42 research outputs found

    Towards the Development of a Wearable Tremor Suppression Glove

    Get PDF
    Patients diagnosed with Parkinson’s disease (PD) often associate with tremor. Among other symptoms of PD, tremor is the most aggressive symptom and it is difficult to control with traditional treatments. This thesis presents the assessment of Parkinsonian hand tremor in both the time domain and the frequency domain, the performance of a tremor estimator using different tremor models, and the development of a novel mechatronic transmission system for a wearable tremor suppression device. This transmission system functions as a mechatronic splitter that allows a single power source to support multiple independent applications. Unique features of this transmission system include low power consumption and adjustability in size and weight. Tremor assessment results showed that the hand tremor signal often presents a multi-harmonics pattern. The use of a multi-harmonics tremor model produced a better estimation result than using a monoharmonic tremor model

    A Wearable Mechatronic Device for Hand Tremor Monitoring and Suppression: Development and Evaluation

    Get PDF
    Tremor, one of the most disabling symptoms of Parkinson\u27s disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human. It has been reported in the literature that tremor can be selectively suppressed by mechanical loading. Therefore, the objectives of this thesis were to develop a wearable tremor suppression device that can suppress tremor at the wrist and the fingers, and to evaluate it on individuals with PD in a pre-clinical trial. To address these objectives, several experiments were performed to quantify hand tremor; an enhanced high-order tremor estimator was developed and evaluated for tremor estimation; and a wearable tremor suppression glove (WTSG) was developed to suppress tremor in the index finger metacarpophalangeal (MCP) joint, the thumb MCP joint, and the wrist. A total of 18 individuals with PD were recruited for characterizing tremor. The frequencies and magnitudes of the linear acceleration, angular velocity, and angular displacement of tremor in the index finger MCP joint, the thumb MCP joint, and the wrist were quantified. The results showed that parkinsonian tremor consists of multiple harmonics, and that the second and third harmonics cannot be ignored. With the knowledge of the tremor characteristics, an enhanced high-order tremor estimator was developed to acquire better tremor estimation accuracy than its lower-order counterpart. In addition, the evaluation of the WTSG was conducted on both a physical tremor simulator and on one individual with PD. The results of the simulation study proved the feasibility of using the WTSG to suppress tremor; and the results of the evaluation on a human subject showed that the WTSG can suppress tremor motion while allowing the user to perform voluntary motions. The WTSG developed as a result of this work has demonstrated the feasibility of managing hand tremor with a mechatronic device, and its validation on a human subject has provided useful insights from the user\u27s perspectives, which facilitate the transition of the WTSG from the lab to the clinic, and eventually to commercial use. Lastly, an evaluation studying the impact of suppressed tremor on unrestricted joints was conducted on 14 individuals with PD. The results showed a significant increase in tremor magnitude in the unrestricted distal joints when the motions of the proximal joints were restricted. The average increase of the tremor magnitude of the index finger MCP joint, the thumb MCP joint, the wrist and the elbow are 54%, 96%, 124%, and 98% for resting tremor, and 50%, 102%, 49%, and 107% for postural tremor, respectively. Such a result provided additional clinical justification for the significance of the development of a wearable mechatronic device for hand tremor management. Although the focus of this thesis is on hand tremor management, the development and evaluation of a full upper-limb tremor suppression device is required as a future step, in order to advance the use of wearable mechatronic devices as one of the valid tremor treatment approaches

    A review on design of upper limb exoskeletons

    Get PDF

    Development of Digital Control Systems for Wearable Mechatronic Devices: Applications in Musculoskeletal Rehabilitation of the Upper Limb

    Get PDF
    The potential for wearable mechatronic systems to assist with musculoskeletal rehabilitation of the upper limb has grown with the technology. One limiting factor to realizing the benefits of these devices as motion therapy tools is within the development of digital control solutions. Despite many device prototypes and research efforts in the surrounding fields, there are a lack of requirements, details, assessments, and comparisons of control system characteristics, components, and architectures in the literature. Pairing this with the complexity of humans, the devices, and their interactions makes it a difficult task for control system developers to determine the best solution for their desired applications. The objective of this thesis is to develop, evaluate, and compare control system solutions that are capable of tracking motion through the control of wearable mechatronic devices. Due to the immaturity of these devices, the design, implementation, and testing processes for the control systems is not well established. In order to improve the efficiency and effectiveness of these processes, control system development and evaluation tools have been proposed. The Wearable Mechatronics-Enabled Control Software framework was developed to enable the implementation and comparison of different control software solutions presented in the literature. This framework reduces the amount of restructuring and modification required to complete these development tasks. An integration testing protocol was developed to isolate different aspects of the control systems during testing. A metric suite is proposed that expands on the existing literature and allows for the measurement of more control characteristics. Together, these tools were used ii ABSTRACT iii to developed, evaluate, and compare control system solutions. Using the developed control systems, a series of experiments were performed that involved tracking elbow motion using wearable mechatronic elbow devices. The accuracy and repeatability of the motion tracking performances, the adaptability of the control models, and the resource utilization of the digital systems were measured during these experiments. Statistical analysis was performed on these metrics to compare between experimental factors. The results of the tracking performances show some of the highest accuracies for elbow motion tracking with these devices. The statistical analysis revealed many factors that significantly impact the tracking performance, such as visual feedback, motion training, constrained motion, motion models, motion inputs, actuation components, and control outputs. Furthermore, the completion of the experiments resulted in three first-time studies, such as the comparison of muscle activation models and the quantification of control system task timing and data storage needs. The successes of these experiments highlight that accurate motion tracking, using biological signals of the user, is possible, but that many more efforts are needed to obtain control solutions that are robust to variations in the motion and characteristics of the user. To guide the future development of these control systems, a national survey was conducted of therapists regarding their patient data collection and analysis methods. From the results of this survey, a series of requirements for software systems, that allow therapists to interact with the control systems of these devices, were collected. Increasing the participation of therapists in the development processes of wearable assistive devices will help to produce better requirements for developers. This will allow the customization of control systems for specific therapies and patient characteristics, which will increase the benefit and adoption rate of these devices within musculoskeletal rehabilitation programs

    Mobile Mechatronic/Robotic Orthotic Devices to Assist–Rehabilitate Neuromotor Impairments in the Upper Limb: A Systematic and Synthetic Review

    Get PDF
    This paper overviews the state-of-the-art in upper limb robot-supported approaches, focusing on advancements in the related mechatronic devices for the patients' rehabilitation and/or assistance. Dedicated to the technical, comprehensively methodological and global effectiveness and improvement in this inter-disciplinary field of research, it includes information beyond the therapy administrated in clinical settings-but with no diminished safety requirements. Our systematic review, based on PRISMA guidelines, searched articles published between January 2001 and November 2017 from the following databases: Cochrane, Medline/PubMed, PMC, Elsevier, PEDro, and ISI Web of Knowledge/Science. Then we have applied a new innovative PEDro-inspired technique to classify the relevant articles. The article focuses on the main indications, current technologies, categories of intervention and outcome assessment modalities. It includes also, in tabular form, the main characteristics of the most relevant mobile (wearable and/or portable) mechatronic/robotic orthoses/exoskeletons prototype devices used to assist-rehabilitate neuromotor impairments in the upper limb

    A flexible sensor technology for the distributed measurement of interaction pressure

    Get PDF
    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted

    Pathological Tremor as a Mechanical System: Modeling and Control of Artificial Muscle-Based Tremor Suppression

    Get PDF
    Central nervous system disorders produce the undesired, approximately rhythmic movement of body parts known as pathological tremor. This undesired motion inhibits the patient\u27s ability to perform tasks of daily living and participate in society. Typical treatments are medications and deep brain stimulation surgery, both of which include risks, side effects, and varying efficacy. Since the pathophysiology of tremor is not well understood, empirical investigation drives tremor treatment development. This dissertation explores tremor from a mechanical systems perspective to work towards theory-driven treatment design. The primary negative outcome of pathological tremor is the undesired movement of body parts: mechanically suppressing this motion provides effective tremor treatment by restoring limb function. Unlike typical treatments, the mechanisms for mechanical tremor suppression are well understood: applying joint torques that oppose tremor-producing muscular torques will reduce tremor irrespective of central nervous system pathophysiology. However, a tremor suppression system must also consider voluntary movements. For example, mechanically constraining the arm in a rigid cast eliminates tremor motion, but also eliminates the ability to produce voluntary motions. Indeed, passive mechanical systems typically reduce tremor and voluntary motions equally due to the close proximity of their frequency content. Thus, mechanical tremor suppression requires active actuation to reduce tremor with minimal influence on voluntary motion. However, typical engineering actuators are rigid and bulky, preventing clinical implementations. This dissertation explores dielectric elastomers as tremor suppression actuators to improve clinical implementation potential of mechanical tremor suppression. Dielectric elastomers are often called artificial muscles due to their similar mechanical properties as human muscle; these similarities may enable relatively soft, low-profile implementations. The primary drawback of dielectric elastomers is their relatively low actuation levels compared to typical actuators. This research develops a tremor-active approach to dielectric elastomer-based tremor suppression. In a tremor-active approach, the actuators only actuate to oppose tremor, while the human motor system must overcome the passive actuator dynamics. This approach leverages the low mechanical impedance of dielectric elastomers to overcome their low actuation levels. Simulations with recorded tremor datasets demonstrate excellent and robust tremor suppression performance. Benchtop experiments validate the control approach on a scaled system. Since dielectric elastomers are not yet commercially available, this research quantifies the necessary dielectric elastomer parameters to enable clinical implementations and evaluates the potential of manufacturing approaches in the literature to achieve these parameters. Overall, tremor-active control using dielectric elastomers represents a promising alternative to medications and surgery. Such a system may achieve comparable tremor reduction as medications and deep brain stimulation with minimal risks and greater efficacy, but at the cost of increased patient effort to produce voluntary motions. Parallel advances in scaled dielectric elastomer manufacturing processes and high-voltage power electronics will enable consumer implementations. In addition to tremor suppression, this dissertation investigates the mechanisms of central nervous system tremor generation from a control systems perspective. This research investigates a delay-based model for parkinsonian tremor. Besides tremor, Parkinson\u27s disease generally inhibits movement, with typical symptoms including rigidity, bradykinesia, and increased reaction times. This fact raises the question as to how the same disease produces excessive movement (tremor) despite characteristically inhibiting movement. One possible answer is that excessive central nervous system inhibition produces unaccounted feedback delays that cause instability. This dissertation develops an optimal control model of human motor control with an unaccounted delay between the state estimator and controller. This delay represents the increased inhibition projected from the basal ganglia to the thalamus, delaying signals traveling from the cerebellum (estimator) to the primary motor cortex (controller). Model simulations show increased delays decrease tremor frequency and increase tremor amplitude, consistent with the evolution of tremor as the disease progresses. Simulations that incorporate tremor resetting and random variation in control saturation produce simulated tremor with similar characteristics as recorded tremor. Delay-induced tremor explains the effectiveness of deep brain stimulation in both the thalamus and basal ganglia since both regions contribute to the presence of feedback delay. Clinical evaluation of mechanical tremor suppression may provide clinical evidence for delay-induced tremor: unlike state-independent tremor, suppression of delay-induced tremor increases tremor frequency. Altogether, establishing the mechanisms for tremor generation will facilitate pathways towards improved treatments and cure development

    Real-time Parkinsonian Tremor Signal Identifier Based on Internal Model Principle

    Get PDF
    Parkinsonian tremor is one of the clinical hallmarks of Parkinson\u27s disease. Since the traditional medical treatments are not effective, many wearable devices are developed to help suppress the tremor. In order to suppress the tremor, a well-designed tremor estimator is needed. Previous tremor estimators treat a 3-D tremor signal as three independent 1-D signals. Moreover, they did not consider the real-life characteristics of tremor signals. For instance, the tremor does not always exist in the postural tremor signal, and the patient\u27s voluntary motion can be included in the kinetic tremor signal. This paper presents a real-time adaptive parkinsonian tremor signal identifier based on the internal model principle and instantaneous Fourier decomposition and tests on tremor signals collected by a special glove from 18 patients. The result showed that our proposed identifier could identify a 3-D tremor signal and have the ability to recognize the presence of tremor and separate the voluntary motion from the tremor signal. We also showed that our proposed identifier could achieve 80%+ in signal identification accuracy and 90%+ in power estimation accuracy in different tremor signals. Finally, we achieved real-time tremor identification in a bench-top tremor simulator
    corecore