be reaccessed, no communica-
tion with remote sites is required. With DT, on the
other hand, each remote data page should be pro-
cessed at its site; thus, the locality cannot prevent

A Study of Two Architectures J. SYSTEMS SOFIWARE 107
1995: 31:97-108

the overhead of messages exchanged to control the
execution of remote operations.

The relative performance results obtained with
some other settings of LocalitySetSize were very
similar to those just discussed; thus, they are not
displayed here.

4.4 Varying the Page Size

In this experiment, we studied the impact of the
page size on the real-time performance of the sys-
tem. The values of parameters InstrProcessPage (i.e.,
number of instructions to process a page) and Disk-
TrunsTime (i.e., disk transfer time of a page) were
assumed to be proportional to the page size and
determined on the basis of the current value of
Page&e. The values of XactSize (i.e., average trans-
action size in pages) and DBSize (i.e., number of
pages stored in the data base of each site) were kept
constant while the performance was being measured
with different page sizes.

The performance obtained with architectures DT
and MD under various page sizes are presented in
Figure 9. Similar to the previous experiment, the
results were obtained by operating the system with a
slow network (NWBandwidth = 10 mega bits per
second) and with a remote data access probability
(RemoteAccessRute) of 0.5. Because the average
number of pages accessed by each transaction re-
mains the same, the resource requirements of trans-
actions (in terms of the CPU time, disk, and network
accesses) increase as the size of a page increases.
The higher resource contention among transactions
results in a decrease in performance; i.e., fewer
transactions can satisfy their deadlines as the ac-
cessed pages become larger. The page size has a

0.9

z
E 0.8

E

; 0.7

:: T 0.6

:,
0.5

0.46

1 2 3 4 5 6 7 8 9 10

PAGE SIZE

Figure 9. Real-time performance in terms of success_rutio
(the fraction of transactions that satisfy their deadlines) as
a function of PageSire (Kbytes).

greater impact on the performance with architecture
MD. Large page sizes lead to more communication
overhead for MD because data messages containing
pages as well as ‘short control messages need to be
exchanged among sites in controlling transaction
execution. MD performs well under small page sizes;
however, DT seems to be preferable if the system
has a large page size.

5. CONCLUSIONS

In this article, we described two different transac-
tion-processing architectures for distributed RTDBS
and evaluated their performance under various work
loads and system configurations. The primary perfor-
mance consideration in an RTDBS (i.e., a data base
system that processes transactions with timing con-
straints) is to provide schedules that maximize the
number of satisfied timing constraints. We investi-
gated how successful each transaction-processing ar-
chitecture is in achieving that performance goal.

The first architecture analyzed, DT, distributes
the execution of each transaction onto the sites that
store the data pages required by the transaction.
The other architecture, MD, moves the remote data
pages requested by a transaction to the site of the
transaction. The main drawback of DT is the large
number of messages required to control the execu-
tion of a distributed transaction, whereas the pri-
mary overhead of MD is the large-sized messages
carrying data pages between sites. Both architec-
tures consider the timing constraints of transactions
in scheduling accesses to data and hardware re-
sources.

To analyze the effectiveness of the transaction-
processing architectures in satisfying timing
constraints, we built a performance model of a dis-
tributed RTDBS. Various experiments were con-
ducted by use of a simulation program developed on
the basis of the performance model. The main con-
clusions of the experiments are as follows:

l The relative performance of the architectures is
primarily determined by the resource require-
ments of transactions processed under each of the
architectures. The results obtained in resource
requirement experiments (in terms of the average
number and volume of messages required to exe-
cute a transaction and the average network delay
and IO delay experienced by each transaction)
helped explain the behavior of the architectures
under various levels’ of remote data accesses.

‘The level of remote data accesses corresponds to the fraction
of remote data pages accessed by a transaction.

108 J. SYSTEMS SOFTWARE
1995;31:97-108

With a slow network, the overhead of messages
for each transaction did not show much difference
under two different architectures. Although the
average message volume with MD was much
higher, DT was not able to outperform MD be-
cause the cost of transferring a message is primar-
ily due to the CPU time to initiate sending/receiv-
ing the message, not the transmission time; DT
was characterized by the larger number of mes-
sages (compared to MD) issues for each transac-
tion. When a fast network was used, MD demon-
strated superior performance, especially under
high levels of remote data accesses. The average
volume of messages did not have any influence on
the performance.

To see how the performance results are affected
when transactions have no timing constraints, the
experiments were repeated by processing non-
real-time transactions and using the average re-
sponse time of transactions as the performance
metric. In this case, no considerable performance
improvement was provided by MD. The primary
reason for that result is the fact that no priority
aborts (due to timing constraints) occur in a non-
real-time environment, which was shown to lead to
much more message overhead with DT than with
MD.

We also investigated the effects of the locality of
data references on the performance of each archi-
tecture. Increasing the locality resulted in better
performance with both architectures DT and MD.
However, MD was shown to benefit more from
high locality due to storing recently accessed re-
mote pages in local memory buffers.

Although large page sizes affected both architec-
tures negatively, the page size appeared to have a
greater impact on the performance for MD when
the system was operated with a slow network.

In summary, our results suggest that MD architec-
ture should be preferred in distributed RTDBS un-
less the underlying network is very slow or the
system is characterized by very large data pages.

REFERENCES

Abbott, R., and Garcia-Molina, H., Scheduling real-time
transactions: A performance evaluation, in 14th Intema-
tional Conference on Very Large Data Bases, 1988, pp.
1-12.

Abbott, R., and Garcia-Molina, H., Scheduling real-time

6. Ulusoy

transactions with disk resident data, in 15th Intema-
tional Conference on Very Large Data Bases, 1989, pp.
385-396.

Agrawal, D., El Abbadi, A., and Jeffers, R., Using delayed
commitment in locking protocols for real-time databases,
in ACM SIGMOD Conference, 1992, pp. 104-113.

Bernstein, P. A., Hadzilacos, V., and Goodman, N., Con-
currency Control and Recovery in Database Systems, Ad-
dison-Wesley, 1987.

Carey, M. J., and Livny, M., Distributed concurrency con-
trol performance: A study of algorithms, distribution,
and replication, in 14th International Conference on Very
Large Data Bases, 1988, pp. 13-25.

Franklin, M. J., Carey, M. J., and Livny, M., Global
Memory Management in Client-Server DBMS Architec-
tures, Computer Science Technical Report no. 1094,
University of Wisconsin-Madison, Madison, Wiscon-
sin, 1992.

Frieder, O., Communication Issues in Data Engineering:
Have Bandwidth-Will Move Data, IEEE Data Eng.
Bull. (1989).

Garcia-Molina, H., and Abbott, R. K., Reliable Dis-
tributed Database Management, Proc. IEEE 75,
601-620 (1987).

Harnsa, J. R., Carey, M. J., and Livny, M., On being
optimistic about real-time constraints, ACM SIGACT-
SIGMOD-SIGART, 1990, pp. 331-343.

Haritsa, J. R., Carey, M. J., and Livny, M., Data Access
Scheduling in Firm Real-Time Database Systems, Real-
Time Syst. 4, 203-241 (1992).

Huang, J., Stankovic, J. A., Ramamritham, K., and Towsley,
D., On using priority inheritance in real-time databases,
in 12th Real-Time Systems Symposium, 1991, pp. 210-221.

Kim, W., and Srivastava, J., Enhancing real-time DBMS
performance with multiversion data and priority based
disk scheduling, in 12th Real-Time Systems Symposium,
1991, p. 222-231.

Kohler, W. H., and Jeng, B. H., Performance evaluation of
integrated concurrency control and recovery algorithms
using a distributed transaction testbed, in 6th Intema-
tional Conference on Distributed Computing Systems, 1986,
pp. 130-139.

Schwetman, H., CSIM: A C-based, process-oriented simu-
lation language, in Winter Simulation Conference, 1986,
pp. 387-396.

Son, S. H., Park, S., and Lin, Y., An integrated real-time
locking protocol, in 8th International Conference on Data
Engineering, 1992, pp. 527-534.

Ulusoy, G., and Belford, G. G., Real-Time Transaction
Scheduling in Database Systems, Infor. Syst. 18,559-580
(1993).

Wang, Y., and Rowe, L. A., Cache consistency and con-
currency control in a client/server DBMS architecture,
in ACM SIGMOD Conference, 1991, pp. 367-376.

