1,235 research outputs found

    Design of a Hand Held Minimally Invasive Lung Tumour Localization Device

    Get PDF
    Lung cancer is the leading type of cancer that causes death. If diagnosed, the treatment of choice is surgical resection of the tumour. Traditionally, a surgeon feels for the presence of a tumour in open thoracic surgery. However, a minimally invasive approach is desired. A major problem presented by the minimally invasive approach is the localization of the tumour. This project describes the design, analysis, and experimental validation of a novel minimally invasive instrument for lung tumour localization. The instrument end effector is a two degree of freedom lung tissue palpator. It allows for optimal tissue palpation to increase useful sensor feedback by ensuring sensor contact, and prevents tissue damage by uniformly distributing pressure on the tissue with an upper bound force. Finite element analysis was used extensively to guide the design process. The mechanism is actuated using high strength tungsten cables attached to controlled motors. Heat treatment experiments were undertaken with stainless steel alloy 440C for use in the design, achieving a device factor of safety of 4. This factor of safety is based on a 20 N force on the end effector — the approximate weight of a human lung. The design was prototyped and validation experiments were carried out to assess its articulation and its load carrying capacity. Up to 10 N of force was applied to the prototype. Issues to resolve in the current design include cable extension effects and the existence of joint inflection. The end effector was also designed to allow the inclusion of ultrasound, tactile, and kinaesthetic sensors. It is hypothesized that a plurality of sensors will increase the likelihood of positive tumour localization. These sensors, combined with the presented mechanical design, form the basis for research in robotics-assisted palpation. A proof of concept control system is presented for automated palpation

    DISTRIBUTED ELECTRO-MECHANICAL ACTUATION AND SENSING SYSTEM DESIGN FOR MORPHING STRUCTURES

    Get PDF
    Smart structures, able to sense changes of their own state or variations of the environment they’re in, and capable of intervening in order to improve their performance, find themselves in an ever-increasing use among numerous technology fields, opening new frontiers within advanced structural engineering and materials science. Smart structures represent of course a current challenge for the application on the aircrafts. A morphing structure can be considered as the result of the synergic integration of three main systems: the structural system, based on reliable kinematic mechanisms or on compliant elements enabling the shape modification, the actuation and control systems, characterized by embedded actuators and robust control strategies, and the sensing system, usually involving a network of sensors distributed along the structure to monitor its state parameters. Technologies with ever increasing maturity level are adopted to assure the consolidation of products in line with the aeronautical industry standards and fully compliant with the applicable airworthiness requirements. Until few years ago, morphing wing technology appeared an utopic solution. In the aeronautical field, airworthiness authorities demand a huge process of qualification, standardization, and verification. Essential components of an intelligent structure are sensors and actuators. The actual technological challenge, envisaged in the industrial scenario of “more electric aircraft”, will be to replace the heavy conventional hydraulic actuators with a distributed strategy comprising smaller electro-mechanical actuators. This will bring several benefit at the aircraft level: firstly, fuel savings. Additionally, a full electrical system reduces classical drawbacks of hydraulic systems and overall complexity, yielding also weight and maintenance benefits. At the same time, a morphing structure needs a real-time strain monitoring system: a nano-engineered polymer capable of densely distributed strain sensing can be a suitable solution for this kind of flying systems. Piezoresistive carbon nanotubes can be integrated as thin films coated and integrated with composite to form deformable self-sensing materials. The materials actually become sensors themselves without using external devices, embedded or attached. This doctoral thesis proposes a multi-disciplinary investigation of the most modern actuation and sensing technologies for variable-shaped devices mainly intended for large commercial aircraft. The personal involvement in several research projects with numerous international partners - during the last three years - allowed for exploiting engineering outcomes in view of potential certification and industrialization of the studied solutions. Moving from a conceptual survey of the smart systems that introduces the idea of adaptive aerodynamic surfaces and main research challenges, the thesis presents (Chapter 1) the current worldwide status of morphing technologies as well as industrial development expectations. The Ph.D. programme falls within the design of some of the most promising and potentially flyable solutions for performance improvement of green regional aircrafts. A camber-morphing aileron and a multi-modal flap are herein analysed and assessed as subcomponents involved for the realization of a morphing wing. An innovative camber-morphing aileron was proposed in CRIAQ MD0-505, a joint Canadian and Italian research project. Relying upon the experimental evidence within the present research, the issue appeared concerns the critical importance of considering the dynamic modelling of the actuators in the design phase of a smart device. The higher number of actuators involved makes de facto the morphing structure much more complex. In this context (Chapter 2), the action of the actuators has been modelled within the numerical model of the aileron: the comparison between the modal characteristics of numerical predictions and testing activities has shown a high level of correlation. Morphing structures are characterized by many more degrees of freedom and increased modal density, introducing new paradigms about modelling strategies and aeroelastic approaches. These aspects affect and modify many aspects of the traditional aeronautical engineering process, like simulation activity, design criteria assessment, and interpretation of the dynamic response (Chapter 3). With respect the aforementioned aileron, sensitivity studies were carried out in compliance with EASA airworthiness requirements to evaluate the aero-servo-elastic stability of global system with respect to single and combined failures of the actuators enabling morphing. Moreover, the jamming event, which is one of the main drawbacks associated with the use of electro-mechanical actuators, has been duly analyzed to observe any dynamic criticalities. Fault & Hazard Analysis (FHA) have been therefore performed as the basis for application of these devices to real aircraft. Nevertheless, the implementation of an electro-mechanical system implies several challenges related to the integration at aircraft system level: the practical need for real-time monitoring of morphing devices, power absorption levels and dynamic performance under aircraft operating conditions, suggest the use of a ground-based engineering tool, i.e. “iron bird”, for the physical integration of systems. Looking in this perspective, the Chapter 4 deals with the description of an innovative multi-modal flap idealized in the Clean Sky - Joint Technology Initiative research scenario. A distributed gear-drive electro-mechanical actuation has been fully studied and validated by an experimental campaign. Relying upon the experience gained, the encouraging outcomes led to the second stage of the project, Clean Sky 2 - Airgreen 2, encompassing the development of a more robotized flap for next regional aircraft. Numerical and experimental activities have been carried out to support the health management process in order to check the EMAs compatibility with other electrical systems too. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to “monitor” the structural conditions. A new possible approach in order to have a distributed light-weight system consists in the development of polymer-based materials filled with conductive smart fillers such as carbon nanotubes (CNTs). The thesis ends with a feasibility study about the incorporation of carbon nanomaterials into flexible coatings for composite structures (Chapter 5). Coupons made of MWCNTs embedded in typical aeronautic epoxy formulation were prepared and tested under different conditions in order to better characterize their sensing performance. Strain sensing properties were compared to commercially available strain gages and fiber optics. The results were obtained in the last training year following the involvement of the author in research activities at the University of Salerno and Materials and Structures Centre - University of Bath. One of the issues for the next developments is to consolidate these novel technologies in the current and future European projects where the smart structures topic is considered as one of the priorities for the new generation aircrafts. It is remarkable that scientists and aeronautical engineers community does not stop trying to create an intelligent machine that is increasingly inspired by nature. The spirit of research, the desire to overcome limits and a little bit of imagination are surely the elements that can guide in achieving such an ambitious goal

    Identification through Finger Bone Structure Biometrics

    Get PDF

    Proceedings of the 2021 Symposium on Information Theory and Signal Processing in the Benelux, May 20-21, TU Eindhoven

    Get PDF

    Higher order feature extraction and selection for robust human gesture recognition using CSI of COTS Wi-Fi devices

    Get PDF
    Device-free human gesture recognition (HGR) using commercial o the shelf (COTS) Wi-Fi devices has gained attention with recent advances in wireless technology. HGR recognizes the human activity performed, by capturing the reflections ofWi-Fi signals from moving humans and storing them as raw channel state information (CSI) traces. Existing work on HGR applies noise reduction and transformation to pre-process the raw CSI traces. However, these methods fail to capture the non-Gaussian information in the raw CSI data due to its limitation to deal with linear signal representation alone. The proposed higher order statistics-based recognition (HOS-Re) model extracts higher order statistical (HOS) features from raw CSI traces and selects a robust feature subset for the recognition task. HOS-Re addresses the limitations in the existing methods, by extracting third order cumulant features that maximizes the recognition accuracy. Subsequently, feature selection methods derived from information theory construct a robust and highly informative feature subset, fed as input to the multilevel support vector machine (SVM) classifier in order to measure the performance. The proposed methodology is validated using a public database SignFi, consisting of 276 gestures with 8280 gesture instances, out of which 5520 are from the laboratory and 2760 from the home environment using a 10 5 cross-validation. HOS-Re achieved an average recognition accuracy of 97.84%, 98.26% and 96.34% for the lab, home and lab + home environment respectively. The average recognition accuracy for 150 sign gestures with 7500 instances, collected from five di erent users was 96.23% in the laboratory environment.Taylor's University through its TAYLOR'S PhD SCHOLARSHIP Programmeinfo:eu-repo/semantics/publishedVersio

    Finger Vein Verification with a Convolutional Auto-encoder

    Get PDF

    DEVELOPMENT OF A POST-FABRICATION STIFFNESS CHARACTERIZATION TOOL FOR MEMS

    Get PDF
    Micro-Electromechanical Systems (MEMS) manufacturers face difficulties in characterizing material properties of MEMS post production. Properties such as stiffness can be obtained from simultaneous force and displacement measurements in full-field. We developed a prototype MEMS metrology system that uses a sub-micro Newton resolution force probe operating under a nanometer resolution interferometer to characterize MEMS mechanical properties. FEA simulations and analytical calculations were performed to help determine system constraints and validate results. Precision actuators were integrated and controlled from a developed graphical user interface. The system was tested on an Analog Devices ADXL202 accelerometer

    Navigation Devices for Mobile Phones

    Get PDF
    A mobile phone has several buttons/keys e.g. numerical keys, side keys, camera buttons and navigation keys. SEMC, Sony Ericsson Mobile Communications AB, has mainly used the joystick and the rocker key as their navigation devices since they released their first phone in 2002. These technologies are used in all their phones except smart phones, e.g. W950 and P990. During the years SEMC has experienced some quality problems with their navigation devices, mainly with the joystick, because of the lack of ability to keep dust out. As the development of mobile phones progress, with more functions and larger quantity of data to go through, the need of a navigation device with more possibilities arise. The purpose of this master thesis was to perform a pre-study on the next generation navigation devices for mobile phones and based on that give recommendations to SEMC of which navigation devices suitable to be used in the future

    Designing a dexterous reconfigurable packaging system for flexible automation

    Get PDF
    This paper presents a design for a reconfigurable packaging system that can handle cartons of different shape and sizes and is amenable to ever changing demands of packaging industries for perfumery and cosmetic products. The system takes structure of a multi-fingered robot hand, which can provide fine motions, and dexterous manipulation capability that may be required in a typical packaging-assembly line. The paper outlines advanced modeling and simulation undertaken to design the packaging system and discusses the experimental work carried out. The new packaging system is based on the principle of reconfigurability, that shows adaptability to simple as well as complex carton geometry. The rationale of developing such a system is presented with description of its human equivalent. The hardware and software implementations are also discussed together with directions for future research
    • …
    corecore