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This paper overviews the state-of-the-art in upper limb robot-supported approaches,

focusing on advancements in the related mechatronic devices for the patients’

rehabilitation and/or assistance. Dedicated to the technical, comprehensively

methodological and global effectiveness and improvement in this inter-disciplinary

field of research, it includes information beyond the therapy administrated in clinical

settings-but with no diminished safety requirements. Our systematic review, based on

PRISMA guidelines, searched articles published between January 2001 and November

2017 from the following databases: Cochrane, Medline/PubMed, PMC, Elsevier,

PEDro, and ISI Web of Knowledge/Science. Then we have applied a new innovative

PEDro-inspired technique to classify the relevant articles. The article focuses on the main

indications, current technologies, categories of intervention and outcome assessment

modalities. It includes also, in tabular form, the main characteristics of the most relevant

mobile (wearable and/or portable) mechatronic/robotic orthoses/exoskeletons prototype

devices used to assist-rehabilitate neuromotor impairments in the upper limb.

Keywords: upper limb rehabilitation, robotic exoskeletons, mobile robotic orthotic devices, mechatronic wearable

orthoses, systematic and synthetic review

1. INTRODUCTION–GENERAL PERSPECTIVE AND MAIN
RATIONALES

What differentiates human beings from animals is the superior psycho-cognitive activity, including
the coordinated/complex, workable, actions of its highly correlated physical effecter: the upper
limb, and especially the hand—as basis of our creative and modeler/draftsman kind interactions
with the environment. This profound and subtle reality has been conceptualized during history by
great thinkers, such as Aristotel (2005), Descartes, Newton and Kant (Lundborg, 2014).

Accordingly, finding solutions that address rehabilitation and/or functional assistance of
neuromotor impairments at this level would have a remarkable positive impact: for the
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beneficiaries’ quality of life (Frisoli et al., 2016) and from a socio-
economical perspective, as well. The latter corresponds to the
temporary regain/re-insertion of the productive resources lost
because of the disabilities in their upper limbs. Moreover, it is
to be considered, within the general context/trend of offering a
reliable alternative for prolonged hospitalizations, the need for
top of the range assistive/rehabilitative orthotic mobile devices.
These should be capable to provide safe and of continuity
rehabilitation (Loureiro et al., 2011) and/or functional assistance
for the above mentioned topography, too, of neuromotor deficits
including in the patient’s daily life context. Such endeavors are
often necessary on long term, mainly imposed, in the morbidity
domain we approach, by the required duration of neuroplasticity
to install/act (Muresanu et al., 2012; Basteris et al., 2014; Xiao
et al., 2014; Proietti et al., 2016; Mazzoleni et al., 2017), to be
(re)settled in adequate engrams for the function(s) aimed at
restoring, and/or of peripheral nerves’ re-growth (Guyton and
Hall, 2006).

The necessity for such devices that can operate without
fatigue in both clinical settings, at home and in the community
is growing high (Stewart et al., 2017). This is despite of
the fact that people with upper limb pathology—who do not
necessarily suffer from functional issues in the lower limbs—can
commonly reach clinical units (in order to receive ambulatory
rehabilitative specific procedures). Another aspect is that, at
the moment, there is already a “shortage” of professionals
handy to deliver domiciliary physiotherapy/rehabilitation and
nursing, for persons with physical impairments. This is a
worrying situation, especially as it is foreseen to become more
and more frequent in the years to come (Maciejasz et al.,
2014).

An important related development direction consists of
consolidating their wearable profile. This practically entails—
subsumed to a rightful beneficiary’s desire: “several hours” per
day of working performance (Allotta et al., 2015)—availability
for autonomous powered duty (as for easily/rapidly rechargeable
facilities, too) and respectively comfortable bearing by the
consumer in the daily life (Giberti et al., 2014), limitation of
encumbrances, lightweight (Rocon et al., 2007; Martinez et al.,
2008; Song et al., 2013, 2014; Chen et al., 2014; Giberti et al.,
2014; Andrikopoulos et al., 2015; Allotta et al., 2015; Polygerinos
et al., 2015; Guo et al., 2016; Nycz et al., 2016; Alavi et al.,
2017; Stewart et al., 2017) and modularity (Lo et al., 2010; Pearce
et al., 2012; Noveanu et al., 2013; Xiao et al., 2014; Nycz et al.,
2016) and/or, in some cases, “reconfigurability” (Maciejasz et al.,
2014).

Considering all the necessary technical assets for such
advanced devices to be mobile (Kiguchi et al., 2008a; Lee,
2014; Nycz et al., 2016), thereby available for individual more
extended use, an additional, non-technical, but derivative and
decisive condition is, as well, mandatory: their cost-effectiveness
(Noveanu et al., 2013).

We consider it only appropriate to iterate here a summarized
idea of a previous work of ours (Onose et al., 2016) that
currently there is still no such thing as an optimal, fully
functional assistive-rehabilitative device (in the common sense
of the term). This regards mainly: don/doff issues (Nimawat

and Jailiya, 2015)–for severely disabled potential beneficiaries–,
psychological acceptance (of self image/esteem kind, referring
to the ensemble look of the consumer: enough miniaturization
and cosmetics– thus either reaching a satisfactory clothes-like
aspect or even becoming as thin as to evolve to underwear
dimensions), extended power autonomy, easy and fast set-up-
for professionals (Dijkers et al., 1991). Another important feature
for the customers/their kin is the appropriateness for long
time duty in various real life situations. One should consider
also the consistent related safety, producing very low/practically
imperceptible noise when in service and truly affordable/cost
effective.

2. METHODS

Despite the rigorous selection filter-classification criteria based
methodology of the papers we have reviewed, some data referring
to the subject matter approached, might still be overlooked. At
the same time, on one hand, not all the selected articles contained
aspects needing to be elicited and expressly quoted. On the
other, for clarifying different notions (collateral but nevertheless,
important for this paper) we also used Supplementary—to the
portfolio gathered availing the belowmentioned combinations of
keywords—bibliographic resources.

According to the afore exposed rationale, our research
considered publications from January 2001 to November 2017
from the following databases: Cochrane1, Medline/PubMed2,
PMC3, Elsevier4, PEDro5, ISI Web of Knowledge/Science6.

Our search has been conducted on five stages, described by
a Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA)7 adapted flow diagram, but without the final
meta-analysis stage (see Figure 1). Within the first stage, using
the following combinations of keywords: upper limb exoskeleton,
upper limb mobile robot, upper limb wearable robot, upper
limb portable robot, upper limb robotic exoskeleton, upper
limb robotic orthosis, upper limb robotic device, it resulted, as
expected—even if overlapping—a huge amount of articles: (more
than 13,000-details in Table 1).

Therefore, we still had to achieve a mandatory refinement:
within the second stage, we applied contextual search, using the
same above mentioned combinations of keywords, but inside
quotation marks. It then resulted in over 270 articles (details in
Table 2).

After eliminating all the inevitable redundancies (i.e., same
article found in different queried data bases), in the next stage we
have selected the most relevant articles to our targeted subject by
the keywords: “mobile,” “wearable,” and respectively, “portable”—
to be found in their titles and/or abstracts. This has reduced the
number of results to: 3 articles for “mobile,” 29 for “wearable,”

1http://www.cochrane.org/
2https://www.ncbi.nlm.nih.gov
3https://www.ncbi.nlm.nih.gov
4https://www.elsevier.com/
5http://search.pedro.org.au/search
6https://apps.webofknowledge.com
7http://prisma-statement.org/documents/PRISMA%202009%20flow%20diagram.

pdf
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FIGURE 1 | PRISMA adapted flow diagram of the method used for the articles’ systematic selection.

TABLE 1 | Step I: numerical search results.

Keywords Cochrane PubMed PMC Elsevier PEDro ISI Total

upper limb exoskeleton 585 289 807 18 3 674 2,376

upper limb mobile robot 763 12 368 20 0 33 1,196

upper limb wearable robot 599 41 349 15 1 122 1,127

upper limb portable robot 611 13 319 3 0 24 970

upper limb robotic exoskeleton 599 210 682 17 1 314 1,823

upper limb robotic orthosis 606 94 632 20 3 66 1,421

upper limb robotic device 964 638 2,107 90 12 495 4,306

Total 4,727 1,297 5,264 183 20 1,728 13,219

and 12 for “portable“ (but among them, 6 contained both, the
“wearable” and “portable” keywords). After collecting all the
respective open access articles, we had directly bought the non-
available ones (with an exception: one article which was not
available on the seller’s platform) and then retained 37 non-
redundant articles. On these we have implemented an own,
customized, PEDro inspired, classification algorithm—described
below.

In this purpose, we have previously considered
connected literature knowledge from the Population/
Intervention/Comparison/Outcome/Time–PICOT (Fineout-
Overholt et al., 2010; Riva et al., 2012)–and Study Type–
PICOS (Methley et al., 2014)–, Feasible/Interesting/Novel/
Ethic/Relevant–FINER–(Farrugia et al., 2010) and Physiotherapy

Evidence Database criteria—PEDro8—(Maher et al., 2003).
We had in mind some essential/defining features probable
to be found in the approached domain (specifically, in our
selected articles): studies using prototypes, with single (24.32%),
small (21.62%), or multiple (10.81%) case/s series (details and
related references in the results section). Additionally, the
studies of interest for our subject matter may involve different
interventions, with mobile robotic orthotic devices, where
randomization “concealed/blindness” criteria are difficult
to be applied/(not always found), observations on healthy
subjects (63.28%)—details and related references in the results
section—various assessment scales and/or end-points, used.

8Data, 2017, from: http://www.pedro.org.au/english/downloads/pedro-scale/
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TABLE 2 | Step II: numerical search results.

Keywords Cochrane PubMed PMC Elsevier PEDro ISI Total

“upper limb exoskeleton” 0 33 63 3 1 155 255

“upper limb mobile robot” 0 0 0 0 0 0 0

“upper limb wearable robot” 0 0 0 0 0 1 1

“upper limb portable robot” 0 0 0 0 0 0 0

“upper limb robotic exoskeleton” 0 3 1 0 0 12 16

‘upper limb robotic orthosis’ 0 0 0 0 0 0 1

“upper limb robotic device” 0 0 0 0 0 0 0

Total 0 36 64 3 1 169 273

Consequently, we have developed [based on a Delphi
kind preliminary related endeavor: brainstorming between
the authors—as being a multi-/inter-disciplinary staff team9

—(Verhagen et al., 1998)] an own customized panel of
criteria, using an up to 10-points, PEDro-inspired, scoring for
classifying the articles assessed details in Appendix 1 within the
Supplementary Material.

The articles were selected only if they had been written
in English. We only kept those articles that obtained at least
4 points (“fair”/“high” quality10), considering the following
grading criteria (Q1–Q4 as shown in Appendix 1 within
the Supplementary Material): published in a journal within
the Institute for Scientific Information (ISI) Thomson
Reuters11/International Data Bases (IDB), indexed; number
of citations per year, pondered (see below) through the year of
publication; number of human subjects included in the study
(this criterion does not apply for review articles: for such papers
there have been considered, following the same calculation
formula, the other three criteria); the references’ quality (no
reference: 0 points; 1–10: 1 point; 11–20: 2 points; 21–30: 3
points; 31–40: 4 points, 41 and over: 5 points).

For each criterion, the maximum number of points possible to
be obtained was 5. In order to keep the symmetry with the other
criteria regarding the PEDro inspired scoring, we have chosen
to classify the articles’ quality within the criterion referring to
databases, such as: 3 points if the respective article is rated in
minimum one IDB and 5 points if it is ISI Thomson Reuters
indexed.

As announced above, in order to quantify the citation quality
of an article an own customized formula was used, that takes into
consideration the number of citations per year, the maximum
number of citations per year for all candidate articles, and also
the year in which the article was published.

First, the number of citations per year is computed using
Equation (1).

CPYi =
TCi

2018− Yi
(1)

9Data, 2017, from: https://cris.maastrichtuniversity.nl/portal/files/549625/guid-

964a90f5-d8aa-4c7f-9d74-b4b70552d067-ASSET1.0
10Data, 2017, from: https://www.strokengine.ca/glossary/pedro-score
11http://mjl.clarivate.com

where CPY stands for the citations per year, TC is the total
number of citations and Y is the year in which the article was
published (for article i).

In order to normalize the scores of various articles that were
published in different years, a bonus scheme was developed to
ensure that the number of citations for newer articles weigh more
than for older ones with the same number of citations. By using
Equation (2), the absolute value of the reference quality of an
article is computed:

Q∗
i =

5 ∗ CPYi

max j=1... n(CPYj)
+

6−min(2018− Yi, 6)

2
(2)

where Q∗
i represents the absolute value of the reference quality of

article i.
Finally, all absolute values are limited to the interval [0 : 5] by

using Equation 3.

Qi =

{

Q∗
i , Q

∗
i < 5

5, Q∗
i > 5

(3)

whereQi is the final value of the reference quality of the evaluated
article.

The article’s total score is obtained as the average of each
considered criterion calculated points multiplied with 2 (in order
to range the maximal score up to 10). After applying this set
of selection criteria, a final number of 36 articles remained. We
analyzed them for this systematic review.

It is to be mentioned a sui generis situation in which, after
the detailed analysis of all articles, one of them, with 6 points
PEDro inspired score (Lin et al., 2013a) even if it matched
the contextual search syntax “upper limb exoskeleton” within
its combination of keywords, the content of the paper referred
to an arm support mobile accessory—possibly just adjunct for
mechatronic/robotic orthoses/exoskeletons—but without having
such technical hallmark features: neither actuators nor sensors,
but only mechanical passive balancing gravity components.

3. OUTCOMES OF OUR SYSTEMATIC
REVIEW

The most relevant mobile (wearable and/or portable)
mechatronic/robotic orthoses/exoskeletons—to approach
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neuromotor impairments in the upper limb—prototype devices
are detailed in Appendix 2 within the Supplementary Material.
The equipment used in the literature we have revised is
systematized in the respective table, also containing other such
prototype devices met in the supplementary references (marked
as italic).

Concerning the score distribution among the analyzed articles
(Figure 2), it is to be emphasized its nearly Gaussian pattern
(Pearson asymmetry coefficient: 0.63), thus supporting the
accuracy of the selection process we have done. This reflects, at
the same time, the fact that the articles were ranked as of “fair” to
“high” quality, Average: 5.95; Median: 6–similar to other works
(Veerbeek et al., 2017)–Dispersion: 1.81; Standard deviation: 1.5;
Coefficient of variation: 25.23%. Additionally, Figure 3 displays
the ascending trend of the issues per year among the articles we
have selected, which is consistent with the related opinions in
literature (Lo, 2012; Maciejasz et al., 2014; Proietti et al., 2016;
Veerbeek et al., 2017). It is to be noted the “boom” of such articles
in 2013.

Taxonomically, we have sorted the selected and qualified
articles into five categories as shown in Figure 4.

As for the relevance, based on the number of cases assessed
within trials evaluating the interventions done with considered
mechatronic/robotic devices in upper limb neuromotor
impairments, the situation determined in the analyzed articles is
presented in Figures 5, 6. It may be observed that overall, there

are no clinical studies with large database of cases, although in
recent supplementary related literature, much larger samples can
be found (Takahashi et al., 2016).

Specifically, the majority of the studies (18) assessed human-
robotic device interactions with healthy individuals (totally 81
subjects) and only 3 articles included patients: 37 with stroke (15
Kim et al., 2013 and 22 Huang et al., 2012), and respectively, 10
with tremor (Rocon et al., 2007).

4. DISCUSSION

An important finding regards a quite promising and actual
development trend: tracking for feedback and training arm
(shoulder, elbow, forearm) and hand, together, produced “greater
improvement” than such endeavors done separately for the
respective anatomic regions (Merians et al., 2009). The methods
to achieve that require the use of, including haptic-based, virtual
reality (VR) facilities (Huang et al., 2012; Guo et al., 2013; Lin
et al., 2013b; Wei et al., 2013; Dowling et al., 2014; Song et al.,
2014; Thielbar et al., 2014; Kim and Rosen, 2015; Shull and
Damian, 2015; Grimm et al., 2016; Mazzoleni et al., 2017; Maris
et al., 2018). This matches with the conceptual addition of, for
instance, Brain Machine Interface (BMI) and/or neuromuscular
electrical stimulation (NMES)/FES or transcranial Direct Current
Stimulation (tDCS), respectively repetitive transcranial magnetic
stimulation (rTMS), facilities usage, too. Furthermore and more

FIGURE 2 | Articles’ PEDro inspired score distribution.

FIGURE 3 | Selected articles’ years distribution.
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FIGURE 4 | Taxonomy of the selected articles.

FIGURE 5 | Distribution of the selected articles involving human subjects.

recently: some multimodal/hybrid such advanced devices may
also provide compensation of gravity load by the related
exoskeleton (Yu and Rosen, 2010; Kim et al., 2013; Giberti et al.,
2014; Song et al., 2014; Andrikopoulos et al., 2015; Gandolla
et al., 2017; Tu et al., 2017a), in order to improve robotic
neurorehabiliative/assistive interventions’ outcomes, including
in the upper limb (Grimm et al., 2016; Tu et al., 2017a; Mazzoleni
et al., 2017; Stewart et al., 2017).

At the same time, it proves to be not only actual, but also in
line with the ascending trend toward “all-in-one” and/ormodular
kind of designs (including) for the robotic/mechatronic assistive-
rehabilitative orthoses/exoskeletons. This is to be foreseen as
neuroscience and technology advance, and respectively, the
consumers’ expectations for comfort and effectiveness increase,
over time, thus supporting our option to focus this systematic
synthetic review on mobile advanced systems. This type of

apparatus can be divided into two categories: portable and
wearable. The latter include devices using fabric integrated within
smooth but robustly fit (Polygerinos et al., 2015; Nycz et al., 2015;
Rus and Tolley, 2015; Onose et al., 2016). One must consider,
at the same time, cosmetics: more complex, but light weight
(Rocon et al., 2007; Martinez et al., 2008; Song et al., 2013,
2014; Chen et al., 2014; Giberti et al., 2014; Andrikopoulos et al.,
2015; Polygerinos et al., 2015; Guo et al., 2016; Nycz et al.,
2016; Alavi et al., 2017) and, at least externally, garment–like
structures.

Another quite recent-justified as being a key item that
synthesizes, like a top of iceberg, many of the essential
mechatronic determinants is the so-called “transparency” (Kim
and Rosen, 2015; Proietti et al., 2016). This actually tends to
improve the overall outcome, by being underpinned including
on increased intuitiveness thus matching with the user’s non
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FIGURE 6 | Distribution among the selected articles of enrolled human subjects.

invasively extracted EMG and/or EEG/BCI movement purposes
(Onose et al., 2012). It also provides references and adjustments
(and subsequent feed forwards) within a higher level of
related abstractness. All these are subsumed to its artificial
intelligence/“wisdom” of not acting when not necessary. Such
aspect is required for fulfilling overall enhanced (thus being
more and more bionic/biomimetic, too) expected performances
of robotic exoskeletons, that address also upper limb neuromotor
deficits. Therefore, transparency would be, at the same time,
a valuable marker for the accuracy of task-oriented achieved
results, which could be obtained following human-robotic
interactions (Proietti et al., 2016).

More substantiation is needed for the related quest
improvement, and it mainly refers to not enough trials on
extended groups of patients, complete and clear description of
the research methodologies used, statistical power and—based
on clinical results—data processing, randomization, (lack of)
control lots, “dropout rate” reporting etc. (Lo, 2012).

Because of the mandatory necessity for an (inevitable) multi-
/inter-disciplinarity domain’s profile, papers can be found in the
literature, well documented but based on trials with different or
not always best adequate design/statistical power and/or methods
used to assess the outcomes obtained. Among these, some present
positive or neutral, while others, partially negative findings
on robotized physiatric approaches of upper limb neuromotor
impairments.

Possible limitations, at least in some circumstances, for
(more) valid/“generic” conclusions (Proietti et al., 2016) are
represented by the—intrinsic, tightly connected—particularities
of various such devices and also the originality/technical
advancements/contributions they bring (resulting in
differences—objectively—difficult to be rigorously compared).
For instance: some authors document no spectacular (if any)
benefits—regardingmotor function gain and cost-effectiveness—
compared to classical, therapists administered, corresponding
endeavors (Lo et al., 2010). Others question the effectiveness

in improving ADL (divergent, i.e., beneficial Mehrholz et al.,
2015) and express conflicting opinions about effects on muscle
(hiper)tone states (favorable Sale et al., 2014 vs. negative
Veerbeek et al., 2017). The assistance-as-need approach (rather
nuanced reticent Norouzi-Gheidari et al., 2012 vs. positive
Stewart et al., 2017), required dosage (Norouzi-Gheidari et al.,
2012; Pollock et al., 2014; Stewart et al., 2017; Veerbeek et al.,
2017) is also debated for pathologic evolution stage (better for
chronic Mazzoleni et al., 2017; Veerbeek et al., 2017 vs. subacute
Sale et al., 2014).

Generally, one can find discriminating opinions among
the efficacy of different control strategies applied and/or
between true motor rehabilitation and contextual functional
compensations. The latter brings an overall added value to
the patient’s interaction with the environment, but cannot be
clearly/specifically attributed to a certain intervention (Kwakkel
et al., 2008; Marchal-Crespo and Reinkensmeyer, 2009; Veerbeek
et al., 2017). Even the cost-effectiveness of such interventions
remains to be proven: on mid-longer-term (time frame surveyed
36 weeks) the “total costs” of: “robot therapy,” “intensive
comparison therapy” and “usual care” are “comparable” (Wagner
et al., 2011). However, to balance these opinions, there can also
be found in literature a quite converse overall vision on this
subject: “Robotic aided therapy has shown to be more effective
than traditional physical therapy in providing high intensity
of exercise, better movement controllability and measurement
reliability, which makes robots ideal instruments...” that “can
deliver training at a much higher dosage...” (Frisoli et al., 2016).

Technological progresses are theoretically prone, on one hand,
to enhance related therapeutic effectiveness and on the other, to
reduce afferent costs. There are interesting divergent assertions
in this respect, too: more advanced such equipments—possibly
being, conversely, more expensive. However, such advances
do not necessarily improve effectively the main outcomes
targeted: voluntary controlled motility, muscle power and overall
functionality/ADL (Veerbeek et al., 2017). But they can still offer
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some advantages, such as better adherence to therapy through the
psychological investment. This includes patient wishful thinking,
provided by novelty and equipment complexity. Also, these
devices are also capable of better assistive functions and/or
longer—thus more intensive—rehabilitation (Norouzi-Gheidari
et al., 2012), based on much more repetitive “motor learning”
(Charles et al., 2005) and task/“goal-orientated,” movements
(Grimm et al., 2016).

Generally, the main risks, aside from those consequent
to human involvement (for the participant and/or generated
by the person—skilled or not—who aids the user in the
respective man-machine interaction), related to the use of robotic
exoskeletons for medical interventions in the upper limb, are:
“joint misalignment, skin damage, software malfunction leading
to uncontrolled behaviors, electrical and fire hazard” (He et al.,
2017). Risks subsequent to possible malfunctions in pneumatic
or hydraulic power systems will be emphasized further.

A limitation of our article: the strict/rigorous selection
methodology we have applied resulted in rather few overall
clinical cases found in the trials afferent to the works we have
analyzed.

4.1. Main Indications
Generally, for the mechatronic orthotic devices/robotic
exoskeletons—including those acting in the upper limb—there
are four main applicability fields: “Military, Industry, Medical,
First Responders”(Neugebauer, 2017).

In order to improve the human-robot interaction and
implicitly its effect, such devices should be more appropriate
with the naturalistic/biomimetic kinematics of the upper limb
following the main related degrees of freedom (DOF) (Figure 7).

4.1.1. Potential Beneficiary Patients

The main pathology spectra in the upper limb, approachable
by robotic devices evoked in the selected articles, consists
of: stroke (the majority–41.66%) (Huang et al., 2012; Song
et al., 2012; Kim et al., 2013; Wei et al., 2013; Xiao et al.,
2014; Nycz et al., 2015; Kim and Rosen, 2015; Guo et al.,
2016; Tu et al., 2017a,b), traumatic brain injury (Giberti et al.,
2014), spinal cord injury (Miller and Rosen, 2010; Frisoli
et al., 2016), Parkinson’s disease/tremor (Rocon et al., 2007;
Nimawat and Jailiya, 2015; Shull and Damian, 2015; Freer et al.,
2017), peripheral nerve lesions in the upper limb–including
with carpal tunnel syndrome–(Noveanu et al., 2013; Giberti
et al., 2014; Andrikopoulos et al., 2015; Shull and Damian,
2015; Frisoli et al., 2016). Aside those above mentioned, in the
additional literature we have studied, there are to be found
also the following indications: Cerebral Palsy, Multiple Sclerosis,
Spinal Muscular Atrophy, Brachial Plexus Injury, Arthrogryposis
Multiplex Congenita (Rahman et al., 2006; Haumont et al., 2011;
Maciejasz et al., 2014; Lopez et al., 2014; Gilliaux et al., 2015).

4.1.2. Related Targeted Topography

“Taxonomy of these devices reflects the needs of different
types of patients” (Onose et al., 2016). For instance, consider
a severe (complete) paralysis of the whole upper limb [after
stroke—within hemiplegia—or respectively, after a serious

brachial plexus trauma, and additionally: even between different
types of neural injuries that generate (morph–) functional
deficit(s), there are assorted kinds of (adequate to the diagnosis)
interventions]. This would demand the use of a more
extended mechatronic, rehabilitative-assistive exoskeleton (as
both: territory addressed—over the entire affected upper limb—
and interfacing complexity needed/provided by such apparatus)
than a distal lesion of the, for instance, ulnar nerve, which need
such robotized orthotic interventions, basically, only over the
hand region.

More detailed: conceptually analytic rehabilitation aims
at (morph)–functional restoring of impairments, based
on recovery and/or assistive targets (identified through
clinical/para-clinical-recommended: quantitative or at least
semi-quantitative-assessments). Most of the specific objectives,
addressed by the assistive-rehabilitative endeavors (including)
in the upper limb related pathology, basically result out of
the upper motor neuron (UMN) and/or lower motor neuron
(LMN) syndromes’ semiological main items. In brief, these
are, for the UMN syndrome: impairment/loss of voluntary
movements and/or their coordination–motion force and speed
and/or nicety decrease/weakness or abolishment (paresis or
paralysis and/or respectively, apraxia/motor planning deficits)–,
muscle hypertonia/spasticity, hyperreflexia/clonus (Reed, 2001;
Basteris et al., 2014; Bryce, 2016) and for the LMN syndrome:
impairment/loss of voluntary movements’ control—motion
force and speed decrease/weakness or abolishment (paresis or
paralysis)—, hypo-/an-aesthesia, muscle hypotonia and atrophy
(Purves et al., 2001; Bryce, 2016).

4.2. Main Current Technologies and
Categories of Provided Interventions
It is noteworthy to emphasize that mobile mechatronic/robotic
orthoses/exoskeletons are—as expected with the related and
general engineering advancements—also subject for actual
and future construct, fabric and consequent performance,
augmentations. Accordingly, such devices enable actuated
controlled passive movements using VR or haptic capabilities
(“wearables ... untethered, ungrounded body worn devices that
interact with skin directly or through clothing and can be
used in natural environments outside a laboratory,” for “sensory
replacement”/“augmentation” or training Shull and Damian,
2015). More interesting, for some of them, the haptic and VR
facilities are coupled (Song and Guo, 2011; Huang et al., 2012;
Song et al., 2013, 2014; Wei et al., 2013; Thielbar et al., 2014;
Dowling et al., 2014; Grimm et al., 2016; Guo et al., 2016;
Mazzoleni et al., 2017; Maris et al., 2018).

Another important technique is the electromyography
(EMG)–feedbacks collected with skin surface electrodes, from
the weakened muscles electrical signals. These serve, after
filtered/processed into digital inputs, for the command of
actuators capable to fulfill/amplify (in real-time adjustable
manner) the voluntary—but otherwise impossible or impaired—
movements in the “elbow/wrist/hand” (Bouzit et al., 2002;
Kiguchi et al., 2008b; Stein, 2009; Frisoli et al., 2016).
Additionally, it can be provided stimulation of the patient’s
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FIGURE 7 | DOF for robot-assisted interventions in the upper limb (Sbenghe, 1987).

own, biological actuators: his/her muscles, in the targeted
anatomic region of the upper limb through functional electrical
stimulation–FES–(Li et al., 2008) and/or, within the same
paradigm, of pro-contractile mechanical input on muscle
(tendons): vibratory stimulation (Lam et al., 2008; Shull and
Damian, 2015).

The orthoses/exoskeletons “actuating” through FES, although
not properly mechatronic–their power contribution to the
respective segment’s movements is not given through
motors–can still be considered and discussed among the
type of orthotic devices we focus on, because of their
automated, robotic kind of interacting with the targeted
area of upper limb with neuromotor impairment (Hu et al.,
2015); the same goes for shape memory alloys (SMA–see
further).

Regarding mobile devices, innovative systems are proposed in
several articles (Yu and Rosen, 2010; Lenzi et al., 2011; Lin et al.,
2013b; Chen et al., 2014; Giberti et al., 2014; Tageldeen et al.,
2016; Xiao et al., 2017). The respective approaches differ by their
mechanisms to generate rotational DOF:

• Electric: using gear rings (Chen et al., 2014) cable transmission
systems (Xiao et al., 2017; Nycz et al., 2015); moving cylinders
(Rocon et al., 2007; Lenzi et al., 2011; Wei et al., 2013).

• Pneumatic: (Balasubramanian et al., 2008; Yu and Rosen,
2010; Chen et al., 2014; Dowling et al., 2014; Lee, 2014;
Andrikopoulos et al., 2015; Nycz et al., 2016; Tu et al., 2017a,b;
Xiao et al., 2017) including pneumatic muscle actuators
(Caldwell et al., 2007; Andrikopoulos et al., 2015).

• Hydraulic/“hydropneumatic” (Mistry et al., 2005; Noveanu
et al., 2013; Lee, 2014; Polygerinos et al., 2015), including
“flexible fluidic actuators” (Schill et al., 2011) or those using
electro and magneto rheological fluids (ERF-MRF).

• “Shape memory alloys”–SMA– (Rocon et al., 2007; Pittaccio
et al., 2013, 2015; Kyrylova, 2015).

Aside the above described mechatronic infrastructure
composition of the robotic orthoses/exoskeletons and their
consequent actions interfering with the user, an equally
important item underpinning the usefulness of such devices
is the control loop closing, based on complex acquired inputs
(Rocon et al., 2007; Yu and Rosen, 2010; Song and Guo, 2011;
Song et al., 2012, 2013, 2014; Chen et al., 2014; Dowling et al.,
2014; Andrikopoulos et al., 2015; Nimawat and Jailiya, 2015;
Polygerinos et al., 2015; Nycz et al., 2016; Tageldeen et al.,
2016):

• Signals for controlling the device (with the related
sensoristics): measurement of interaction with the resistance
opposed by the user and/or respectively, by the device and/or
motion parameters (Giberti et al., 2014; Guo et al., 2016),
including with spatial position of different segments of the
upper limb/device (Powell and O’Malley, 2011).

• Signals to trigger an action (provided by different
types of “switches”): manual commands and/or
EMG/electroencephalography (EEG–non invasive brain
computer/machine interface– BCI/BMI) and/or the contra-
lateral, healthy limb movements and/or intervener forces
between the user and the device (Ding et al., 2008; Kiguchi
et al., 2008a; Marchal-Crespo and Reinkensmeyer, 2009; Guo
et al., 2013; Basteris et al., 2014; Dowling et al., 2014; Maciejasz
et al., 2014; Xiao et al., 2014; Frisoli et al., 2016; Tageldeen
et al., 2016; Freer et al., 2017; Tu et al., 2017a,b).

• Signals used to quantify the parameters’ evolution (mainly
Range of Motion–ROM–, motor control, muscle strength and
even, possibly, some current items regarding functionality–
ADL type) give supplemental capability dimensions tomodern
more complex devices (Gilliaux et al., 2015; Maris et al., 2018).

• VR capabilities (Lin et al., 2013b) are another type
of apparatus/software facility and consequent (mainly as
adjunct) therapeutic rehabilitative method, especially higher
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motivating and credited as a moderate contributive treatment
in improving rehabilitative outcomes (Lohse et al., 2014;
Thielbar et al., 2014; Palma et al., 2017), some of them using
ADL inspired “serious” gaming12 (Huang et al., 2012; Kim
et al., 2013; Kim and Rosen, 2015; Frisoli et al., 2016; Tageldeen
et al., 2016; Maris et al., 2018).

Newer and very challenging technological developments are
expected to be implemented in the field we approached. If this
would result in effectively mobile and completely functional,
well tolerated, wearable such devices, this could represent a real
breakthrough. Specifically, “soft body robots” (Nycz et al., 2015;
Polygerinos et al., 2015) are bionic/biomimetic inspired, possibly
actuated by “variable length tendons in the form of tension cables
or shaped-memory alloy actuators” (as already afore exposed) or
based on the expansion properties of elastomer structures, that
can be powered either pneumatically or hydraulically (Dowling
et al., 2014; Rus and Tolley, 2015; Polygerinos et al., 2015). Briefly
resumed here, there are other two very important and useful
features of such devices following the general trend of beingmore
and more wearable and effective: anatomical/functional and
or technical/structural modularity (Ding et al., 2008; Lo et al.,
2010; Schill et al., 2011; Pearce et al., 2012; Noveanu et al., 2013;
Lee, 2014; Xiao et al., 2014; Nycz et al., 2016) and complexity of
“all-in-one”/hybrid kind (Giberti et al., 2014; Looned et al., 2014;
Gandolla et al., 2017; Resquin et al., 2017; Tu et al., 2017a,b).

Other strong candidates for such a revolutionary
advancement are: the (still) promising electroactive polymers
(Rocon et al., 2007; Onose et al., 2016) and the (also still)
near futuristic soft and stretchable electronics (Rus and
Tolley, 2015). These may be suitable for incorporation within
“sophisticated embodiments” if produced “... in microstructured
and nanostructured forms, intimately integrated with elastomeric
substrates ...” - for instance: polydimethylsiloxane - and
eventually maybe even resulting in “tissue-like” devices (Rogers
et al., 2010).

Regarding the main categories of related interventions

provided, there are asserted as principal elements supporting
“motor recovery,” the following: timely approach, adequate
dosage, goal-settled exercise and patient’s collaborative—if
possible—involvement (Frisoli et al., 2016). Furthermore, these
can be taxonomically systematized as shown in Figure 8.

4.3. Brief Referring to Main Outcome
Assessment Modalities
There doesn’t seem to be a consensus in the literature about the
consistency—both quantitative and qualitative—of the clinical
research studies, deployed to date in the field (especially during
the time frame considered, basically, by us, too—as afore
specified). For example some authors consider that there are
many studies using standardized scales (Marchal-Crespo and
Reinkensmeyer, 2009). Others consider their number (including
with related results) to be “sparse,” especially of clinical type

12Individualized Technology and Robot-Assisted Virtual Learning Environment

(I-TRAVLE) project– https://kenniscentrum.adelante-zorggroep.nl/en/research-

programme/projects-2014/individualised-technology-and-robot-assisted-

virtual-learning-environment-(i-travle)-www-i-travle-eu/

(Lo, 2012; Maciejasz et al., 2014; Proietti et al., 2016). This
partially explains the “slowly” growing recognition of the
mechatronic-assisted therapies usefulness. But, however all of
them acknowledge as being, numerically, on an ascendant trend.

To be noted that some of the measurement tools frequently
used are–as known–comprehensive, being conceived to evaluate
in detail, thoroughly the functioning (from the International
Classification of Functioning, Disability and Health -ICF-
perspective)13,14 aspects they are designated to quantify
and hence, are very laborious and–inevitably–chronophagic.
Thereby, the use of advanced, multimodal assistive-rehabilitative
mechatronic/ robotic orthoses/ exoskeletons, provided including
with (automated–so user friendly and investigators’ time/ effort
saver, and at the same time, standardized/ more prone to
non-altered repeatability in “observational” and tracking use)
assessment facilities, might represent a noteworthy alternative/
“Complement to Clinical Scales” (Mazzoleni et al., 2017).

In the 36 articles we have selected, there have been met the
following assessment scales:

• Fugl–Meyer Assessment–FM(A)15 (APTA, 2011, pages: 51,
55–67, 70–74; Huang et al., 2012; Kim et al., 2013);

• Wolf Motor Function Test-WMFT (Taub et al., 2011; Huang
et al., 2012; Takahashi et al., 2016);

• Active Range of Motion–AROM16 (Huang et al., 2012);
• Mini-Mental State Exam–MMSE17 (Kim et al., 2013);
• Peg-in-hole task18 (Miller and Rosen, 2010; Kim et al., 2012a,b;

Kim and Rosen, 2015)-is a virtual or physical testing modality,
resembling, in principle, to the standardized “9 Hole Peg Test”
(APTA, 2011 page: 5).

In the supplementary literature we have studied, there have
also been found—aside the above mentioned ones—around
twenty assessment scales (at least about half of them very often
mentioned/availed in different studies) (details in19).

5. CONCLUSIONS

According to the reasoning illustrated throughout this overview,
the tenacious pursuing of basic—neuro-physiological, clinical
and technological—but also translational research is warranted
and we consider it has potential to reach the afore-mentioned
therapeutic/rehabilitative and/or assistive goals. All these aim
to improve the needing persons’ overall functionality and
consequent quality of life, additionally targeting, in the actual
and future context, a more efficient skilled human resources
use, within a globally improved related cases management
approach paradigm. This is, at the same time, consistent with
the fact that there are currently no available related spectacular

13Available online at: https://www.cdc.gov/nchs/data/icd/icfoverview_finalforwho

10sept.pdf
14Available online at: http://apps.who.int/classifications/icfbrowser/
15http://www.neuropt.org/docs/edge-documents/stroke-edge-compendium-of-

instructions2A86360E9D57.pdf?sfvrsn=2
16https://www.dshs.wa.gov/sites/default/files/FSA/forms/pdf/13-585a.pdf
17http://enotes.tripod.com/MMSE.pdf
18https://www.physio-pedia.com/Nine-Hole_Peg_Test
19https://cn.curs.pub.ro/scales.pdf
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FIGURE 8 | Taxonomy of main category interventions (Marchal-Crespo and Reinkensmeyer, 2009).

bio-/pharmacological solutions for the central nervous system
lesions’ repair (Talley Watts et al., 2015).

Also important: as the industry of robotics with medical
designations, including with the mobile—portable and/or
wearable—orthoses/exoskeletons personally used to rehabilitate
and/or assist neuromotor impairments in upper limbs, is
progressing, “the regulatory science of powered exoskeletons is
still developing.” Its utility regards such devices, too, despite the
fact that, compared to the ones designated to be used in the lower
limbs, these are safer, including: “free from the dangers associated
with falling” (He et al., 2017). Therefore, although this might
slow the advancement in the domain, more and more rigor is
necessary and–on the long run–beneficial, in terms of safety for
the users and emulator. At the same time, focus should also be
maintained on a improving human-machine interaction through
better technological and translational solutions.

Overall, to date, a certain multi-plane related
diversity/“heterogeneity” (Basteris et al., 2014) can still be
confirmed. This refers to: devices availed, trials carried
out [as designs, participants (biometric and/or pathology
data–and moreover, within each, on possible different
evolution stages/respectively consequent onset of the robotic
intervention(s), and/or severity degree of the neuromotor
impairment at baseline), outcomes determined and evaluation
methods used to measure them, different components of the
administration dose, period(s) surveyed] and—partially—the
related point wise and/or general conclusions on the subject

matter, derived in various reviews/overviews, encompassing
systematic ones, some of them with afferent meta-analyses
fulfilled. Yet, this must not be so worrying, but rather motivating
for perseverance, with constantly improved—mainly more
unitary—research methodology. As long as the trend of growing
interest for the domain of robotic assistive-rehabilitative
approaches will continue, it will entail inherent—actual and
very probable, future, too—controversies over different specific
aspects; but more important, we reckon, it will leave the door
open for progress as well.
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