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Abstract
Parkinsonian tremor is one of the clinical hallmarks of Parkinson’s disease. Since the tra-

ditional medical treatments are not effective, many wearable devices are being developed to
help suppress the tremor. In order to suppress the tremor, a well-designed tremor estimator is
needed. Previous tremor estimators treat a 3-D tremor signal as three independent 1-D signals.
Moreover, they did not consider the real-life characteristics of tremor signals. For instance, the
tremor does not always exist in the postural tremor signal, and the patient’s voluntary motion
can be included in the kinetic tremor signal. This paper presents a real-time adaptive Parkin-
sonian tremor signal identifier based on the internal model principle and instantaneous Fourier
decomposition, and tests on tremor signals collected by a special glove from 18 patients. The
result showed that our proposed identifier could identify a 3-D tremor signal, and have the
ability to recognize the presence of tremor and separate the voluntary motion from the tremor
signal. We also showed that our proposed identifier could achieve 80 %+ in signal identifica-
tion accuracy and 90 %+ in power estimation accuracy in different tremor signals. Finally, we
achieved real-time tremor identification in a bench-top tremor simulator.

Keywords: Parkinsonian tremor, internal model principle, voluntary motion, real-time
tremor identification
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Lay Summary

Parkinson’s disease (PD), also known as shaking palsy, is a neurodegenerative disease com-
monly developed in people older than 60. PD’s signs and symptoms may include Parkinsonian
tremor, slowness of movement and rigidity. Unfortunately, there are no medical therapies that
can completely cure PD nowadays. Therefore, researchers are already looking to improve
symptoms through external treatments like wearable devices.

Among all symptoms, the Parkinsonian tremor, or shaking, is the most prominent and trou-
blesome symptom in patients’ daily life. In recent years, many wearable devices are being
invented to help suppress the tremor. In order to achieve good tremor suppression, it is nec-
essary to achieve good tremor identification priorly. This research presents a Parkinsonian
tremor signal identifier to achieve real-time tremor identification on the 3-D signals collected
by a specially designed glove from 18 patients’ hands. The simulation results showed that
our proposed identifier could achieve expected accuracy in resting tremor signals, which were
recorded when patients’ hands were completely resting against gravity.

However, in real-life scenarios, the tremor may exhibit different characteristics. Moreover, it
may become less noticeable or disappear entirely when patients try to control their hands to
do voluntary movements. Hence, we improved the identifier and granted its ability to identify
different types of tremors, recognize the tremors’ presence and disappearance and separate vol-
untary motion from tremor signal. The simulation results showed that our proposed identifier
could maintain high identification performance in postural and kinetic tremor signals, which
were recorded when patients were asking to do different tasks with their hands. Finally, we
achieved real-time tremor identification in an artificial tremor simulator.
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Chapter 1

Introduction

1.1 Background
Parkinson’s disease (PD) is a continuous neurological disorder caused by the death of dopamin-
ergic neurons in the substantia nigra. Recent research shows that the prevalence of PD ranges
from 100 to 797 per 100,000 among individuals aged above 45 years in Canada, the USA
and China [31, 40, 34, 49]. The overall numbers are ever-growing and are expected to dou-
ble in 2030 in developed and developing countries. Patients suffering from PD usually have
many motor-related troubles in their daily life, including tremor, rigidity and bradykinesia
[28]. Among all symptoms, tremor is often considered to be the symptom causing the most
significant impact. Unfortunately, the cause of PD is unknown and regular treatments can only
reduce the effects of symptoms but not stop the progress of PD. Given the lack of effectiveness
of traditional medical treatments, externally wearable devices are developed to suppress the
Parkinsonian tremor in the past few years [57, 58]. For the purpose of tremor suppression, it is
necessary to understand the nature of tremor.

Although tremor is one of the clinical hallmarks of the disease, its pathophysiology remains
unclear [26]. While some studies considered Parkinsonian tremor as a monoharmonic signal,
other papers treated it as a multi-harmonic signal [29, 43, 48, 6]. Moreover, a tremor signal
can be described as a quasi-periodic and nonstationary signal, but there is no uniform state-
ment about the most suitable model for describing the tremor signal [6, 3]. In order to better
understand the Parkinsonian tremor and achieve real-time estimation, our research studied an
adaptive internal model principle-based algorithm [36, 11] and extended its function to identify
different types of Parkinsonian tremors.

1.2 Motivation
Generally speaking, a Parkinsonian tremor can be described as a rhythmic, oscillatory and
unintentional movement with time-varying frequency and amplitude. Also, it can be divided
into three categories of tremor: resting, postural and kinetic tremor [26, 56, 18]. In control
theory and signal processing, such kinds of signals are very common in real life. A tremor
signal can be described as a quasi-periodic and nonstationary signal. The amplitude, frequency

1



2 Chapter 1. Introduction

and phase of the tremor are considered to be changing over time. In this thesis, we are using
the harmonic model [4] to simulate Parkinsonian tremor signals. The harmonic model is also
referred to as a Fourier series model. Every periodic signal can be presented by this model due
to the properties of the Fourier series. Although the tremor signal is not defined as a typical
periodic signal, its principal frequency only changes slowly. This feature allows for the use of
the harmonic model as an approximation of the natural tremor signal. The mathematical model
of a tremor signal is given below.

d(t) =

N∑
i=1

Ni∑
j=1

ai j(t) sin ( j
∫ t

t0
ωi(t)dt + θi j) (1.1)

where N is the number of fundamental frequencies, Ni is the number of harmonics of each fun-
damental frequency, a is the time-varying Fourier coefficients, ωi is the instantaneous tremor
frequency of each fundamental frequency and θ is the relative phase.

Many algorithms have been proposed to identify these signals, including fast Fourier transform,
wavelet analysis and Hilbert Huang Transform [20, 8, 13, 27, 15]. However, these traditional
methods are not working well because of the complexity and randomness of the tremor signal.
Considering the characteristics of Parkinsonian tremor, many new approaches are presented to
identify and estimate tremor signals. For instance, Fourier linear combiner, weighted Fourier
linear combiner and adaptive Kalman filter are three widely used tremor estimators [42, 52, 51,
1, 30, 53, 5]. Nevertheless, research on these methods is mainly conducted on pure simulated
tremor signals. Besides, their identification effect on different types of tremors has not been
verified. The contents mentioned above are discussed in the literature review.

The previous studies conducted on the Parkinsonian tremor treated the whole signal as a tremor
signal. However, the Parkinsonian tremor that is necessary to be suppressed is only a part
of the whole signal. In a real-life scenario, the Parkinsonian tremor and patient’s voluntary
movement may exist simultaneously, which means that the tremor signal may also contain a
voluntary motion signal. Thus, the approach that considers the whole signal as a tremor signal
may result in suppressing the patient’s voluntary motion. Given that the common estimation
algorithm cannot achieve real-time Parkinsonian tremor estimation and separate tremor from
voluntary motion, a more complete and universal algorithm is needed. In 2017, Mohsen and
Brown presented an adaptive internal model principle-based periodic signal identifier [36] to
identify the signal with a similar model as equation (1.1). Although this signal identifier can
track periodic signals with unknown frequencies and cancelling disturbances, it is fixed and
lacks flexibility. Thus, this research focuses on designing a new adaptive estimator based
on the original system to adapt to different Parkinsonian tremor signals, ensure stability and
performance in varied situations and achieve estimation in real time.

1.3 Objectives
The overall objective of this thesis is to develop a controllable Parkinsonian tremor signal
identifier capable of estimating different types of tremors with high accuracy in both simulation
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and real-time experiments. The specific objectives are:

1) Design a new structure for the old signal identifier that allows the user to modify all
changeable parameters. Enhance the flexibility of this internal model principle-based
signal identifier.

2) Design a Parkinsonian tremor signal identifier based on the new structure and simulate
actual data recorded by the tremor signal acquisition glove.

3) Improve the proposed tremor signal identifier to adapt to resting tremor, postural tremor
and kinetic tremor signal.

4) Identify whether the single-fundamental or multiple-fundamental model is most appro-
priate for the Parkinsonian tremor signal.

5) Investigate the relationship between the frequencies of different axis and different joints.

6) Investigate the relationship between time and frequency of tremor i.e. does the frequency
vary on a certain amount of time, or is it constant.

7) Transfer codes in MATLAB and Simulink to Python and achieve real-time Parkinsonian
tremor estimation on a bench-top tremor simulator.

1.4 Thesis Outline
The structure of this thesis is as follow:

Chapter 2 Presents the previous internal model principle-based signal identifier, and the literature
review of Parkinsonian tremor estimation algorithm.

Chapter 3 Describes the new flexible signal identifier,and the adaptive algorithm for Parkinsonian
tremor signal identification.

Chapter 4 Gives the simulation results in synthesized tremor, resting tremor, postural tremor and
kinetic tremor signal, and the analysis of different results.

Chapter 5 Presents the estimation results in real-time test, and the analysis of different results.

Chapter 6 Presents the conclusions of this research and advice for future work.



Chapter 2

Literature Review

2.1 Overview
This chapter is organized as follows: Section 2.2 reviews the previous work on identifying the
signal with unknown frequency. Section 2.3 reviews an internal model principle-based adaptive
signal identifier developed by Mohsen and Brown [36]. It is divided into five parts correspond-
ing to different areas in that approach. Section 2.4 reviews several techniques which were used
to estimate the Parkinsonian tremor previously. Section 2.5 reviews some technologies related
to intermittent control.

2.2 Signal Processing Literature Review
A great number of approaches have been used to analyze signals and identify the frequency.
One of the most common schemes is to decompose the signal into a sum of narrow-band
components corresponding to one harmonic and generating a Fourier representation of the
input signal. Fourier transform is one of the most efficient signal analysis techniques applied
in signal processing and other varying applications. There are several algorithms of Fourier
transform which are widely used, such as fast Fourier transform. It computes the discrete
Fourier transform (DFT) of a signal with less complexity of computation, which decomposes
signals into many sinusoidal components with different frequencies. Moreover, by dividing a
long signal into several short signals with equal length and do the FFT in the continuous-time,
the short-time Fourier transform (STFT) is obtained [44]. The STFT is described as following:

X(τ,w) =

∫ ∞

−∞

x(t)w(t − τ)e−iωtdt (2.1)

where x(t) is the signal to be transformed and w(τ) is the window function. However, the
Fourier transform is not based on an adaptive basis. In other words, FFT and STFT are only
applicable for linear and stationary data. Furthermore, the estimation of the frequency of this
algorithm is sensitive to noise [20].

Another frequently used method is wavelet transform, which decomposes the signal into a sum
of local linear, time-dilated and time-translated wavelet components. A wavelet is a small

4



2.2. Signal Processing Literature Review 5

picture of the wave, which has oscillation and amplitude. According to [8], our function f (t)
can be represented as a linear decomposition as

f (t) =
∑
`

a`ψ`(t) =
∑

k

∑
j

a j,k, ψ j,k(t) (2.2)

where j and k are integer indices, and ψ j,k(t) is the wavelet expansion function. The set of
expansion parameters a j,k are called the discrete wavelet transform of the signal f (t), and the
equation (2.2) is the inverse transform. The integral wavelet transform is defined as

X(a, b) =
1
√

a

∫ ∞

−∞

Ψ(
t − b

a
)x(t)dt (2.3)

where a is the scaling factor and b is the translation factor. This algorithm is well proved for
approximation data with sharp discontinuities. However, one of the main shortcomings is the
difficulty of design the proper mother wavelet for a given application [13].

However, most of the data, either natural or artificial, are nonlinear, non-stationary and stochas-
tic. Therefore, the Hilbert Huang Transform (HHT) based on the empirical mode decomposi-
tion (EMD) was developed by Huang to meet this requirement [27]. It has two main parts: the
first is the EMD, the second is the Huang spectral analysis.

In the EMD part, the signal is decomposed into the sum of a finite number of different com-
ponents named intrinsic mode function (IMF). The IMF can have a varying magnitude and
frequency as a function of time instead of a fixed magnitude and frequency. The function can
be decomposed following this procedure: identify the local extreme value, then use these local
extreme values to produce the upper envelope. Repeat this procedure for the local minimum
value to obtain the lower envelope. This procedure is called a sifting process [27] which is
shown below

h1 = X(t) − m1 (2.4)

where m1 is the mean of the envelopes, X(t) is the data, and h1 is the first component (difference
between the data and its mean). After the first round of the sifting process, a new upper and
lower envelope of the function is created. The sifting process needs to be repeated until the
final IMF is obtained.

Once the IMF components are obtained, the Hilbert transform is applied to the jth IMF to
produce the instantaneous amplitude a j(t) and frequency ωi(t) of the signal. The original data
are represented as the real part of the following equation

x(t) = <

n∑
j=1

a j(t)ei
∫
ω j(t)dt (2.5)

where a j and ω j are different amplitudes and frequencies. Because the variability of a j and ω j,
HHT has the capability for analyzing nonlinear, non-stationary and stochastic data. Hence the
Hilbert transform of a narrow band signal can be approximated represented as
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y(t) = H{x(t)} ≈ −
1
ω

ẋ(t) (2.6)

Nevertheless, the main limitation of the HHT approach during the sifting procedure is that
the EMD can not separate components when their frequencies are adjacent, which is known as
mode mixing [15]. Another restriction called the end effect is due to the lack of data before and
after the data window. Moreover, further constructions of envelopes do not have a unique an-
swer, so different implementations of the HHT can give different answers. Hence, this method
still has limitations while tracking a signal with an unknown frequency.

2.3 Signal Identification Based on Internal Model Principle
This section mainly focuses on the system structure and algorithm of a real-time signal identi-
fier based on the internal model principle presented by Brown and Mohsen [36].

2.3.1 Internal Model Principle Literature Review
The internal model principle is a feedback control principle that was first presented by Francis
and Wonham in 1976[21]. It was a specific definition of the Conant and Ashby good regulator
problem [17]. The objective of an internal model is to produce a replicate of an input distur-
bance or the plant input necessary for the output of the plant to equal the desired reference
trajectory. In other words, it provides a set-point signal by providing close-loop transmission
zeros that eliminate the critically stable poles of the periodic disturbance or set-point. However,
the premise of this principle is that it requires prior knowledge of the frequency of the signal.
To put it simply, the controller must know the exact frequency of disturbance and reference sig-
nal before tracking it. Hence, the performance of this approach is limited by this prerequisite.
Moreover, many problems in the real world have an uncertain frequency. So, this is considered
to be the main restriction of this approach in the application.

Since then, many extension schemes from the internal model principle were developed to
achieve signal tracking and disturbance cancellation with uncertain frequency. In 1988, a
method called the repetitive control system, which is based on the internal model principle,
was presented by Hara, et al.[25]. It fulfilled the goal of tracking a periodic disturbance to re-
duce the error to a small number and reject the disturbances but suffered from a lack of system
stability because of the positive feedback loop. Another different technique called adaptive
feedforward cancellation that is based on the phase-locked loop was proposed by Bodson, et
al. in 1994 [7]. Despite the fact that this approach has good system stability, it requires the
gains to be calculated for all estimated frequencies, which is not reliable with a complicated
plant.

In 2001, Brown and Zhang proposed an adaptive algorithm for cancelling periodic disturbances
with uncertain frequencies and extended it to the identification of periodic signals with uncer-
tain frequencies [9, 10]. These approaches are formed on state-space variables of an internal
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model principle controller and used a PI controller in parallel. It showed high performance
on identifying periodic signals and rejecting a periodic disturbance. However, the analysis
was done in the absence of noise, and the algorithm needed a good knowledge of the plant
gains at all potentially identified frequencies. Moreover, one of the main restrictions in these
algorithms is that the frequency of periodic signal and disturbance cannot be identified when
the fundamental frequencies of them are too low. Additionally, an adaptive internal model
principle-based principle for frequency identification and disturbance cancellation was pro-
posed by Brown and Zhang to ensure the system is exponentially stable [11]. Since the dis-
turbance re-builder should add after the estimation frequency convergence in this method, this
causes a rebuilding delay, which is considered the main limitation.

In recent years, several approaches were proposed in this particular area. A method of dis-
turbance cancellation for linear systems by adaptive internal models was presented by Marino
and Tomei in 2013 [33]. Besides, an internal model-based approach of adaptive disturbance
compensation in delayed linear systems was proposed by Gerasimov, et al. in 2015 [24].

2.3.2 Adaptive Notch Filter
In the field of signal analysis, the adaptive notch filter (ANF) is one of the essential techniques
that has many applications such as frequency estimation and noise cancellation [37, 38]. ANF
has been commonly used in our daily life like cell phones and hearing aids. In this partic-
ular design, the second-order of infinite impulse response (IIR) form of the adaptive filter is
considered as following

G(z−1,Ω, ρ) =
1 − z cos Ωz−1 + z−2

1 − 2ρ cos Ωz−1 + ρ2z−2 (2.7)

where the parameter ρ (0 ≤ ρ < 1) is known as the pole contraction factor, and Ω is uncertain
notch frequency. Equivalently, the analog adaptive notch filter can be expressed as

H(s) =
s2 + ω2

n

s2 + 2εnωns + ω2
n

(2.8)

where s is Laplace operator, ωn is the notch frequency and εn (0 < εn ≤ 1) is the damping ratio.
Note that the notch frequency ωn is controlled by means of an adaptive algorithm that includes
stochastic gradient approach such as least mean square error (LMS) and normalized least mean
square (NLMS), or least square estimation such as recursive least squares filter (RLS). Hence,
this filter can reject or attenuate signals with specific frequency ωn. By incorporating this filter
into the control system, the algorithm’s noise rejection ability is improved.

2.3.3 Instantaneous Fourier Decomposition
The instantaneous Fourier decomposition (IFD) algorithm is adapted from the basic internal
model principle. This method was first presented by Malhorta in 2005 [32], developed by Sun
and implemented in continuous time and for offline estimation in 2006 [46]. Its crucial function
is to identify or cancel a sinusoidal disturbance. The structure of the IFD block diagram is
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shown in Fig. 2.1, where G(s) is a tuning function. Assume the input mixed-signal d(t) contains
m signals with different fundamental frequencies, and each individual signal has n harmonics.
The signal is decomposed into narrow-band signals based on the orthogonal state variables
combined with internal models(IMi j). The state-space equation for internal model IMi j is
given as

Ẋi j =

[
0 jω̂i

− jω̂i 0

]
Xi j +

[
0
1

]
e (2.9)

ui j =
[
K1i j K2i j

]
Xi j (2.10)

where i = 1, 2, · · · ,m and j = 1, 2, · · · , n, j ,
√
−1 and

Xi j =
[
x1i j x2i j

]T
(2.11)

The gains K1i j, K2i j are in the input vector from the output vector so that adjustments in their
value do not directly change u. Each transfer function IMi j is an internal model for a sinusoidal
of frequency j ∗ ω̂ and behaves as a notch filter. Thus, the desired system behaves as a band-
pass filter with multiple notch filters. This specific structure guarantees that the closed-loop
system is stable for all choices of n, m and ωi. However, the performance of this system can
vary largely with different ωi.

Figure 2.1: instantaneous Fourier decomposition block diagram
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From Fig. 2.1, the transfer function from error e(s) to the state variable x2i j(s) is (k2i js +

k1i j jω̂i)/(s2 + ( jω̂i)2) and the response at x1i j(t) and x2i j(t) in steady state are

x1i j(t) = Āi j sin jωt + θi j (2.12)

x2i j(t) = Āi j cos jωt + θi j (2.13)

where Āi j and θi j are uncertain magnitude and relative phases respectively. Consequently, we
have

Ai j =

√
K2

1i jx
2
1i j(t) + K2

2i jx
2
2i j(t) (2.14)

θi j = arctan(
x2i1(t)
x1i1(t)

) − jωi(t) (2.15)

Note if there is a DC component in the signal e(t), the phase plot of the system will still be a
circle but no longer centered about the origin. If the circle still contains the origin, only the
average of the derivative over each rotation will equal ωi, rather than at every point in time.
Furthermore, if the DC component is sufficiently large, the phase plot will no longer encircle
the origin and equation (2.16) will be completely invalid. In this case, the algorithm will fail
miserably. Three approaches can be used to ensure e(t) has no DC component. First, design
the system so that there is a zero at the origin in the nominal transfer function between d(t) and
e(t). Second, explicitly model the DC component of d(t) by including an integrator as one of
the internal models. Third, have a d(t) with no DC component. The first method is presented
above by incorporating the band-pass filter in the transfer function. The second and third will
be presented in chapter 3 using the second-order low-pass filter and first-order low-pass filter.

2.3.4 Frequency and Magnitude Estimation
Since the state variables x1i1 and x2i1 are orthogonal to each other, a phase plot of them forms
a circle with the state rotating at frequency ωi. It can be shown that when ω̂i = ωi in the
steady-state, without noise, we have

ωi =
d
dt
∠(x2i1 + jx1i1) (2.16)

Accordingly, the difference ∆ω between fundamental frequency ωi and estimated frequency ω̂i

can be presented as

∆ω = ωi − ω̂i ≈
e(K2i1x1i1 − K1i1x2i1)

x2
1i1 + x2

2i1

(2.17)
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We can use a simple integral controller to control the speed of frequency estimation conver-
gence

dω
dt

= Ka∆ω ≈ Ka
e(K2i1x1i1 − K1i1x2i1)

x2
1i1 + x2

2i1

(2.18)

where Ka are the adaptation gains that control the frequency updating speed. Presumably, if the
tuning function G(s) was designed properly and the feedback gains {K111K211, ...,K1nmn K2nmn}

for each internal model were calculated, a quasi-periodic signal can be decomposed into a sum
of narrow-band signals ui j in terms of the state variables corresponding to each internal model.
Here ui j = x2i j since the second state is the sinusoidal component of the original signal and the
first state is its quadrature. and a real-time Fourier representation of the reference signal can be
obtained. The signal ui j(t) is the estimation from the internal model IMi j representing the jth

harmonic of the ith fundamental frequency. The total signal estimation u(t) is represented as

u(t) =

n∑
i=1

mi∑
j=1

ui j(t) =

n∑
i=1

mi∑
j=1

x2i j(t) (2.19)

Āi j =

√
x2

1i j(t) + x2
2i j(t) (2.20)

As the estimated frequency ω̂i and the actual frequency ωi are getting closer, the error e that
started high can be driven to a relatively small number. In addition, the steady-state solution
becomes as

ui j = x2i j = Āi j cos jωt + θi j (2.21)

In [10], it is established for sufficiently small Ka that the algorithm is locally exponentially
stable when G(s) and the K1i j, K2i j are chosen so that the feedback loop in Fig. 2.1 is stable
at each point in time. Choosing these controller parameters is a challenging problem as it is
assumed that there is limited knowledge about the ωi. Furthermore, there can be a significant
difference between ωi and ω̂i during the transient time.

2.3.5 Tuning Parameters Selection
As mentioned in [41], the above stability assumption is satisfied by designing the closed-loop
system to incorporate a band-pass filter with notch filters. Let a second-order desirable band-
pass filter be given by

Tbp(s) =
d1s2

s4 + c1s3 + c2s2 + c3s + c4
(2.22)

After incorporating the notch filters into equation (2.22), the transfer function of the desired
system from d to e becomes as



2.3. Signal Identification Based on InternalModel Principle 11

Tde =
d1s2

s4 + c1s3 + c2s2 + c3s + c4
×
∏ s2 + ( jω̂i)2

s2 + 2εi j jω̂is + ( jω̂i)2 (2.23)

where εi j are small real numbers, and j ∗ ω̂i are the notches frequencies. Note that those
notches frequencies are chosen to be in the pass-band of the band-pass filter. Therefore, only
those signal components whose frequencies are on the notches frequencies will be captured by
the desired system.

Figure 2.2: Tde bode plot diagram

Fig. 2.2 shows the theoretical bode plot of the desired band-pass filter with multiple notches
filters. The pass-band is from 1 Hz to 25 Hz and 4 notches (located at 4 Hz, 8 Hz, 12 Hz and
16 Hz) are incorporated in it.

The analysis of Figure 2.1 gives

Tde =
G(s)

1 + G(s)
∑n

i=1
∑mi

j=1( K2i j s+K1i j jω̂i

s2+( jω̂i)2 )

=
b1s2∏(s2 + ( jω̂i)2)

a(s)
∏

(s2 + ( jω̂i)2) + b1s2∑(K2kls + K1kllω̂k)γkl(s)
(2.24)

where

G(s) =
b1s2

s4 + a1s3 + a2s2 + a3s + a4
=

b1s2

a(s)
(2.25)

γkl =

n∏
i=1

mi∏
j=1

(s2 + ( jω̂i)2) { j , l if i = k} (2.26)
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Note in equation (2.24)
∏

represents
∏n

i=1
∏mi

j=1 and
∑

represents
∑n

k=1
∑mk

j=1. The terms γkl

are the product of all terms (s2 + ( jω̂i)2) except the i = k, j = l term. Now all the controller
parameters can be calculated by matching the coefficients of numerator and denominators in
equations. From the numerator we get b1 = d1. Unfortunately, we get a set of 2nt + 4 coupled
equations with 2nt + 4 unknowns where nt =

∑n
i=1 mi, which is possible to solve off-line but not

possible to achieve it in real time. In order to solve this crucial problem and make the system
online, we assume that s = ±

√
−1lω̂k. It can be seen that all of the terms in the denominator

except the term containing γkl will be zero if s = ±
√
−1lω̂k. Thus we have

b1s2
∑

(K2kls + K1kllω̂k)γkl(s)

= (s4 + c1s3 + c2s2 + c3s + c4)
∏∏

s2 + 2εi j jω̂is + ( jω̂i)2 (2.27)

This generates two complex and complementary conjugate equations with two unknown vari-
ables i.e. the real part of either equation gives K1i j and the imaginary part gives K2i j. The values
of the control feedback gain parameters K1i j, K2i j for each internal model IMi j can be obtained
by solving these two linear decoupled equations. Those four ai parameters in a(s) can be ex-
plicitly solved by equating the coefficients of terms with the same degree in the denominator.
In [35], J. Chen found out that these coefficients can be calculated by utilizing the relationships
between the coefficients of a polynomial and the roots of a polynomial. Hence we have

nt∏
i=1

(s2 + 2εiwi + w2
i ) = s2nt +

∑
2εiwis2nt−1

(
∑

w2
i +
∑

i

∑
j>1

4ε jw jεiwi)s2nt−2

+ · · · +
∏

w2
i (2.28)

Let {wi} = { jωi}, we get

a1 = c1 +
∑

2εiωi

a2 =

nt∑
i=1

∑
j>1

4ε jω jεiωi + c1

nt∑
i=1

2εiωi + c2

a3 = c3 + c4

nt∑
i=1

2εi

ωi

a4 = c4 (2.29)

Therefore, the computation complexity can be reduced, and it is possible to solve it on-
line. Theoretically, this algorithm can identify signals with any number of fundamentals and
harmonics without prior information. Other than continuous time, all previous work has been
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replicated in the discrete-time domain by Chen [14]. However, the Z domain has serious sta-
bility issues, and a continuous implementation with low order numerical integration routines
works better. Thus, the continuous-time algorithm is used in this thesis.

2.4 Parkinsonian Tremor Estimation
Parkinson’s disease is a common long-term degenerative disease that mainly affects the motor
system. One of the most apparent symptoms is tremor which is known as Parkinsonian tremor.
Because it is an incurable disease, the estimation and suppression of the Parkinsonian tremor
play an essential role in improving the life quality of patients with Parkinson’s disease.

2.4.1 Parkinsonian Tremor
Parkinsonian tremor can be divided into three categories of movement disorder: resting, postu-
ral and kinetic tremor [19]. Resting tremor appears when muscles are relaxed, and its frequency
range in hand is 3 to 6 Hz. Typical scenarios include when patients are lying on the bed or when
their hands are resting on a table. Postural tremor can be found when muscles are contracted,
and the frequency range is 5 to 12 Hz. Common scenarios include when patients are main-
taining a part of the body at a fixed position against gravity or when they are holding their
arms outstretched. Moreover, Parkinsonian tremor is typically unilateral, which will occur at
rest, and become less prominent with voluntary motions. The amplitude of tremor varies from
person to person.

2.4.2 Fourier Linear Combiner
In order to study the nature of the Parkinsonian tremor, it is important to estimate and extract
the tremor from a combined signal. Filters are commonly used in this process. However, the
time delay introduced by the filter is a drawback for tremor control because an actuator cannot
generate an estimated tremor with zero-phase delay to oppose the vibrations.

The drawback of the typical filter prevents its use for tremor suppression. However, adaptive
filtering is well suited for tremor estimation as it is constantly adapting its parameters to the
input signal based on a learning algorithm. A Fourier linear combiner (FLC) was proposed
by Vaz, et al.[50] based on the assumption that tremor can be simplified to a roughly periodic
signal. It used an adaptive algorithm called the least mean square (LMS) algorithm. This al-
gorithm attempts to estimate a possibly time-varying linear system whose weight or parameter
vector w0

k obeys

yk = x∗′k w0
k + vk (2.30)

xk = [e jω0Nk e jω0(N−1)k · · · e jω0k e− jω0k · · · e− jω0Nk]
T

(2.31)

w0 = [w0
−N w0

−N−1 · · ·w
0
−1 w0

1 · · ·w
0
N] (2.32)
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where the prime denotes transposition and the asterisk denotes complex conjugation, N is the
number of harmonics and vk is the inherent noise in the system. It aims to minimize the square
of the error

ek = yk − x∗′k wk (2.33)

by means of the recursion

wk+1 = wk + µxkek (2.34)

where µ is the step size that determines the tuning speed of each iteration. In [50], it shows
that a periodic signal sk with a period of T sampling intervals can be represented by a Fourier
series shown below

sk =

±N∑
n=±1

w0
ne jω0nk = x∗′k w0, ω0 = 2π/T (2.35)

Presumably, the signal sk can be described by no more than N harmonics. Then by combining
(2.31) and (2.34), we have

ek = x∗′k w0 + vk − x∗′k wk (2.36)

which yields adaptive estimates of the Fourier series w0. However, this algorithm is based on
a known frequency and assumes that the noise vk is independent of the signal sk. Moreover,
because Parkinsonian tremor is not an ultimately periodic signal, the estimation accuracy will
be flawed when the tremor is not obvious or changing.

2.4.3 Weighted-Fourier Linear Combiner

Soon after the FLC was proposed, Riviere et al. came up with a new tremor estimator based
on FLC, called the weighted-frequency Fourier linear combiner (WFLC) [42]. It replaced the
fixed reference frequency ω0 in FLC with an adaptive frequency ω0k , (2.36) becomes

ek = sk −

N∑
r=1

[wrk sin (rω0kk) + wN+rk cos (rω0kk)] (2.37)

where wrk and wN+rk are the adaptive filter weights, and N is the number of harmonics. An
adaptive recursion for ω0k can then be constructed using the simplified approach underlying
the LMS algorithm. The frequency components are given as follows:

xrk =

{
sin (rω0kk) 1 ≤ r ≤ N

cos [(r − N)ω0kk] N + 1 ≤ r ≤ 2N (2.38)

Finally, ω0k is provided with its own adaptive gain µ0. This generates the frequency recursion
of the WFLC
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ω0k+1 = ω0k + 2µ0ek

N∑
r=1

r(wrk xN+rk − wN+rk xrk) (2.39)

This gives WFLC the ability to adapt both the frequency and amplitude parameters of the
Fourier series to the input signal. The implementation of the adaptive weighted frequency
estimation greatly improves the performance of the tremor estimator. However, it is insufficient
to represent natural tremors by applying a pure sinusoidal estimation of tremor motion. In
recent years, several techniques were proposed based on WFLC. In 2007, Veluvolu, et al.
presented a band-limited multiple Fourier linear combiner which comprised of several Fourier
linear combiners [52]. It can track multiple frequency components in a signal tremor. Not
long after it, a double adaptive band-limited multiple Fourier linear combiner was proposed
by Veluvolu, et al. [51], which can tune itself to an optimum band, thereby decreasing the
number of weights in [52]. Nevertheless, the experiment was done in modulated synthesized
tremor signal, which was less complicated than the real tremor signal. In 2016, Adhikari, et al.
presented a quaternion weighted Fourier linear combiner [1]. It modeled the tremor in 4-D (x,
y, z and f ) and yielded a more accurate model of tremor.

2.4.4 High-order Weighted-frequency Fourier Linear Combiner-based
Kalman Filter

In addition to FLC and WFLC, the Kalman filter and its derivative algorithms have also been
used as tremor estimator [30, 53, 5]. A great effort has been made to designing new Kalman
filter derivatives. However, the descriptions of tremors are not unified, and the assessment
of applying different tremor models has not been well studied, limiting the versatility and
adaptability of these algorithms when they face different kinds of Parkinsonian tremors.

In 2016, a high-order weighted-frequency Fourier Linear combiner-based Kalman filter (HWFLC-
KF) is proposed by Y. Zhou, et al.[55]. This method combined the WFLC and the Kalman filter
to enhance the accuracy of tremor estimation. It divided the Parkinsonian tremor signal into
two parts: the first harmonic and the combination of other higher harmonics and used two
high-order WFLCs to estimate them separately. Assume that a tremor signal can be described
as

S t(k) = S t1(k) + S t2(k)
S t1(k) = An1(k) sin (2π ft1kTs) + bn1(k) cos (2π ft1kTs) (2.40)
S t2(k) = An2(k) sin (4π ft2kTs) + bn2(k) cos (4π ft2kTs)

where S t1 and S t2 are the first and second harmonics, respectively. an1, an2, bn1 and bn2 are
the Fourier coefficients, ft1 and ft2 are the estimated frequencies of the first and second har-
monics from two high-order WFLCs, Ts is the sampling time. Then a Kalman filter is used to
increase the accuracy of tremor amplitude estimation by minimizing the covariance of a poste-
riori estimation error. This approach significantly improves the performance of WFLC in both
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frequency and amplitude estimation. However, the computation time is higher than the WFLC
because of the Kalman filter.

Not long after that, an extension work based on HWFLC-KF is presented in 2018[54]. Rather
than only considered the second harmonic, this enhanced HWFLC-KF also considered the third
harmonic. The evaluation result on real Parkinsonian tremor signals indicates that the enhanced
HWFLC-KF has high accuracy and lower computation time than HWFLC-KF. However, its
performance on different types of tremors has not been verified.

2.4.5 Other Tremor Estimators
Other than the tremor estimators presented above, several other tremor estimation algorithms
have been proposed and adopted as well [39, 45, 47]. In [39], a tremor estimation algorithm
based on WFLC was presented to track tremor within a band of frequencies. However, similar
to the WFLC, applying a pure sinusoidal estimation of tremor is inadequate to represent natural
tremor. [47] designed an adaptive control system for tremor estimation and suppression. This
system treated tremor as an unknown harmonic disturbance. Although the author claimed that
the tremor’s peak amplitude reduction is substantial, the use of a sinusoidal function as the
simulated tremor is still questionable. In [45], a new framework called WAKE is developed
based on wavelet decomposition and Kalman filtering to first estimate the voluntary motion
in a myopic fashion and then use this information to extract involuntary movement (tremor).
However, the experiment was done using the tremor data recording from a smartphone mounted
on the patient’s hand. The information of Parkinsonian tremor is not fully collected while the
tremor is passing from arm and hand to the smartphone.

With the rapid development of neural networks, many papers use this technique to recognize
and identify the tremor signal. In 2010, Cole, et al. applied the dynamic neural network ap-
proach to detect time-varying tremor [16]. It was able to detect Parkinsonian tremors from
wearable sensor data in a high level of sensitivity. Unfortunately, it could not provide de-
tailed information like the amplitude or frequency of the tremor signal. In addition, Eduard,
et al. proposed an algorithm to identify Parkinsonian tremor with multiple local field potential
feature classification [2]. This method used a trained classifier based on a neural network to
identify the presence of tremor without the necessity of parameter-tuning. However, it was
required to divide patients into certain groups and do the training separately, and the accuracy
depended on the quality and quantity of collected data.

2.5 Intermittent Control
Since our ultimate goal is to achieve real-time Parkinsonian tremor suppression, some situa-
tions that may happen in reality need to be considered. For instance, the tremor signal does
not always exist. While the patient is trying to do a voluntary movement or keeping arm still
against gravity, the Parkinsonian tremor is likely to decrease or even disappear. In continuous-
time signal tracking, these human movements will have an inestimable impact on our system.
Thus, a real-time tremor suppression device requires the ability to determine whether there is
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a tremor signal or a voluntary motion and respond accordingly. It can be described as doing
intermittent actions in continuous observation. A technique called intermittent control can be
adequately used to solve this problem.

In control theory, intermittent control is used when the control signal consists of a sequence of
parameterized trajectories whose parameters are adjusted intermittently. Moreover, it can be
used in psychological control system control such as the human motor system. In recent years,
several papers are published in this specific area. In 1999, Brown, et al. proposed an intermit-
tent cancellation control method which aimed to improve the performance of the closed-loop
system by only applying the integral action intermittently in PI controller [12]. This imple-
mentation can make the proportional controller more aggressive while maintaining the stability
margins and control actions at similar levels. The idea of designing to separate control laws
for different disturbances is also easy to achieve and gives more robustness. However, it is
restricted to plants that have infrequent changes or outstanding models of disturbance.

Further, Gawthrop, et al. resented an event-driven controller which recast the previously fixed
sampling interval intermittent control [23] to provide an explanation for some human control
systems in 2009. Rather than dividing the signal into equal intervals, it used feedforward
events to detect known signals and feedback events to detect disturbance. Different control
method was activated due to different event, which solved the problem of asynchronization
between signal and disturbance. To extend the previous work, a computational theory of human
control based on event-driven intermittent control was proposed in 2011 [22]. It provided a
structure to explain the behaviour of the human operator under a broader range of conditions
than continuous control. However, these articles were only in theory and had not actually been
applied in real time.



Chapter 3

Algorithm Development and System
Design

3.1 Overview
In this chapter, a flexible system was developed based on [36] to obtain the ability to choose
a proper filter to identify signals with any number of fundamentals and harmonics. Further-
more, a new adaptive algorithm based on the new flexible system was presented to identify the
Parkinsonian tremor signal.

3.2 Flexible System Design
An identifier of the signal given in equation (1.1) based on the internal model principle was
proposed in Chapter 2. In [36], it is shown that the proposed system behaves as a band-pass
filter with notch filters. Its main advantage is to estimate the frequency and magnitude of an
unknown periodic signal. However, the Matlab / Simulink implementation is fixed and hard to
modify if a signal with a different number of fundamentals or harmonics needs to be identified.
Moreover, the performance of the system is only verified using a synthesized signal. Therefore,
the system needs to be reprogrammed to be more flexible and easier to use, as well as the ability
to estimate signals in real life.

3.2.1 Alternative Filter Selection
Second-order Low-pass Filter

As discussed in [36], although the old system does not lose stability or accuracy by allow-
ing the difference between d and u to have a substantial DC content, the performance of this
controller system can be improved by adding an additional internal model to estimate the low-
frequency component and replacing the band-pass filter with a second-order low-pass filter.
Notice that the low-frequency component includes all signal components below the fundamen-
tal frequency. The block diagram of this alternate system is given in Fig. 3.1. More precisely, it
is necessary to remove the low-frequency component from the input to the internal models for

18
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correcting frequency estimation. The faster poles of the low-pass filter result in a faster system
and better performance. A second-order low-pass filter Tslp can be given by

Tslp(s) =
b

s2 + ds + c
(3.1)

After the controller parameters of the system have been calculated, the transfer function of the
second-order low-pass filter with notch filters becomes as

Tslpn =
b

s2 + ds + c
×
∏ s2 + ( jω̂i)2

s2 + 2εi j jω̂is + ( jω̂i)2 (3.2)

The tuning function G(s) is reduced from five unknown coefficients to two

G(s) =
b̄

s + a
(3.3)

Figure 3.1: Alternative instantaneous Fourier decomposition block diagram
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The transfer function of the closed-loop feedback system in Fig. 3.1 can be represented as

Tde =
G(s)

1 + G(s)
∑n

i=1
∑mi

j=1( K2i j s+K1i j jω̂i

s2+( jω̂i)2 + K0
s )

=
b̄
∏

(s2 + ( jω̂i)2)
(s + a)

∏
(s2 + ( jω̂i)2) + b̄

∑
(K2kls + K1kllω̂k)γkl(s) + b̄K0

∏
(s2 + ( jω̂i)2)

(3.4)

After repeating the feedback control system gains calculation procedure in Chapter 2 for each
internal model and match the numerators and denominators’ coefficients in equations (3.2) and
(3.4), we have b̄ = b, and when s = ±

√
−1lω̂k

b̄s
∑

(K2kls + K1kllω̂k)γkl(s)

= (s2 + ds + c)
∏∏

s2 + 2εi j jω̂is + ( jω̂i)2 (3.5)

Similarly when s = 0, K0 = b/c. Besides, the a coefficient for the tuning function G(s) can be
calculated by equating the coefficients of the second-highest degree term of the denominator.
Thus, this generates a linear equation that can be solved by back substitution.

a = d +

ni∑
i=1

2εiwi (3.6)

First-order Low-pass Filter

However, some sensor families cannot produce a DC component or very low-frequency signals
inherently. In those cases, neither the high-pass portion of the band-pass filter nor the integrator
is needed. Particularly, the sensors being used for Parkinsonian tremor acquisition have that
characteristic. Therefore, we can continue dropping the order of the low-pass filter from two
to one and reducing the number of unknown parameters from two to one. More precisely, we
can remove the additional internal model from the IFD block diagram. Thus, the lower order
of the low-pass filter results in a more straightforward calculation and faster system.

Our goal here is to improve the performance and speed of the proposed algorithm by omitting
the low-frequency component when we do not need to consider it. Hence, the IFD block
diagram is the same as the system with a band-pass filter in Fig. 2.1. Accordingly, a first-order
low-pass filter can be shown as

T f lp(s) =
b

s + d
(3.7)
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The transfer function of a low-pass filter with notches become as

T f lpn =
b

s + d
×
∏ s2 + ( jω̂i)2

s2 + 2ε jω̂is + ( jω̂i)2 (3.8)

The tuning function G(s) is given by

G(s) =
b̄

s + a
(3.9)

and the transfer function of the closed-loop feedback system can be presented as

Tde =
G(s)

1 + G(s)
∑n

i=1( K2i j s+K1i j jω̂i

s2+( jω̂i)2 )

=
b̄
∏

(s2 + ( jω̂i)2)
(s + a)

∏
(s2 + ( jω̂i)2) + b̄

∑
(K2kls + K1kllω̂k)γkl(s)

(3.10)

Equating the numerators gives b̄ = b, and when s = ±
√
−1lω̂k,

b̄
∑

(K2kls + K1kllω̂k)γkl(s) = (s + d)
n∏

i=1

(s2 + 2ε jω̂is + ( jω̂i)2) (3.11)

The a coefficient can be calculated by equating the coefficients of the degree 2n term of the
denominator, which is also the second-highest degree term. Finally, we have

a = d +

n∑
i=1

2εiwi (3.12)

3.2.2 Enhancement on System Flexibility and the Solution for Common
Frequencies

As mentioned at the beginning of this section, the old system is fixed and hard to modify. Be-
cause of the structure of the Simulink model, it has to be rewired and reprogrammed once a
signal with a different number of fundamentals or harmonics is needed to be identified. The-
oretically, this algorithm should be capable of identifying a quasi-periodic signal with any
number of fundamentals or harmonics. It can be used to identify a complicated signal with
many fundamentals and extract the specific signal or track a long-term signal and withdraw
the characteristics of the signal. In other words, this algorithm can have many applications in
the field of signal processing, automation or control. In order to extend the functionality of
this system, a new flexible model is developed to let the user choose all the setting and tuning
parameters to identify different kinds of periodic signals that can be described by the equation
(1.1).
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Basically, there are four setting parameters and five tuning parameters that influence the per-
formance of the algorithm. In the setting part, m refers to the number of fundamentals, n refers
to the number of harmonics. Ti is the system initialization time i.e. the system will not start to
identify the signal at the first Ti seconds, which is used to omit the starting part of the signal if
it does not contain any valid signal. Ftype is the type of filter i.e. band-pass filter, second-order
low-pass filter and first-order low-pass filter. In the tuning part, Ka represents the adaptation
gains which control the speed of frequency convergence, I0 is the initial frequency vector i.e.
the starting frequency for each fundamental. ε refers to the notch width of the notch filters, ωn

is the cut-off frequency of the desired filter.

By replacing the blocks in the old model with the S-function block and reprogramming the
system, the structure and function of this signal identifier can be modified by inputting param-
eters instead of creating a new and different program. Consequently, the system’s flexibility is
enhanced, and the ability to identify the signal collected from the real world is attained.

However, when a signal with two or more fundamentals is identified, some of their harmon-
ics may share the same frequencies. The set of equations that must be solved to calculate the
free parameters K1i j,K2i j become dependent if two or more internal models have the same fre-
quency. This is intuitively obvious because the set of internal models become redundant when
two frequencies are the same. More accurately, each internal model must represent a har-
monic with a unique frequency to prevent the system from being numerically unstable. Thus,
the extra internal models need to be dropped to one when two or more internal models have
common or near common frequencies, and the feedback gains of the corresponding internal
models are divided by the number of internal models with similar frequencies. A periodic sig-
nal after instantaneous Fourier decomposition can be represented by the sum of fundamentals
and their harmonics, thus we have estimated frequencies {ω11, ω12, · · · , ω1n, ω21, · · · , ωmn} for
each internal models, where ωmn is the n-th harmonic of the fundamental ωm1, which is integer
n times ωm1. Once the system detected similar frequencies in different internal models e.g.
ω12 ≈ ω23 ≈ ω34, equation (2.19) becomes

u(t) = u11(t) + u12(t) + · · · + u22(t) + u24(t)
+ · · · + u33(t) + u35(t) + · · · + umn(t) (3.13)

Therefore, the feedback gains for each internal model become
{K111,K211,K112/3,K212/3, · · · ,K122,K222,K112/3,K212/3, · · · ,K133,K233,K112/3,K212/3, · · · },
which equally divides and distributes the gain of the internal model with this particular fre-
quency to other internal models with similar frequencies. This method prevented the conflic-
tion of internal models with the same frequencies and guaranteed the stability of the system.
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3.3 Improvements for Parkinsonian Tremor Signal
In order to apply our new flexible system to the Parkinsonian tremor signal, it is essential to
make improvements based on the characteristic of the data we want to identify. Approval for
this research was obtained from the University of Western Ontario’s Human Research Ethics
Board prior to the start of the experiments. The data used in this thesis are collected from
18 patients with Parkinson’s disease. The tremor signal is acquired by a special glove which
has one IMU (inertial measurement unit) on each side of the index finger metacarpophalangeal
joint, thumb metacarpophalangeal joint and wrist joint to record the angular velocity of three
axes (pitch, roll and yaw) of each joint. The unit of angular velocity is degree per second (DPS).
Hence, we have nine sets of signals to represent the tremor on a single hand simultaneously.
Considering the characteristic of the tremor signal, the modifications that are needed to be
developed based on the new proposed signal identifier are listing below.

1) The signals recorded from IMU contain no DC component. We need to choose a proper
filter for the new system for good performance.

2) The tremor signal of each joint is a 3-D signal. The new system needs to identify this
3-D signal, not identify three 1-d signals separately.

3) The Parkinsonian tremor does not exist all the time. The new system needs to recognize
the presence of tremors and find a solution for periods without tremors because the new
proposed signal identifier is only guaranteed to be stable if the signal obeys equation
(1.1) with at least one non-zero amplitude and frequency.

4) The patient was doing voluntary movements in some tasks. The new system needs to
separate voluntary motion components from tremor signals and only suppress Parkinso-
nian tremors.

5) The recorded data included measurement noise with large and completely spurious val-
ues. These unexpected noises need to be omitted or eliminated, or the algorithm will be
severely degraded.

3.3.1 Signal Classification
During the experimental phase, these patients were asked to do six groups of experiments with
different actions. While the patient is performing different actions, the signals collected by
the glove will also contain different types of tremors. The resting tremor occurred when the
patient’s hand was completely resting against gravity and the arm was supporting by the table.
The postural tremor occurred when the patient was maintaining a position against gravity in
the air, and kinetic tremor occurred during voluntary movement. The category of these actions
and type of tremor within is shown in the Table. 3.1. Fig. 3.2 displayed the experiment scene
when the patient was doing tasks 1B.
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Figure 3.2: Experiment scene

Data No. Action Type of tremor
1A The patient’s arm keeps still on the table (thumb up) Resting tremor
1B The patient’s arm keeps still on the table (palm down) Resting tremor
2 The patient’s palm keeps still at 45 degree angle (palm down) Postural tremor
3 The patient moves wrist and finger joints to hold a pencil Kinetic tremor / Voluntary motion
4 The patient moves wrist and finger joints to move pencil up and down Kinetic tremor / Voluntary motion
5 The patient uses a pen to draw spiral circles Kinetic tremor / Voluntary motion

Table 3.1: Category of different actions and types of tremor in these actions

An example of different types of tremors are shown in Fig. 3.3. Generally speaking, resting
tremors in Task 1A and 1B are the most common type of tremor and can be easily identified
because of the strong intensity of the tremor. Once the patient tried to control the hand because
of the gravity in Task 2, the magnitude of the tremor would decrease accordingly. Hence,
compared with resting tremors, the magnitude of postural tremors may be lower sometimes.
Moreover, the tremor signal might be inconsistent since the patients were trying to maintain
the position actively in Task 3,4 and 5. Because the kinetic tremor did not appear every time
when a voluntary motion is conducted, and the magnitude of the kinematic tremor is much
smaller than the other two kinds of tremor. Besides, the voluntary motion will also affect the
identification results since it cannot be predicted.
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Figure 3.3: Different types of tremor (pitch signal of the index finger signal from same
patient in different tasks)

3.3.2 Adaptive Frequency and Magnitude Estimation
In most of the previous Parkinsonian tremor estimation algorithms, the identified signals are
all 1-D signals. However, the human hand has freedom of three dimensions. Collecting and
identifying data in only one direction may result in incomplete tremor information collected.
Especially when the tremor is not obvious or when the patient’s hands are moving horizontally
or vertically.

In order to apply the new purposed signal identifier on collected 3-D tremor data, some setting
parameters have to be adjusted to adapt the Parkinsonian tremor. The first question that must
be asked is how many harmonics exist in a 1-D tremor signal. Fig. 3.4 shows the short-time
Fourier transform (STFT) and fast Fourier transform (FFT) of a resting tremor signal data
in Task 1A. The window size and overlapped window size of STFT are 256 and 128. The
sampling rates in STFT and FFT are both 100 Hz. The colour in STFT indicates the magnitude
of the tremor signal, where the value of the yellow part is greater than the green part and blue
part. Obviously, harmonics above the fourth order are too weak so that they can be ignored.
This test is repeated in other 53 1-D signals in Task 1A, and it is observed that the obvious
harmonics are usually below the fourth harmonics (the fundamental is considered to be the
first harmonic). The next question is whether the tremor signal is a single fundamental signal
i.e. only has one fundamental frequency. After setting the number of fundamentals m in signal
identifier to one, Fig. 3.5 gives the square of the estimated fundamental amplitude of the pitch,
roll and yaw signal from the index finger in Task 1A. It can be seen that the result does not
vary periodically. If there are multiple fundamentals, the result will appear periodic because
the identifier will alternately track different fundamental frequencies. Thus, we conclude that
the Parkinsonian tremor signal only has one fundamental frequency. Therefore, signals from
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three directions on a single joint are inputted simultaneously and treated as a signal with one
fundamental and up to the fourth harmonic initially.

Figure 3.4: Top: Pith signal from index finger signal in Task 1A. Bottom left: STFT of
the signal at top. Bottom right: FFT of the signal at top.

Figure 3.5: The square of the estimated fundamental amplitude of pitch, roll and yaw
signals from index finger
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The third question is whether the frequencies of the pitch, roll and yaw signals from the same
joint are the same. Presumably, tremor signals of three directions should share the same fre-
quency because they are coming from the same joint simultaneously. Fig. 3.6 shows the fre-
quency estimation result when treating tremor signals of three directions from the same joint as
three separate 1-D signals. It can be seen that frequencies of the three directions are similar and
have the same trend. We repeated this test on the other 17 resting tremor signals in Task 1A,
and the results were similar. Hence, we consider the frequencies of signals of three directions
from the same joint are identical.

Figure 3.6: Frequency estimation of pitch, roll and yaw signals from index finger signal
in Task 1A

Let a tremor signal on one joint is given by

d(t) = dX(t)x̂ + dY(t)ŷ + dZ(t)ẑ (3.14)

where x̂, ŷ and ẑ are the unit vectors pointing in the pitch, roll and yaw directions, respectively.
The frequency estimation for all three directions becomes

ω̂i =
1
3

(ω̂X x̂ + ω̂Y ŷ + ω̂Z ẑ)

=
1
3

∫
(KaX

e(K2ixX1i − K1ixX2i)
x2

X1i + x2
X2i

+ KaY
e(K2ixY1i − K1ixY2i)

x2
Y1i + x2

Y2i

+ KaZ
e(K2ixZ1i − K1ixZ2i)

x2
Z1i + x2

Z2i

)dt

(3.15)

Note in equation (3.15) the feedback gains {K1i,K21i} are the same to all three directions since
their internal models are using an equivalent frequency.
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Fig. 3.7 shows the IFD block diagram for Parkinsonian tremor signal identification. In-
stead of identifying the signal of each direction with its own frequency {ω̂X, ω̂Y , ω̂Z}, our pro-
posed system used the average of the frequencies of three directions (ω̂i) to identify signals
of three directions. Furthermore, the estimated signals {uX j, uY j, uZ j} of each internal model
{IMX j, IMY j, IMZ j} are also calculated with average frequency ω̂i and its integer multiples.
Unlike other previous studies that only analyze 1-D signals, analyzing signals in three direc-
tions simultaneously can improve the integrity and accuracy of signal identification. When the
patient’s hand moves vertically or horizontally in real-life situations, there may be no tremor
signal in a particular direction. Only analyzing the signal in a single direction may lead to
incorrect results. Moreover, the influence of a significant sensor disturbance and noise inter-
ference on a single direction can be reduced by averaging the estimated frequencies of three
directions.

Figure 3.7: Instantaneous Fourier decomposition block diagram of signals of three direc-
tions from one joint
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The magnitude of three signals are estimated separately, which is represented as

u(t) =

4∑
j=1

uX j x̂ +

4∑
j=1

uY jŷ +

4∑
j=1

uZ jẑ (3.16)

The final question is whether the frequencies of three joints on one hand are the same. This is
a more complicated question and will be addressed later in Chapter 4. Because of the different
sensor positions on each joint, the quality of the collected data may deviate. Here we use
weighted factors to adjust the proportion of different joint’s signals. The frequency estimation
of tremor signal on a single hand can be presented as

ω = Aω̂IF + Bω̂T + Cω̂W (3.17)

where A, B and C are weighted coefficients to be calculated and A + B + C = 1. The subscript
IF, T and W are referring to the index finger, thumb and wrist.

3.3.3 Distinguish Between Tremor, Noise and Voluntary Motion
We showed how our new purposed signal identifier was modified to adapt to the 3-D Parkin-
sonian tremor signal. However, there are several different manifestations of the Parkinsonian
tremor. As mentioned early in this chapter, a kinematic tremor may occur when patients are
making a voluntary motion. A voluntary motion can be varied, such as when a patient is fetch-
ing a glass of water or when a patient is writing with a pen. Hence, a Parkinsonian tremor
signal may contain three components: a predictable tremor, an unpredictable noise and a semi-
predictable voluntary motion. The tremor is predictable because we know the frequency range
and have an actual model to describe it. The noise is unpredictable because it exists all the time
and cannot be identified. The voluntary motion is semi-predictable because although its exter-
nal performance is varied and unforeseeable, it always appears as a low-frequency component
in the signal. Identifying noise and voluntary motion will not increase our tremor estimation
accuracy but pull down the system performance. Thus, rather than estimating the whole tremor
signal, we aim to recognize and only estimate the tremor. Therefore, the system needs to have
the ability to distinguish between tremor, noise and voluntary motion. Thus, a proper value
of fundamental amplitude can be used as a threshold to distinguish between tremor, noise and
voluntary motion. The amplitude of each harmonic in the tremor signal is given by

Ai =

√
x2

1i(t) + x2
2i(t) (3.18)

where i is the order of the harmonic. Generally speaking, the fundamental (first harmonic) of
the signal carries most of the information of a signal, which results in higher amplitude than
other harmonics. Moreover, the fundamental amplitude A1 of the tremor signal is much higher
than the fundamental amplitude of the noise or voluntary motion signal because the tremor can
be described as a quasi-periodic signal.

An analysis of the square of fundamental amplitude (A1)2 between noise and tremor in pitch
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signal in Task 1B is presented in Fig. 3.8, where the blue part is the tremor, and the red part
is noise. Here we use (A1)2 instead of A1 because the value difference is more significant
and easier to find a suitable threshold. Apparently, (A1)2 rises quickly once the tremor signal
appears. Fig. 3.9 shows the difference of (A1)2 between voluntary motion and tremor. This
signal is collected when the patient moves the wrist and finger joints to move a pencil. Similar
to Fig 3.8, (A1)2 drops rapidly when the tremor signal disappears, and it does not increase when
the voluntary motion arises. Moreover, (A1)2 had a small peak at around 16 seconds during the
voluntary motion period as the signal that time was showing a weak pattern of tremor. Note that
only the square of the fundamental amplitude of the signal in one direction is shown in Fig. 3.8
and Fig. 3.9 for a clear illustration. Hence, a proper threshold Amax for (Ai)2 can be set during
the signal estimation to recognize tremor. Unfortunately, the distinction between voluntary
motion and noise cannot be achieved since their (Ai)2 values are similar at most times.

Figure 3.8: (A1)2 estimation result of tremor (blue) and noise (red) in roll signal from
thumb signal in Task 1B
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Figure 3.9: (A1)2 estimation result of tremor (blue) and voluntary motion (red) in pitch
signal from wrist signal in Task 4

However, the system will still attempt to identify the noise or voluntary motion even if no
tremor signal is included since it is a continuous-time system. As mentioned in Chapter 2, the
system will become unstable if the input signal does not follow the harmonic model, which will
cause the frequency estimation to drop to zero and the system stoppage. Therefore, the system
also requires the ability to activate signal estimation when the tremor appears and deactivate
signal estimation when only noise exists to prevent the system from collapsing i.e. intermittent
control, which was discussed in Chapter 2 previously. Here we introduce a new parameter
called substitute frequency ω̄ to achieve intermittent control. The structure of intermittent con-
trol is shown in Fig. 3.10 below. Assume the square of estimated fundamental amplitude, esti-
mated frequency, substitute frequency and input signal at time t are (AiT )2, ωiT , ω̄iT and d(iT )
respectively. T is the sampling period and iT = t. First of all, the system calculates the square
of fundamental amplitude of d(iT ) in 3 directions, the values are {(A1iT )2 x̂, (A1iT )2ŷ, (A1iT )2ẑ}.
If at least two of these three values are higher than the threshold Amax, signal at this time is
considered as a tremor signal. Otherwise, the signal at this time is considered a non-tremor
signal. The following steps can be divided into four cases based on the judgment conditions.

1) If d((i − 1)T ) and d(iT ) are both tremors, the system will continue updating ωiT , while
the substitute frequency maintains the same.

2) If d(iT ) is not tremor and d((i − 1)T ) is tremor, the system knows that the tremor just
disappeared. The adaptation gains Ka will be reduced to lower frequency updating speed
i.e. slow down the speed of system collapsing. Thus ω̄(i−1)T will be set equal to ω(i−1)T

and used to update ω̄iT , while the estimated frequency maintains the same.
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3) If neither d((i− 1)T ) nor d(iT ) are tremors, the system will continue updating ω̄iT , while
the estimated frequency remains the same.

4) If d((i − 1)T ) is not tremor and d(iT ) is tremor, the system knows that the tremor just
appeared. Hence Ka will be restored to preset value to increase the speed of frequency
updating. The latest estimated frequency will be used to update ωiT since it maintained
the same when there was no tremor.

Finally, the estimated magnitude of signals in three directions will be calculated separately
depending on the frequency we choose. Note that the value of ω̄ is meaningless since its only
function is to ensure the system will not fall quickly during the non-tremor period. Moreover,
the substitute frequency will be reset to the latest estimated frequency if the tremor does not
appear for a long period. This prevents the ω̄ from going to zero or infinite while it is trying to
identify non-tremor signals continuously for a long time.

Figure 3.10: Flow chart of intermittent control with substitute frequency
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3.3.4 Suppress Measurement Artifact
In general, the signal collected by the IMU sensor on the glove is accurate and stable, yet some-
times there may be offset and drift. One main measurement artifact is that the values of some
sample points are large and completely arbitrary. Since our system is a continuous-time signal
tracker, even a tiny error in the signal may lead to deviations in subsequent identifications and
even system instability. Hence, a state transition method is presented to suppress measurement
artifacts and enhance the system’s robustness. The state transition diagram is shown in Fig.
3.11, where (A1)2 is the square of the fundamental amplitude, Amax is the threshold, and T is
the sampling period in previous sections. Only when the tremor signal or non-tremor signal
continues to appear for a period of time, the system will confirm the state transition and start
or stop frequency updating. t1 is normally longer than t2 since the measurement artifact will
have a more significant impact on the identification results when there are no tremor signals
i.e. the system needs a longer time to confirm the presence of tremors than the disappearance
of tremors.

Figure 3.11: State transition diagram of system status decision process
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Fig. 3.12 shows the simulation results of the system in both cases where measurement
artifact suppression is not used, and measurement artifact suppression is used. This signal is
composed of signals in all tasks from one patient. It can be seen that most of the signals from
200 seconds to 340 seconds are noise or voluntary motion. However, some enormous arbitrary
spikes can be observed. Although those spikes are clear for us to recognize as unexpected noise,
the system will consider them tremors because of the large absolute value. Without applying
the state transition method, the system may mistakenly treat some measurement artifacts as
tremor signals to identify. After incorporating our measurement artifact suppression method
in the system, it is now able to omit those unexpected spikes or fluctuations and guarantee the
robustness and stability of the system for a long period of time.

Figure 3.12: Frequency estimation with or without measurement artifact suppression in
a long period of signal



Chapter 4

Simulation and Results and Comparison

4.1 Overview

In this chapter, we will show the effectiveness of the proposed Parkinsonian tremor signal
identifier on different types of tremor signals. Moreover, the comparison of the first-order
low-pass filter and second-order low-pass filter is shown in section 4.2. Section 4.3 shows the
simulation results and comparison on synthesized Parkinsonian tremor signals. The simulation
results and comparison of actual patient data are shown in section 4.4. We determined that
the tremor has only one fundamental frequency and up to the fourth harmonic previously in
Chapter 3. Hence, all simulation results in this chapter are based on this premise.

4.2 Comparison of first-order low-pass filter and second-order
low-pass filter

4.2.1 Computing Tuning Function

In this section, the comparison of different incorporated filters is given. In [36], the comparison
of a band-pass filter and a second-order low-pass filter was already presented. Thus, we will
compare the second-order low-pass filter system with an integrator internal model and the
first-order low-pass filter system without an integrator internal model. In addition, we need
to compare the results to choose the most suitable filter for the Parkinsonian tremor identifier.
We first test the performance of these two systems on synthesized signals. The signal to be
identified was produced by the model shown in Fig. 4.1. The feedback loop containing the pure
delay e−sT is called a repetitive controller and is capable of producing any periodic disturbances
with period T . The initial condition for the fundamental frequency ω is chosen to be 25.1327
rad/s (4 Hz). The disturbance input to the repetitive controller causes the amplitudes and
relative phases to vary slowly with time as well. Additionally, measurement noise was added
to the signal, which was band-limited to 50 Hz and had a variance of 0.1. The low-pass filter
had a cut-off frequency of 157.0796 rad/s (25 Hz) to concentrate the energy in the harmonics
to below the fourth harmonic. All data processing and analysis were performed offline using
MATLAB (R2020a) and Simulink. The model configuration parameters used with the Matlab

35
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environment are as follows: Solver ode5 (Dormand-prince) selection with fundamental sample
time 0.1s.

Figure 4.1: Block diagram of periodic signals generator

As mentioned in Chapter 3, the Parkinsonian tremor signals collected by IMU contained no DC
component. Hence, to simulate the real situation, our signal to be identified was processed to
subtract the DC component as much as possible. For the controller parameters, the frequency
adaption gains were chosen as Ka = 1.5 and ε = 0.1 in both systems. The initial frequencies
for both systems are 21.9911 rad/s (3.5 Hz). Both filters are Butter-worth filters. For these
initial values, the tuning function G(s) of the second-order low-pass filter system and first-order
low-pass filter system were

G1st(s) =
125.6637

s + 143.2566

G2nd (s) =
15791

s + 195.3082

(4.1)

The values of Ki j for this frequency in each internal model of the first-order low-pass filter
system and second-order low-pass filter system are shown in Table. 4.1.

i j Ki j(1st) Ki j(2nd)
1 1 -212.7031 -2.8143
1 2 -37.2230 -0.7036
1 3 -53.1758 -5.6286
1 4 -9.3058 -0.3518
2 1 -425.4061 9.2480
2 2 -74.4461 2.3120
2 3 -26.5879 18.4961
1 4 -4.6529 1.1560

Table 4.1: Values of Ki j in each internal model
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4.2.2 Frequency Identification
With these parameters, the first-order low-pass filter system took 3.65 s to run a 50 s Simulink
simulation, while the second-order low-pass filter system took 4.01 s to finish the simulation.
Fig. 4.2 indicates the frequency identification of two different methods. It can be seen that both
identified frequencies tracked the true frequency as we expected, and they are approximate and
had the same trend. The convergence time for both systems to rise from 3.5Hz to about 4Hz
is 1.9 s and 2.1 s. The second-order low-pass filter performed better in frequency convergence
time. Moreover, in the zoom-in figure from 27 s to 28 s, it is apparent that the second-order
low-pass filter system is nosier and less able to track the frequency changes than the first-order
low-pass filter system in frequency identification.

Figure 4.2: Frequency identification result of first-order low-pass filter system (1st) and
second-order low-pass filter system (2nd)

To get an overview of the accuracy of different identified models, the FFT of the input sig-
nal and the error after applying systems with different kinds of filters are shown in Fig. 4.3.
Although both filters showed expected results in frequency identification, the second-order
low-pass filter performed better than the first-order low-pass filter in FFT. Especially in the
fundamental frequency, the second-order low-pass filter has a smaller error than the first-order
low-pass filter.
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Figure 4.3: FFT of the input signal and the error of first-order low-pass filter system (1st)
and second-order low-pass filter system (2nd)

4.2.3 Signal Identification and Conclusion

Other than the comparison of frequency identification, a comparison of signal tracking is shown
in Fig. 4.4. It can be seen that the second-order low-pass filter system captures the minor DC
component and is closer to the true signal in those high peaks. Again both systems showed
expected amplitude and relative phases matching.

Figure 4.4: Signal identification result of first-order low-pass filter system (1st) and
second-order low-pass filter system (2nd)
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In conclusion, both the first-order low-pass filter system and second-order low-pass filter sys-
tem showed expected frequency and signal identification performance. By eliminating the
integrator for the DC component, the first-order low-pass filter gets a faster simulation speed
than the second-order low-pass filter system. However, considering that there will be a signifi-
cant low-frequency component, approximating a slowly changing DC component in the signal
when a patient is making a voluntary motion, the integrator for the DC component can not be
removed. Hence, we decided to apply the second-order low-pass filter system in the Parkin-
sonian tremor identifier. Nevertheless, the first-order low-pass filter system is worthy of being
put in the flexible unknown periodic signal identifier because of the lower calculation cost and
higher processing speed.

4.3 Simulation Results and Comparison on Synthesized Parkin-
sonian Tremor Signal

A total of 18 sets of real signals are collected from patients with Parkinson’s disease. Each set
of data contains six groups of 3-D signals from different tasks. All data processing and analy-
sis were performed offline using Matlab (R2020a) and Simulink. The model configuration pa-
rameters used with the MATLAB environment are as follows: Solver ode5 (Dormand-prince)
selection with fundamental sample time 0.01s.

4.3.1 Preparation
Prior to applying our tremor identifier on real patient data, it was used to identify artificially
synthesized Parkinsonian tremor signals. In order to imitate the real Parkinsonian tremor signal
in one joint, our synthesized signal was produced by summing the outputs of three copies of
the model shown in Fig. 4.1 and named as pitch, roll and yaw signal. The initial condition for
all three fundamental frequencies ω is chosen to be 26.3894 rad/s (4.2 Hz). Furthermore, the
signal only contains pure random noise from 0s to 5s and 35s to 43s because to simulate the
scenario of the appearance and disappearance of Parkinsonian tremor. Three sets of signals are
created in the same process and treated as index finger signal, thumb signal and wrist signal,
respectively, to simulate the real patient data. Moreover, the DC component in the signal is
deducted to a minimal number since the Parkinsonian tremor signal did not contain any DC
component. Fig. 4.5 shows the synthesized index finger signal data and its corresponding
frequency.

In order to get an overview of the identification performance, the frequency and signal estima-
tion is evaluated by using RMS accuracy λ. For a 1-D signal, λ is defined as:

λ(s) =
RMS (s) − RMS (e)

RMS (s)
× 100

RMS (s) =

√√
k=m∑
k=1

(s2
k/m)

(4.2)
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Figure 4.5: Synthesized index finger signal data and its frequency

where k is the number of samples, s is the signal, and e is the obtained estimation error. Since
the tremor signal is treated as a 3-D signal, the final RMS accuracy λ is the average value of
the RMS accuracies of all three directions. It can be described as

λ =
λ(X) + λ(Y) + λ(Z)

3
(4.3)

Additionally, the tremor power estimation accuracy is defined by the difference between the
power of the original tremor and the power of the estimated tremor. The tremor power is
calculated as the total power of signal contained in the frequency band between 3 Hz and 18
Hz [54].

4.3.2 Frequency Identification

For the controller parameters, the frequency adaption gains were chosen as Ka = 1.5 and
ε = 0.15. System initialization time Ti = 0.25 s. The threshold Amax for judging whether it is
a tremor signal or a non-tremor signal is 100. A second-order Butter-worth low-pass filter was
designed and had a cut-off frequency ωn of 157.0796 rad/s (25 Hz). The initial frequency I0

of the system is 25.1327 rad/s (4 Hz). Finally, since the synthesized frequency does not have
a measurement artifact, the measurement artifact suppression part is disabled for better results.

Under these conditions, a 50s MATLAB simulation could be performed in under 3s. The iden-
tified frequency of synthesized index finger signal is shown in Fig. 4.6. We can see an expected
identification and tracking performance of the true frequency. Additionally, the system is able
to recognize tremor and non-tremor periods, stop frequency estimation in a short time when
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tremor disappeared and start frequency estimation when tremor reappeared. Besides, the es-
timated frequency converged and followed the actual frequency 1.2s after the system began
to recognize and identify the tremor signal. That is a reasonable frequency convergence time
from the initial frequency 4Hz to the actual frequency around 4.3Hz.

Figure 4.6: Frequency identification result of the synthesized index finger signal

Although the characteristics of the internal model principle guaranteed a minimal delay on
signal tracking, the frequency identification, however, still had a delay because of the low-pass
filter. To evaluate the delay of our proposed system on the frequency identification, the signal
was inputted into the system reversed and compared. Fig. 4.7 gives the result of identifying
the original signal and the reversed signal. It can be seen that the time shift between these two
signals is around 1.5s. Thus the time delay of signal identification is about 0.75s. Fortunately,
we can calculate the delay introduced by the low-pass filter Ka/(s + Ka) and shift its estimated
frequency by this amount of time to get the delay-free result. Note that this value may change
with changes in tuning parameters and signals.
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Figure 4.7: Frequency identification result of original signal (forward) and reversed sig-
nal (backward)

Among all the tuning parameters, the adaptation gain Ka is the one that has the biggest impact
on frequency identification since it can directly change the speed of frequency updating. The-
oretically, higher Ka will lead to higher frequency estimation accuracy and less convergence
time. The frequency estimation accuracies of signals of three joints λIF , λT and λW with differ-
ent Ka are shown in Table. 4.2. The average of frequency estimation accuracies is 97%. In Fig.
4.8, it can be seen that the system has a lower frequency estimation error when Ka gets higher.
Furthermore, the error reduces faster when the system starts to identify the signal (5 s to 8 s),
and when the frequency of the signal itself changes rapidly (20 s to 25 s). However, higher Ka

will also cause the system to be more sensitive to some abnormal data or measurement artifacts.
Therefore, the system needs a proper Ka to prevent instability while maintaining the accuracy
and convergence speed of frequency estimation.

Index finger (λIF) Thumb (λT ) Wrist (λW)
Ka = 0.5 97.1814% 96.7263% 96.5444%
Ka = 1 98.1139% 97.3911% 97.7758%

Ka = 1.5 98.4193% 97.5565% 98.2246%

Table 4.2: Frequency identification accuracy of signal of three joints with different Ka
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Figure 4.8: Frequency estimation error of the synthesized index finger signal with differ-
ent Ka

4.3.3 Signal Identification
In this section, the signal identification of the synthesized index finger signal is given. More-
over, the instantaneous magnitude estimations for harmonics in the synthesized index finger
signal are presented. The signal RMS accuracies of all nine 1-D signals with Ka = 1.5 are
shown in Table. 4.3. The average signal RMS accuracy is 93%. Similar to frequency estima-
tion, our system also has great performance in signal identification. Note that with appropriate
adjustment of the tuning parameters, higher accuracy can always be obtained. In Fig. 4.9, it can
be seen that the tracking performance is good in all three directions. However, having excessive
accuracy in signal identification may not be a good thing. Since the synthesized signal contains
random noise, the high accuracy may be due to the system identifying the tremor signal and
the noise at the same time. Thus, as long as the accuracy is higher than an acceptable value,
the system’s performance is considered feasible. Additionally, there is no delay between the
estimated signal and the actual signal, and that is the characteristic of any low-pass filtered sig-
nal. To take a close look at the difference between actual signal and estimated signal, Fig. 4.10
displays the actual signal, estimated signal and their difference (error). Compared to the true
signal, the error is relatively small. Thus, good tracking of the synthesized signal is achieved
in our proposed system.

Index finger (λIF) Thumb (λT ) Wrist (λW)
Pitch 95.0971% 92.2088% 92.5131%
Roll 95.3846% 93.0857% 92.1235%
Yaw 93.0344% 94.7675% 92.0505%

Table 4.3: Signal RMS accuracies of signals of three joints
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Figure 4.9: Signal identification result of the synthesized index finger signal in three di-
rections. True signal (blue) and estimated signal (red) are shown in a 2s data segment.

Figure 4.10: Comparison of pitch signal identification of true signal, estimated signal and
their difference (error)
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The harmonics are components of signals with a frequency that is positive integer multiplied
by the fundamental frequency (1st harmonic). Since our synthesized signal is not purely sinu-
soidal, the energy is included in some harmonics besides the fundamental frequency. In chapter
3, it is mentioned that the number of harmonics is set as four since the result of STFT and FFT
shows that the power of the 5th harmonic is almost invisible. The instantaneous magnitude of
each harmonic in the pitch signal of the synthesized index finger signal can be seen in Fig.
4.11. Although it is evident that the fundamental frequency occupies most of the energy, in the
meantime, the 2nd and 3rd harmonics also contain some of the energy. However, the magni-
tude of 4th harmonic is extremely small and can be ignored. Hence, to reduce the calculation
cost and improve the system performance, it is feasible to reduce the number of harmonics
estimations from 4 to 3 in some cases.

Figure 4.11: Instantaneous Magnitude of each harmonic in the pitch signal of the synthe-
sized index finger signal

4.4 Simulation Results and Comparison on Real Patient Data

4.4.1 Resting Tremor

The initial parameters set in this section are the same as the synthesized signal identification
except the Ka increased to 2 to get a faster frequency convergence speed. The measurement
artifact suppression part is enabled to improve the stability of the system to the abnormal data.
Moreover, the estimated signals in followed sections are chosen from the same patient to in-
crease the confidence in results. The identified frequency of the index finger signal in Task
1B is shown in Fig. 4.12. The red, blue, and yellow lines represent the pitch, roll and yaw
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signals in index finger signal data. The estimated frequency range is from 3.5 Hz to 4.5 Hz and
mainly fluctuates around 4 Hz. The estimated frequency does not change drastically in general.
However, it dropped rapidly by about 0.7 Hz in 1.5 seconds at around 28 seconds. In Fig. 4.13,
the actual signal, frequency estimation and the square of fundamental amplitude (A1)2 during
that time period is presented. It can be seen that the index finger signal from 27.5 s to 28.5 s
had a smaller magnitude and showed less pattern of tremor than the signal in other periods. At
the same time, Ai dropped quickly after 27.7s and start increasing again at 28.4s, which was
consistent with the changing trend of frequency estimation.

Figure 4.12: Top: Index finger signal in Task 1B. The red, blue and yellow lines represent
the pith, roll and yaw signal. Bottom: Frequency identification result.

Figure 4.13: Top: Index finger signal from 27 s to 30 s. Middle: Frequency identification
result. Bottom: The square of estimated fundamental amplitude.
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As shown in Fig. 4.14, the frequency identification result of signals of all three joints are similar
but have regions where they differ substantially. For example, from 26 s to 28 s, the frequency
estimation of the wrist signal has a significant difference from other signals. As mentioned in
Chapter 3, we can set proper weights for signals of three joints to reduce the effect of errors or
exceptional values from each joint. However, the frequency estimation between different joints
still has significant differences at some time. Hence, we conclude that tremor frequencies of
different joints may be different. This can be physiologically justified on the basis that the
mapping between signals from the brain to physical motion is certainly non-linear and may
be different for different joints. Thus, the brain signal with the same frequency may generate
tremor motions with different frequencies.

Figure 4.14: Frequency identification of index finger signal, thumb signal and wrist signal
in task 1B

Unlike the synthesized signal, we do not have a precise frequency for real patient data. Here we
compared our system to STFT and wavelet analysis to get a rough idea of the performance of
our system in frequency identification. The frequency identification result of the pitch signal of
index finger signal using our proposed system, STFT and wavelet analysis was shown in Fig.
4.15. The window size and overlapped window size of STFT are 256 and 128. The mother
wavelet of wavelet analysis is the Morse wavelet. The outcome shows that the three methods
have similar frequency estimation results. In most previous studies, Parkinsonian tremor was
considered and reported as a signal with constant frequency. However, the frequency of this
signal fluctuates in a range of 4.2 Hz to 5.8 Hz. The discovery of this pattern indicates that
the frequency of Parkinsonian tremors may not be constant. Again a time delay of about 0.8s
can be seen in the result of our proposed system compared to the other two approaches. The
delay-free results of STFT and wavelet analysis are achieved by using the center of the window
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as the time of the estimated frequency.

Figure 4.15: Frequency identification of the pitch signal of the index finger signal with
our proposed system, STFT and wavelet analysis

Since the performance of frequency identification can not be seen from the frequency estima-
tion results. Here we used the tremor power estimation accuracy mentioned before to represent
the accuracy of frequency estimation. Fig. 4.16 shows that there are two obvious harmonics in
the index finger’s signal. This supports the tremor model assumed early in this thesis that the
Parkinsonian tremor can be treated as the sum of a fundamental frequency and its harmonics.
Moreover, the result shows good power estimation accuracy in all three directions with an av-
erage of 92%. In extension, the complete power estimation accuracies of all nine 1-D signals
are shown in Table. 4.4.

Index finger (λIF) Thumb (λT ) Wrist (λW)
Pitch 92.5682% 93.6916% 91.5210%
Roll 92.3998% 92.9420% 88.6358%
Yaw 92.5151% 93.9139% 88.9525%

Table 4.4: Tremor power estimation accuracy of signals of three joints
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Figure 4.16: Tremor power estimation of the index finger signal in three directions. FFT
of true signal (blue) and FFT of estimated signal (red).

The accuracy of signal identification is obtained by equations (4.2) and (4.3). Fig. 4.17 indi-
cates the actual signal and identified signal of index finger signal in three directions. For all
nine 1-D signals, the accuracies are shown in Table. 4.5. Again the result shows our proposed
system has expected signal tracking performance as the average of the signal RMS accuracy is
85%.

Figure 4.17: Signal identification of the index finger signal in three directions. True signal
(blue) and estimated signal (red) are shown in a 3s data segment.
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Index finger (λIF) Thumb (λT ) Wrist (λW)
Pitch 88.8536% 89.7719% 81.7798%
Roll 87.7558% 82.4987% 79.0775%
Yaw 87.1621% 85.4692% 76.1312%

Table 4.5: Signal RMS accuracies of signals of three joints

However, every patient with Parkinson’s disease has a unique Parkinsonian tremor with dif-
ferent amplitude and frequency in real life. In order to observe the general performance of
our proposed system, it is applied to all 30 sets of valid data collected from 16 patients. Fig.
4.18 shows the over signal RMS accuracy and power estimation accuracy and these accuracies
in the index finger, thumb, and wrist signal. The mean of signal RMS accuracy and tremor
power estimation accuracy are 83.4% and 93.0%. The difference between the three joints is
very small, within 0.5%.

Figure 4.18: The overall signal estimation and power estimation accuracy and accuracies
of the index finger, thumb and wrist signals in 30 resting tremor signals

Furthermore, our proposed identifier is compared with the HWFLC-KF and the enhanced
HWFLC-KF in [54]. The test was done on 18 pitch signals of index finger index in Task
1A. Note that our proposed system was modified to identify a 1-D signal in this comparison,
and the tuning parameters Ka and ε are increased to 4 and 0.2, respectively. The average signal
RMS accuracy and its standard deviation are shown in Table. 4.6. It can be seen that the av-
erage accuracy of the enhanced HWFLC-KF and our proposed identifier is 22.4% and 21.17%
higher than the HWFLC-KF. Although the accuracy of our proposed identifier is slightly lower
than the enhanced HWFLC-KF, the standard deviation of our proposed system is 1.47% lower
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than the enhanced HWFLC-KF.

Mean Standard Deviation
HWFLC-KF 67.83% 4.70%

Enhanced HWFLC-KF 90.07% 5.55%
Proposed identifier 89.00% 4.08%

Table 4.6: Signal RMS accuracy comparison of three tremor estimators
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4.4.2 Postural Tremor
In this section, our proposed tremor signal identifier is applied to the postural tremor signal.
The state transition time is set as t1 = 0.5s and t2 = 0.5s i.e. the tremor and non-tremor signals
need to continue to appear for more than 0.5 seconds to be recognized by the system. The
frequency identification of THE wrist signal in Task 2 is presented in Fig. 4.19. The blue line
is the part that the system considers as the tremor period, and the red line is the part that the
system recognizes as the non-tremor period. At 0 to 3, 15 to 17, 29 to 30, 36 to 39, and 44 to
47 seconds, the system considers the signal to be a non-tremor signal and stops updating the
estimated frequency. Compare with signals in other periods, signals in these periods have a
lower magnitude. To take a close look, the frequency identification and the square of estimated
fundamental amplitude from 14 s to 18 s are shown in Fig. 4.20. It can be seen that the signal
became chaotic and loses periodicity from 15 s to 16 s, and the tremor reappeared slowly at
about 16.5 s. Moreover, (A1)2 was always lower than Amax in that period of time. Thus, when
(A1)2 was lower than Amax at around 15.3 s, frequency identification stops updating the value.
Note, the system only considered the signal after 15.8 s as a non-tremor signal since (A1)2 was
lower than Amax for more than 0.5s. Same in 17.5 s, the system treated the signal as a tremor
signal and started updating the frequency after (A1)2 were continuous higher than Amax for 0.5s.

Figure 4.19: Top: Wrist signal in Task 2. The red, blue and yellow lines represent the
pith, roll and yaw signal. Bottom: Frequency identification result.

In Fig. 4.21, the frequency identification of signals from all three joints is presented. The
identified frequencies are approximate and matched when the values change rapidly. However,
compared to the index finger signal and thumb signal, the result in the wrist signal is more
fractional, and its value does not fluctuate a lot. Moreover, it can be seen that the frequency
estimations of the three joints are not always similar. For example, the estimated frequencies
of three joints shared the same trend from 50 s to 55 s, while the estimated frequency of the
thumb signal was diverging from the other two joints from 40 s to 45 s.
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Figure 4.20: Top: Wrist signal from 14 s to 18 s. Middle: Frequency identification result.
The blue line is the tremor part, and the red line is non-tremor part. Bottom: The square
of estimated fundamental amplitude.

Figure 4.21: Frequency identification of index finger, thumb and wrist signal in Task 2

Fig 4.22 presents the tremor power estimation of signals of three directions in the wrist signal.
The results indicate that our system achieved a reasonable tremor power estimation perfor-
mance in postural tremor. The difference from the resting tremor is that the third harmonic is
weaker and can barely be seen. Moreover, the complete power estimation accuracies of all nine
1-D signals are shown in Table. 4.7. The average power estimation accuracy is 92%.

Fig. 4.23 shows the signal identification result of the wrist signal in three directions from 14 s
to 18 s. As mentioned before, the frequency identification in this time period is not as consistent
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Figure 4.22: Tremor power estimation ratios of the wrist signal in three directions. FFT
of true signal (blue) and FFT of estimated signal (red).

Index finger (λIF) Thumb (λT ) Wrist (λW)
Pitch 93.5702% 91.9138% 92.7885%
Roll 93.5035% 90.8751% 91.0423%
Yaw 93.0128% 92.2715% 92.2294%

Table 4.7: Tremor power estimation accuracies of signals of three joints

as the resting tremor signal. Even so, our proposed system can still track the signal and show
reasonable matching performance. In Table. 4.8, the signal RMS accuracies of all nine 1-D
signals in Task 2 are presented. Note that only tremor periods are considered in the accuracy
calculation. The system performance is good in signals from the index finger and thumb as the
average accuracy is 88%. However, the accuracy of the wrist signal is much lower than the
signals from the other two joints. Combined with the previous frequency identification result
of this wrist signal, it can be seen that the wrist signal is less reliable than the other two joints.
Thus, in the real-time test, we can set a low weight for wrist signal in frequency identification
to improve our system performance.

Index finger (λIF) Thumb (λT ) Wrist (λW)
Pitch 92.2746% 85.2256% 75.2817%
Roll 92.3909% 79.3792% 65.7598%
Yaw 91.7539% 78.1850% 73.8484%

Table 4.8: Signal RMS accuracies of signals of three joints
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Figure 4.23: Signal identification of the index finger signal in three directions. True signal
(blue) and estimated signal (red) are shown in a 4s data segment.

Again, to get an overview of our system’s performance on the postural tremor, the simulation
has been done in 13 sets of valid data recorded from 13 patients. The overall signal RMS
accuracy and tremor power estimation accuracy are given in Fig. 4.24. Although the postural
tremor signal is more complicated and harder to predict, our identifier still has expected per-
formance on both signal identification and tremor power estimation. The mean of signal RMS
accuracy and tremor power estimation accuracy are 80.7% and 91.3%.
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Figure 4.24: The overall signal RMS accuracy and power estimation accuracy, and the
accuracies of the index finger, thumb and wrist signals in 13 postural tremor signals

4.4.3 Kinetic Tremor and Voluntary Motion (Task 3)
In this particular section, our proposed tremor signal identifier is applied to the experimental
data from Task 3, 4 and 5 to identify the kinetic tremor. The patient moves the wrist and finger
joints to interact with a pencil in Task 3 and 4, and they use a pen to draw spiral circles in
Task 5. Note that during the experiment, any kinds of tremors can appear. Unfortunately, the
tremor is not very likely to appear or be obvious when patients are making voluntary motions.
However, having Parkinsonian tremors when doing voluntary can cause massive trouble even
the tremor is not apparent. Hence, we aim to suppress the kinetic tremor as patients making
voluntary movements i.e. separate tremor from voluntary motion and only suppress the tremor.
Same as previous simulations, the data are chosen from the same patient in resting tremor and
postural tremor parts. The analysis of Task 3 is shown in this section, and the analysis of Task
4 and 5 are in appendices A and B.

In Task 3, the patient was asked to lift the palm to a specific position, hold a pencil for a few
seconds with index finger and thumb, then release the pencil and put down the palm back to
the initial position naturally. This process was repeated five times. Here we divide this process
into three steps: lifting the palm (A), holding the pencil (B), putting down the palm (C). To
get an overview of the whole process, the signals of three joints divided into five cycles are
shown in Fig. 4.25. A segment from 12 s to 17 s from Fig. 4.25 is divided into those three
steps and shown in Fig. 4.26. There are resting tremor signals in the first few seconds and the
last few seconds because the patient’s palm just stayed still. From 2 s to 30 s, the patients were
repeating the same movements five times. While an obvious pattern of tremor can be seen in
the roll and yaw signal of index finger signal, the roll and yaw signal of wrist signal does not
show an apparent pattern of tremor, but a slow voluntary motion causing by steps A and C.
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Additionally, the pitch signal of thumb signal shows a trace of voluntary motion. In all signals
from three joints, no pronounced tremor was appearing when the patient was trying to hold the
pencil in step B in all five cycles.

Figure 4.25: Overall signal in Task 3 with cycles division. Top: Index finger signal. Mid-
dle: Thumb signal. Bottom: Wrist signal. Blue line is pitch signal, red line is roll signal,
yellow line is yaw signal.

Figure 4.26: Segment from 12 s to 17 s with steps division. Top: Index finger signal.
Middle: Thumb signal. Bottom: Wrist signal. Blue line is pitch signal, red line is roll
signal, yellow line is yaw signal.
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Considering that the tremor does not frequently appear continuously in the signal, the fre-
quency adaptation gains Ka was increased to 2 to shorten the convergence time, and the t1 and
t2 for confirming the state switch are reduced from 0.5s to 0.2s to let the system switching
states more quickly. Fig. 4.27 shows the frequency identification and fundamental ampli-
tude estimation after applying our proposed signal identifier to the index finger signal in Fig.
4.25. In frequency identification, the blue line represents the tremor frequency, and the red line
maintains straight because the system recognizes this period as a non-tremor signal and stops
frequency updating. It can be seen that our system detected the kinetic tremor in steps A and
C and estimated the frequency of tremor. Unfortunately, the tremor period is too short for us
to know if the system keeps up with the actual frequency. Besides, (A1)2 of the roll and yaw
signal in the tremor period is significantly higher than in the non-tremor period. This result
supports our previous hypothesis for this signal. To evaluate the performance of our system in
frequency identification, the power estimation accuracies of signals of three directions in the
index finger signal are given in Fig. 4.28. A huge low-frequency component is identified be-
cause of the voluntary motion. The tremor frequency ranges from 4 to 4.5 Hz, and we can see a
weak second harmonic. The tremor power estimation accuracies are 93.3%, 93.1% and 94.1%
in three directions. Here we did not calculate the tremor power estimation accuracies of the
thumb and wrist signal since the tremor in those joints is too weak to be identified. Although
the tremor is not strong and consistent in this signal, our proposed identifier still achieved an
expected performance on tremor power estimation.

Figure 4.27: Top: Index finger signal in Task 3. Middle: Frequency identification result.
The blue line is the tremor part, and the red line is non-tremor part. Bottom: The square
of estimated fundamental amplitude.
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Figure 4.28: Tremor power estimation ratios of the index finger signal in three directions.
FFT of the true signal (blue) and FFT of estimated signal (red).

The signal identification result of the index finger signal is given in Fig. 4.29. Similar to the
previous two tasks, the signal tracking performance of our proposed system is also reasonable
in this task. Again we did not compute the signal RMS accuracy since only a small part of
the signal contained tremor. Because this signal contains both tremor and voluntary motion,
in order to achieve effective power suppression, it is necessary to separate the tremor from the
signal and only suppress the tremor. Otherwise, the voluntary motion will also be suppressed
if we treat the whole signal as a tremor signal. As mentioned in Chapter 3, the estimated signal
of our proposed system is the sum of the outputs of internal models and an integrator that
represents the DC and low-frequency components. Thus, the estimated tremor is represented
as the sum of the outputs of internal models, and the estimated voluntary motion is represented
as the output of the integrator, and the noise is assumed to be the difference between the tremor
signal and the sum of these two estimated signal.
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Figure 4.29: Signal identification of the index finger signal in three directions. True signal
(blue) and estimated signal (red) are shown in a 5s data segment.

Fig. 4.30 gives the estimated signal in Fig. 4.29 after separating the tremor signal and the
voluntary motion signal. The blue line represents the tremor signal, and the red line represents
voluntary motion and noise. It can be seen that the estimated tremor is a quasi-sinusoidal
signal with zero means, and the estimated low-frequency component is showing a pattern of
voluntary motion. After applying this approach to the whole signal, the result is given in Fig.
4.33. The tremor and voluntary motion are separated in each period which contains step A
and C. Unfortunately, no data or indicators can prove the effectiveness of this approach or the
accuracy of the estimated tremor. However, just by eyeballing it, the outcome already showed
a reasonable result in separating tremor and voluntary motion signal.
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Figure 4.30: Estimated tremor (blue) and estimated voluntary motion (red) of Fig. 4.29

Figure 4.31: Top: Original index finger signal. Middle: Estimated tremor. Bottom:
estimated voluntary motion. Blue line is pitch signal, red line is roll signal, yellow line is
yaw signal.

To explore the connections between different joints and answer the final question in Chapter 3,
Fig. 4.32 plots the comparison of (A1)2 between the index finger and wrist finger. Note that
the threshold Amax in the wrist signal identification was reduced to 50 because of the lower
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magnitude. (A1)2 in all three directions of the index finger signal are much higher than the
wrist signal. Moreover, the (A1)2 in steps A and C are still higher than in step B, whether in the
index finger or wrist signal. In other words, the tremor exists in the wrist signal, but it is too
weak to be recognized by our proposed system under these tuning parameters. The comparison
of the FFT between the index finger and wrist finger is given in Fig. 4.33. Again the power
around 4 Hz in the index finger signal is greater than in the wrist signal, which is probably the
frequency of tremor. Furthermore, the power in the low-frequency range in the wrist signal is
stronger than the index finger signal, which indicates that the voluntary motion on the wrist
may be stronger than on the index finger.

Figure 4.32: Comparison of the square of estimated fundamental amplitudes of three
directions between the index finger and wrist signal
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Figure 4.33: Comparison of the FFT of three directions between the index finger and
wrist signal

In conclusion, the tremor was appeared in steps A and C in this task but did not appear in
step B. Moreover, the tremor in the index finger signal is stronger than the wrist signal, but the
voluntary motion is quite the opposite. This result may be caused by the different degrees of
freedom of the index finger and wrist. When the patient raises or lowers the palm, it is mainly
the wrist exerting force to control voluntary movement. Also, the patient’s arm is placed on the
table, so the freedom of movement is less than that of the index finger. Furthermore, the patient
does not deliberately control the index finger during this process, which also causes the tremor
to be more obvious in the index finger signal. Again our proposed system showed expected
signal tracking and tremor power estimation performance. Additionally, our proposed system
can separate the tremor and voluntary motion in a complicated signal, which we have not seen
in previous Parkinsonian tremor estimators.
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Real-time Test

5.1 Experiment Setup
The simulation results in Chapter 4 already showed that our proposed Parkinsonian tremor
identifier has an excellent performance in tracking and identifying tremor signals. Moreover,
the system is capable of distinguishing the tremor signal, voluntary movement signal and noise.
This is a function that the previous estimators have never had before. To assess the performance
of our proposed Parkinsonian tremor identifier in real-time, a bench-top tremor simulator that
Zhou developed was used as the test object in this experiment [54]. The recorded signals from
the index finger joint and wrist joint of 15 patients in chapter 4 were reproduced on this artificial
finger. This simulator consists of a 3D printed hand model, a brushless DC motor and a motor
controller. A velocity PID controller was constructed and tuned to reproduce the recorded
motion with the motor using LabVIEW software. The angular velocity measured from the
IMU on the artificial finger was recorded directly by the PC through serial communication CH
340 port with a sampling frequency of 100 Hz.

Our proposed Parkinsonian tremor identifier in MATLAB and Simulink was transferred to
Python 3.7 code using Pycharm. The ordinary differential equation solver in Python is the
adaptive Runge-Kutta method. Since this simulator only moves in a single axis direction, our
system is modified to only process one-dimensional signal i.e. reduce the number of funda-
mentals from three to one. When receiving the recorded angular velocity from the IMU, the
identifier will identify and track the signal simultaneously. All tuning parameters are set as the
same as in chapter 4.

5.2 Result
Fig. 5.2 shows the difference between the signal in simulation and the signal in the real-time
test. It can be seen that the amplitude of the real-time test signal is slightly lower than the
simulation signal. Moreover, a small DC component always exists in the real-time test signal.
A zoom-in figure from 38s to 38.6s shows that the real-time signal is noisier than the simulation
signal. Most of it comes from high-frequency components caused by the mechanical error of
the simulator.

64
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Figure 5.1: Top view of the bench-top experimental setup for real-time test

Figure 5.2: Signal in simulation and signal in real-time test

The estimated frequencies of the simulation signal and real-time test signal are shown in Fig.
5.3. Their results are very similar, and the frequency trends are also the same. However, since
the real-time test signal is noisier, the frequency identification in real-test time is less sensitive
than in simulation i.e. the estimated frequency is reacting more slowly to the change. However,
the power estimation of the real-time test signal is still showing good results in Fig. 5.4. The
power estimation ratio is 96.7% in this signal. Note that the power range from 4.2 Hz to 5.7 Hz
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in the estimated signal is higher than in the true signal, but the power range from 5.7 Hz to 8.5
Hz is lower than in the true signal. In chapter 4, the estimated frequency range of this signal
in simulation is 4.2 Hz to 5.8 Hz. This result indicates that the power in the estimated signal
is more concentrated in the tremor range. In other words, our proposed system is capable of
rejecting noise that is not in the tremor frequency range.

Figure 5.3: Frequency identification of simulation and real-time test signal

Figure 5.4: FFT of the true signal and estimated signal in real-time test
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The signal identification in real-time rest is given in Fig. 5.5. It can be seen that the noise in
the signal affects the tracking performance of our proposed system. The siignal RMS accu-
racy of this signal in the real-time test is 69.4%, which is lower than the signal RMS accuracy
in simulation. However, considering the fact that this signal contains much more mechani-
cal noise genrated by the motor and artifical finger, the decrease in signal RMS accuracy is
mainly because our system did not try to track the noise. The overall signal RMS accuracy
and tremor power estimation accuracy in 60 signals are given in Fig. 5.6. The mean of RMS
accuracy and tremor power estimation accuracy are 68.1% and 96.0%, respectively. Although
the signal RMS accuracy is dropped because of the additional noise, the tremor power estima-
tion accuracy is better comapred to the simulation result. This result shows that our proposed
Parkinsonian signal identifier maintains high accuracy and stability in the presence of much
noise.

Figure 5.5: Signal identification in real-time test
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Figure 5.6: The overall signal RMS accuracy and tremor power estimation accuracy in
60 real-time test signals

Lastly, the mean ± standard deviation of computation time of each sample point is 3.5 ms
± 0.35ms. Since the sampling frequency is 100 Hz, the theoretical maximum computation
time for each sample point is 10ms. Apparently, our proposed Parkinsonian tremor estimator
achieved real-time estimation in this experiment. Furthermore, this time can be improved if we
used other software or a computer with better performance.



Chapter 6

Conclusion and Future Work

6.1 Contributions

This thesis proposed a real-time high-accuracy parkinsonian tremor signal identifier that can
identify 3-D angular velocity signals collected from a specific glove device. It was tested
in experimental data recorded from 18 patients in 5 groups of different tasks. The codes were
transferred to Python and achieved real-time tremor estimation in a bench-top tremor simulator.
The specific contributions of this work are given below.

1. Extended the function and enhanced the flexibility of the previous internal model principle-
based unknown periodic signal identifier [36]. Proposed a new system that can identify signals
with any number of fundamentals and harmonics. Improved the structure of the system, which
can let users control tuning parameters easily.

2. Developed a new adaptive algorithm to identify parkinsonian tremor signal based on in-
ternal model principle and instantaneous Fourier decomposition. The new algorithm accepted
input signals from three axes simultaneously and used the average of estimated frequencies of
three axes to identify the signal. This approach increased the stability of the algorithm and
decreased the influence of noise.

3. Proposed a new idea that the parkinsonian tremor signal should be divided into tremor,
voluntary motion and noise instead of a complete tremor signal. The proposed tremor signal
identifier can distinguish tremor, voluntary motion and noise by setting proper tuning param-
eters. Furthermore, the substitute frequency allowed the system to switch between tremor and
non-tremor signals and achieved intermittent control. Hence, our system can achieve real-time
identification and track the tremor signal simultaneously.

4. Tested the proposed system in simulation with experimental data collected from 18
patients in 5 different tasks. The results showed that our proposed system achieved 80%+

signal estimation accuracy and 90%+ power estimation accuracy in both resting tremor and
postural tremor signals. Moreover, our system showed the ability to recognize the non-tremor
signal and stop identifying it. The results also showed that parkinsonian tremor is a multi-
harmonic signal, and its frequency is not consistent.

5. Tested the proposed system in simulation kinetic tremor signal. The result presented that
our proposed system can separate voluntary motion from tremor signal and estimate tremor
and voluntary motion, respectively. Therefore, our system can only suppress the tremor while
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the patient is doing voluntary movements.
6. Finally, the real-time test on the bench-top tremor simulator with Python proved that our

system could achieve real-time tremor estimation. Moreover, our proposed system maintained
a good performance on signal tracking and power estimation in a noisier situation.

6.2 Future Work
Although our proposed tremor identifier showed excellent stability and accuracy in both simu-
lation and the real-time test, a significant amount of work can be foreseen. The future work is
shown as follows:

1. All tests were conducted using simple tuning parameters. However, the performance of
our proposed system can be improved significantly by selecting proper tuning parameters. For
better identification results, it is necessary to develop an adaptive auto-tuning algorithm that
can adjust tuning parameters in different situations automatically.

2. The current experimental data from five tasks only studied a few situations that the
patient may experience in real life. Nevertheless, the patient may do other actions in daily life.
The tremor signal collected when the patient fetches a glass of water with his hand is likely to
be very different from the tremor signal collected when the patient draws a spiral circle with
a pencil. Thus, our proposed system needs to be tested in a wider variety of tremor signals to
ensure performance.

3. Our proposed tremor identifier has satisfactory performance in estimating the tremor
signal. However, there is still a long way to go from estimation to suppression. Although
the system is not computationally expensive and can achieve real-time estimation, the real-
time suppression may require more computation time. Hence, the algorithm still needs further
optimization to reduce unnecessary calculations.
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Appendix A

Kinetic Tremor and Voluntary Motion
(Task 4)

In Task 4, the patient was asked to lift the palm and take the pencil, put down the palm and lift
it back with the pencil, then release the pencil and put down the palm to the original position.
This process was repeated five times. Except that the patient is asked to hold the pencil and
move up and down, the other steps are the same as Task 3. Fig. A.1 shows the figure below
shows the comparison between the index finger signal of Task 3 and the index finger signal
of Task 4. Compared to Task 3, the index finger signal recorded in Task 4 did not show an
obvious pattern of tremor. Moreover, the square of estimated fundamental amplitude in Fig.
A.2 indicates that the tremor intensity in Task 4 is much weaker than in Task 3, and it is more
difficult to be identified. Although we can still observe peaks at 11 seconds and 18 seconds,
its (A1)2 is not high enough to be accurately separated from signals in other periods. Thus, the
threshold Amax needs to be chosen carefully to recognize the tremor in the signal successfully.

Figure A.1: Index finger signals of the same patient in Task 3 and 4. The red, blue and
yellow lines represent the pith, roll and yaw signal.
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Figure A.2: The square of estimated fundamental amplitude of pitch signal of index finger
signals in Task 3 and 4

Fig A.3 gives the frequency estimation results of the index finger signal in Task 4 under differ-
ent Amax. The dotted line represents the period of no tremor, and the solid line represents the
period of tremor. It can be seen that our proposed system identified many periods of tremor
when Amax = 20. However, this may not be an ideal threshold since we can not calculate the
exact threshold for identifying tremors. Moreover, it is also difficult to tell from the experimen-
tal video when the tremor occurred because the patient’s hands were moving. Fortunately, we
can calculate the fundamental amplitude of a noiseless periodic signal with a certain frequency
and magnitude and use this value to set a proper threshold. However, the value of magnitude is
also needed to be determined, and we need more experiments and tests to analyze the influence
of noise and voluntary motion on fundamental amplitude.

Figure A.3: Frequency identification results under different Amax



Appendix B

Kinetic Tremor and Voluntary Motion
(Task 5)

In Task 5, the patient was asked to draw spiral circles clockwise with a pencil. The recorded
signals of three joints are shown in Fig. B.1. It can be seen that the angular velocities in three
directions, especially in roll and yaw, gradually grow over time as the patient needs to draw
a bigger circle. Similar to Task 4, the kinetic tremor in these signals is weak and hard to be
identified because of the short period and inconsistency. Unlike other tasks, the roll signal is
stronger than the pitch and yaw signals in this task. Fig. B.2 gives the fundamental amplitude
estimation result of the index finger signal in three directions. It is obvious that the fundamental
amplitude of the roll signal is much higher than the other two directions. Note that the signal
may have a second fundamental frequency since the fundamental amplitude estimation result
shows periodicity.

Figure B.1: Overall signal in Task 5. Top: Index finger signal. Middle: Thumb signal.
Bottom: Wrist signal. Blue line is pitch signal, red line is roll signal, yellow line is yaw
signal.
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Figure B.2: The square of estimated fundamental amplitude in pitch, roll and yaw signal
of index finger signal

In chapter 3, we mentioned that the tremor would be considered if the fundamental amplitudes
in two directions are higher than the threshold. However, this signal only shows an obvious
pattern of tremor in the roll direction. Continuing to use the previous setting may result in
ignorance of the kinetic tremor. Thus we modified the system so that it only needed the fun-
damental amplitude in one direction above the threshold to confirm the presence of tremor.
Fig. B.3 shows the frequency estimation result before and after the change of setting. Our pro-
posed system recognizes more tremor periods in the last 20 seconds after the modification. It
is common to encounter a voluntary motion which only moves in one direction. Therefore, the
standard for identifying tremors in our system needs to be improved to deal with any possible
real-life scenarios.
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Figure B.3: Frequency identification results under different system settings
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