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Localization Device

Tomasz P. Kurowski 

M.E.Sc. Thesis, 2011
Department of Mechanical and Materials Engineering 

University of Western Ontario

Abstract

Lung cancer is the leading type of cancer that causes death. If diagnosed, the treatment of choice 

is surgical resection of the tumour. Traditionally, a surgeon feels for the presence of a tumour 

in open thoracic surgery. However, a minimally invasive approach is desired. A major problem 

presented by the minimally invasive approach is the localization of the tumour.

This project describes the design, analysis, and experimental validation of a novel minimally 

invasive instrument for lung tumour localization. The instrument end effector is a two degree 

of freedom lung tissue palpator. It allows for optimal tissue palpation to increase useful sensor 

feedback by ensuring sensor contact, and prevents tissue damage by uniformly distributing pressure 

on the tissue with an upper bound force. Finite element analysis was used extensively to guide 

the design process. The mechanism is actuated using high strength tungsten cables attached to 

controlled motors. Heat treatment experiments were undertaken with stainless steel alloy 440C 

for use in the design, achieving a device factor of safety of 4. This factor of safety is based on a 20 

N force on the end effector — the approximate weight of a human lung.

The design was prototyped and validation experiments were carried out to assess its articulation 

and its load carrying capacity. Up to 10 N of force was applied to the prototype. Issues to resolve 

in the current design include cable extension effects and the existence of joint inflection.

The end effector was also designed to allow the inclusion of ultrasound, tactile, and kinaesthetic 

sensors. It is hypothesized that a plurality of sensors will increase the likelihood of positive 

tumour localization. These sensors, combined with the presented mechanical design, form the 

basis for research in robotics-assisted palpation. A proof of concept control system is presented 

for automated palpation.
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Chapter 1

Introduction

1.1 Motivation

Lung cancer is the leading type of cancer that causes death in men and women. In 2010, it is 

estimated that 20,600 Canadians will have died of lung cancer, and 24,200 will have been diagnosed 

with lung cancer [1]. The survival rate after a five year period from diagnosis is less than 17% in 

both men and women [2]. Once lung cancer has been diagnosed, the treatment of choice is surgical 

resection of the tumour. While minimally invasive surgery (MIS) serves to reduce patient mortality 

and trauma, localization of tumours during lung cancer treatment presents a significant challenge. 

This, combined with the limitations of currently available minimally invasive devices, motivate 

the development of an instrument that offers improved effectiveness for minimally invasive lung 

tumour localization.

1.2 Current Technologies

In traditional open thoracic surgery, the surgeon palpates or feels the target tissue with a gloved 

hand. This approach allows the surgeon to characterize tissue by sensing the tactile and kinaes- 

thetic feel with his or her fingers. An underlying tumour is identified by the feeling of a spheroid 

lump within the tissue, because tumours typically exhibit a higher stiffness than the surrounding 

healthy tissue.

1



1.3 Forms o f Feedback 2

Although there are benefits to be realized from avoiding open thoracic surgery, MIS forces 

palpation to be done with instruments that are inherently difficult to use due to reversed instrument 

movement1, a lack of direct vision, a loss of kinaesthetic force perception due to friction and 

elastic effects of the tissue at the trocar2, and the complete loss of tactile perception. A standard 

Mediflex Surgical Products Babcock grasper in a jaws closed position is commonly used to palpate 

tissue. With this instrument, the surgeon attempts to determine tissue stiffness by feeling the 

force exerted on the instrument handle, or by visually inspecting the characteristics of the tissue 

as seen through an endoscopic camera. If the surgeon palpates too hard with the instrument, this 

limited feedback palpation method can lead to permanent tissue damage. Palpation experiments 

conducted with and without force feedback have shown that excessive palpation forces are often 

applied when no feedback is available [3]. Incorrect tumour detection can also occur because it is 

difficult to differentiate a tumour from any other hard underlying tissue due to a lack of tactile 

shape perception. These problems inspire the work of many researchers and motivate the design 

of systems to overcome them.

1.3 Forms of Feedback

To prevent damage to the tissue, to decrease the time of a minimally invasive procedure, and to 

help reliably localize a lung tumour, existing intraoperative techniques commonly use kinaesthetic 

feedback, tactile feedback, and ultrasound feedback.

1.3.1 Kinaesthetic Feedback

Kinaesthetic information is the overall average force of palpation. It does not include details 

regarding the texture or local stiffness of the tissue. If kinaesthetic feedback alone is available, 

there is a reduction in the number of injuries caused during the grasping of tissue [4]. Laparoscopic

1 By passing the instrument shaft through the thoracic cavity, the fulcrum at the entry point causes the tip motion 
to be reversed from the handle. Moving the instrument handle up moves the tip down, moving the handle right 
moves the tip left, and vice versa.

2A trocar is a device used to create a passage for minimally invasive instruments from the outside to the inside 
of a body.
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devices3 that include kinaesthetic feedback operate by either conveying the total average force on 

the instrument end effector with haptic feedback to the surgeon, or by displaying the bulk force in 

a visual manner. A short list of techniques that may be used to measure kinaesthetic information 

include force sensing resistors, strain gauges, and the measurement of current supplied to a motor 

that controls the palpating jaws of a grasper [5-7].

1.3.2 Tactile Feedback

Tactile information provides insight on the tissue texture and local stiffness as if felt with a finger, 

thus making it suitable for palpation. Commonly in MIS applications, tactile feedback pertains 

to the pressure map of a localized region. Tactile feedback is inherently more complicated than 

kinaesthetic feedback since it requires an array of sensing elements to determine pressures and forces 

over a small area. The benefit is that more information can be collected about the tissue in contact 

with the sensor and nonlinearities caused by indirect force measurement may be eliminated [8]. 

Suitable incorporation of tactile feedback is still an area of active research. Many researchers have 

attempted to make tactile sensors for MIS tumour localization. They make use of piezoelectric 

sensors, resistive sensors, current sensors, optical sensors, and thin film sensors [9-12]. Some 

researchers use capacitive array sensors produced by Pressure Profile Systems Inc. (PPS) [13-17]. 

Other researchers use tactile sensors to determine the best way to display kinaesthetic and tactile 

information rather than assessing the sensor performance [7,15,17]. Current research has shown 

that displaying visual feedback on the operating room screen and combining it with haptic feedback 

increases the chances of localizing a tumour.

1.3.3 Ultrasound Feedback

Ultrasound is a method used to detect the presence of a tumour in most parts of the body.

However, a radiologist is often required in the operating room to properly assess the ultrasound

images. Furthermore, the use of ultrasound in the lung requires the lung to be fully collapsed to

prevent artifacts in the ultrasound signal. Using ultrasound alone, it is difficult to identify the

3A medical instrument that is inserted through the abdominal wall for examining or performing surgery in the 
abdominal cavity.
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location of small tumours, roughly 10 mm or less in diameter.

In the design of a new minimally invasive instrument, the goals are to improve the surgical 

procedure by reducing the operation time, and to design an intuitive device similar to standard 

surgical devices to reduce the amount of training necessary.

1.4 Project Goals

It is expected that, by using common sensing modalities such as tactile, kinaesthetic, and ultra­

sound, in combination with haptic and visual feedback, the surgeon’s natural perceptions during 

MIS can be mimicked.

To reach this goal, the development of a hand held laparoscopic minimally invasive tumour 

localization device using multiple sensing modalities with haptic feedback and an intuitive display 

of information was undertaken. The goal was to locate tumours through a process of data fusion, 

combining tactile, kinaesthetic and ultrasound information in a manner that is easily understand­

able and does not necessarily require a radiologist on site. This project includes the design of a 

minimally invasive instrument suitable for future incorporation of a semi-automatic tumour de­

tection strategy using feedback from a plurality of sensors to assist in the palpation of tissue, 

optimizing the palpation force and orientation. The device has two degrees of freedom to increase 

the articulation of the instrument. The device jaws and subsequent linkages made room for the 

inclusion of multiple sensing modalities to reduce false positive and false negative findings. The 

proposed device is shown in Figure 1.1, pointing out key components that will be discussed in 

detail: the end effector (or grasper) and the motor housing. The grasper is the component that 

manipulates and palpates the lung tissue. It is designed to hold both tactile, ultrasound, and 

kinaesthetic sensors. The motor housing holds the motors used to actuate the grasper, routes 

sensor and mechanical cabling, and is attached to the handle.

1.5 Challenges

To advance the lung tumour localization methods for MIS, the device shown in Figure 1.1 was 

developed. The final prototype is shown in Figure 1.2. The device can make use of multiple
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sensing modalities for palpation information feedback and also gives the surgeon the ability to 

manipulate the lung in the same manner as a standard surgical grasper. The major challenge 

in the development of the device was the size constraint — a 12 mm diameter hole that the 

instrument had to pass through. Constraints caused by the addition of two degrees of freedom 

included making space for ultrasound and tactile sensors in the instrument jaws, and making space 

for sensor cabling along mechanical linkages and down the instrument shaft.

Motor Housing

Grasper

Figure 1.1: Proposed design of a minimally invasive lung tumour localization instrument.

The overall space constraints lead to the use of thinner mechanical linkages, making it important 

to analyze components for a robust final prototype. Incorporating two degrees of freedom while 

allowing room for sensor cabling necessitated small sized components, increasing their stress under 

load. In addition, a high factor of safety was required since the device is intended for use inside a 

human body. Any failure could increase the risk of patient injury, and lead to the cancelation of 

minimally invasive surgery and a switch to an open thoracic surgery.

The tungsten cables used for actuation of the grasper jaws had to be carefully placed to make
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Figure 1.2: The final prototype.

room for the sensor cabling. Linkages also had to account for the twisting of the end effector 

relative to the stationary base — the handle of the instrument. The end effector was designed not 

only as a tissue palpator, but also as a tissue manipulator. The grasper design with two degrees 

of freedom and multiple sensing modalities had to be able to manipulate a lung, exerting a force 

of up to 20 N in any direction. This significantly affected material selection due to high stresses 

experienced in some components. The grasper jaw material was chosen such that it could be heat 

treated to attain a higher yield strength, increasing the device factor of safety.

1.5.1 Contributions

To date, no multi-modal, multi-degree of freedom (DOF), minimally invasive semi-automatic lung 

tumour localization devices, including kinaesthetic, tactile, and ultrasound sensing, have been 

developed. The proposed device has three major innovations.

1. No researchers to date have developed a multi-modal minimally invasive lung tumour localiza­

tion device. The proposed design can accommodate two imaging sensors, ultrasound and tactile, 

as well as kinaesthetic sensors. As grounds for future research, a process of data fusion between the 

plurality of sensors is hypothesized to increase the likelihood of localizing a tumour. This would
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also relay more information to the surgeon as compared to other minimally invasive instruments.

2. A sa novel mechanical feature, the design makes use of two degrees of freedom in the instrument 

end effector. The use of two degrees of freedom allows for a wide variety of tissue geometries to 

be palpated. Additionally, the end effector can be adjusted to use a large portion of the imaging 

sensor surfaces. Lastly, a more controlled palpation can be achieved on lung tissue, preventing 

permanent damage.

3. No researchers have developed a real-time mechatronics-assisted force feedback palpation 

procedure for tumour localization, a feature that can be beneficial [18]. Tholey et al. developed 

an open-loop automatic grasping function for a kinaesthetic sensor based grasping mechanism to 

eliminate variability in the results [19]. The experiments used equally-sized tissue phantoms that 

were palpated for exactly 10 seconds in the same physical manner each time. The design presented 

in this thesis includes a demonstrative semi-automatic force feedback palpation function to help 

detect tumours in real-time. This will optimize the applied force during palpation, optimize sensor 

contact with the tissue, and prevent tissue damage. The incorporation of two degrees of freedom 

in the grasper jaws helps to provide this capability.

1.6 Organization of Thesis

This thesis is divided into six chapters that progress through the design, analysis and component 

selection, control, and validation of the presented device. A description of each chapter follows:

Chapter 1 —  Introduction

This chapter outlines the motivation and goals behind this work. It identifies important 

restrictions in current techniques and past technologies for lung tumour localization. It also 

describes design parameters and points out the contributions of this work.

Chapter 2 —  Literature Review

This chapter summarizes similar or related research in the field of lung tumour localiza­

tion. It reviews existing and emerging technologies in regards to sensing and mechanical 

systems. The literature is presented in the order of increasing system complexity, starting
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with simple axially palpating rods using kinaesthetic feedback, followed by radially palpating 

or grasping mechanisms with kinaesthetic feedback. Subsequently, tactile sensing is intro­

duced. This section introduces the reader to current tactile sensor technologies and existing 

commercial tactile sensors. Multi-modal devices are then presented, particularly those that 

use multiple tactile sensors, multiple ultrasound sensors, and a combination of both. The 

important contributions for each sensor modality are pointed out, concentrating on the fact 

that multi-modal systems are of great interest because of their increased performance in tu­

mour detection. Throughout the literature review, existing mechanical designs are presented 

and their strengths and weaknesses pointed out.

Chapter 3 —  Design and Analysis

This is the most comprehensive chapter, covering the majority of work undertaken. It covers 

particular design constraints and requirements, the mechanisms of motion for the designed 

mechanical lung palpator, its materials, its sub-components, and its limitations.

A significant portion of this chapter is dedicated to the results obtained from finite element 

analyses (FEA) of the palpator mechanism. Here it is demonstrated that the device will not 

experience failure under the considered loads in a variety of different physical configurations. 

In particular, mechanical linkages and joint forces are analyzed. Using the FEA results, 

conclusions were drawn on what type of material should be used.

As a result of analyses concluding high material stresses, a heat treatment procedure for 

alloy 440C stainless steel is presented. The effects of the heat treating process on the steel 

alloy are tested and reviewed. Comparing the difference between heat treated and untreated 

steel also simultaneously validates the use of the chosen pins for the linkage joints. Next, 

a different palpator jaw geometry is introduced for integrating the ultrasound sensor. FEA 

results show the geometry requires heat treated steel to increase its factor of safety from 1 

to 4.

Discussion of the palpator mechanism is followed by a review of the sub-systems. This 

includes the mechanisms of movement of the jaws with two degrees of freedom. It also 

includes explanations of the added functionality of twisting the palpator jaw over a 180°
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range. Selected components are described including the chosen materials, motors and motor 

controllers, optical encoders to assess system performance, cable selection and integration, 

and strain gauge selection for kinaesthetic feedback information.

Chapter 4 —  Electronics and Control System

This chapter introduces the associated electronics and control system required to drive the 

palpator movement. Kinematic equations are first derived, explaining their use in reality and 

in modelling the system. The desired output variables are described and a path generating 

algorithm is presented (a continuous point-to-point trajectory). With the possibility that the 

implemented control system could request movement of the palpator jaws to a geometrically 

impossible position, a method is designed to move the jaws as close as possible to the desired 

position. A kinematic model is then presented in MATLAB, describing the movement of the 

device and chosen path generation scheme.

A large scale mock design is then presented implementing two force sensing resistors (FSR) 

as feedback inputs. A control system is designed as a proof of concept with FSRs since 

the tactile sensor was not integrated into the current version of the prototype. Qualitative 

results are discussed, including limitations of the palpator design.

Chapter 5 —  Validation of the Final Prototype

In this chapter, the final prototype is presented and discussed. The positional capability of 

the jaws are compared to the computer model, and an experiment is designed to validate 

the performance of the device as compared to the FEA cases previously run. The control 

system discussed in Chapter 4 is implemented and qualitatively assessed. The strengths and 

limitations of the design are discussed.

Chapter 6 —  Conclusions

This chapter summarizes the work presented in this thesis and offers recommendations for 

future work.



Chapter 2

Literature Review

Presented in this chapter is an overview of devices developed for tumour localization, beginning 

with the most simplistic designs and feedback methods, moving through more complicated tactile 

and ultrasound sensor integration. Comments on mechanical design are made when appropriate.

2.1 Kinaesthetic Instruments

The easiest form of feedback is kinaesthetic, since it only deals with bulk forces. Many researchers 

[5-8,11,14,19-26] have attempted to use simple nodule1 localizing instruments using kinaesthetic 

feedback alone. For such applications, sensors were usually mounted along the instrument, and not 

in direct contact with the area of palpation. Palpation induces deformation within the instrument. 

These deformations can be used to extrapolate the bulk force on the instrument end effector. This 

is a method of indirect sensing [8].

2.1.1 Axially Palpating Instruments

The simplest palpation device is an axially palpating rod integrated with a sensor to determine 

the force of palpation. Using such a device, a study was conducted to determine safe palpation 

forces for minimally invasive instruments and their effect on sensor selection [21]. The conclusion 

drawn was that minimally invasive sensors should be able to sense 0-10 N with a resolution of

l A small round lump.

10
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0.01 N. The sensor range was based on a peak palpation force of 1.6 N, and the sensor resolution 

was deemed to be one order of magnitude less than the smallest sensor variation. This closely 

corresponded to the commonly accepted 0.1-11 N sensor range requirement [27]. An additional 

experiment tested the most effective probe shape on the distal end of a cylindrical 9 mm diameter 

tool when palpating axially. A flat ended design performed much better than a curved one, while 

instruments with a larger palpation area or smaller palpation area than the suspected tumour 

performed equally well. This was likely due to less lateral movement of the underlying tumour.

The authors of [28] constructed a similar device to measure the elasticity of soft tissue. A force 

sensing resistor was used to determine the axial force that a probe exerted during the palpation of 

a tissue. Results from the constructed device and from an industrial elasticity measuring machine 

(Zwick/Roell Company, Ulm, Germany) were comparable.

Hosseini et al. [5] studied the behaviour of a breast tumour under palpation. Finite element 

analysis was first used to determine the pressure on tissue with an underlying tumour undergoing 

palpation. Experimental results on phantom tissue closely matched the findings of the finite 

element model. The resulting information could be used to design more advanced instruments.

In an attempt to improve the function of an axially palpating instrument, a minimally invasive 

probe with a wheel on the distal end for rolling over tissue was developed [20]. A force sensing 

resistor was used to sense the axial force exerted on the device during palpation. By rolling the end 

effector over a tissue in several passes, a two-dimensional force map could be created to localize 

areas with underlying stiffness.

In another design, deformation of a laparoscopic palpation device instrumented with three 

optical fibres at its tip was studied [25]. The fibres were safely embedded in the instrument shaft. 

Its working resolution was 0.01 N, with a maximum force of 2.5 N. This type of design could prove 

useful in palpation applications due to its appropriate sensing resolution and small 5 mm diameter.

Takashima et al. [22] also tried to improve an axially palpating probe by using an infrared filter 

and image processing algorithms in combination with an endoscopic camera. The data acquisition 

was slow, operating at 5 Hz. Furthermore the device was not robust in that it had to be separately 

calibrated for use in air, in the body, or any other media. Additionally, there were many sources of 

noise. Predicting and eliminating noise was time consuming and contributed to the low sampling
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frequency.

Unlike breast palpations which have a stiff rib cage to palpate against, axial palpation of 

lung tumours is more difficult since the lung cannot always be palpated against the chest wall. 

Furthermore, the shape of the palpating device may change the results significantly [21]. For this 

reason, the majority of researchers have developed grasping type designs in an attempt to improve 

system performance.

2.1.2 Grasping Instruments

Bicchi et al. [8] modified a Babcock grasper to include kinaesthetic feedback. A first experiment 

determined that there was a loss of sensation using traditional minimally invasive devices. For 

simplicity, the modified Babcock grasper used a strain gauge mounted near its handle to sense 

the grasping force. The position of the sensor increased nonlinear friction and backlash effects. A 

second experiment was conducted to determine whether material properties could be characterized 

with force feedback.

A grasping device with tri-directional force sensing capability was constructed by [19]. It was 

used with two piezoresistive sensors for measuring lateral forces at the grasper, and a thin-film 

force sensor for normal force sensing. With the plurality of force sensors, the shear force on the 

tissue could be determined. The advantages of having shear force sensing capabilities include 

detecting tumours while sliding over a tissue sample, and providing the ability to palpate the 

instrument against tissue in an axial direction with the grasper jaws closed. The sensors were 

placed as close as possible to the jaws of the instrument to reduce nonlinear effects. The validity 

of force sensing was determined by comparing the force sensor measurements to the measured 

current drawn by the motor controlling the jaws. Both sensing means showed comparable final 

static forces, but significantly different dynamic forces. A thin-film sensor was used to measure the 

normal force of grasping. A disadvantage of the sensor in this device was that a force had to be 

applied to the centre of it. An automatic grasping function for instrument validation was used to 

reduce variability between results. The experiments used equally sized tissue phantoms that were 

grasped for 10 seconds in the same physical manner each time. Although simple and only used 

for validation, this open loop control system is one of the few devices that includes an automatic
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grasping function. Future design plans were to include haptic feedback.

2.1.3  Inclusion of Feedback

Dargahi et al. [6] also included kinaesthetic feedback using strain gauge sensors on a modified 

Babcock grasper. The strain gauges were mounted to the back of the grasper jaws, reducing 

nonlinearities. Finite element analysis determined the required working range of the strain gauges 

for sensor selection. This simple and compact design also included an array of light emitting diodes 

(LEDs) near the handle of the instrument that sequentially lit up with increasing grasping force. 

This allowed a qualitative indication of the grasping force to be relayed to the user visually.

The researchers in [23] and [24] conducted comparative tests between a standard laparoscopic 

grasper, a custom sensorized laparoscopic grasper, and a gloved finger to determine their relative 

grasping performance. The end effector of the custom device was controlled electronically by the 

user through a master-slave system. The position of the grasper jaws was known from an optical 

encoder. Due to a weak actuator, the force feedback system was based on the position error of 

the grasper jaws. It is noted that mechanically limiting the grasping force prevents the use of the 

device in different situations, such as manipulating tissue. The main innovation in this design was 

the use of simple haptic feedback in the master controller module. The force felt by the grasper 

was translated to the hand of the user controlling the device handle. No other forms of feedback 

were used. The sensorized instrument significantly improved tumour detection over using the same 

instrument with no feedback, however, palpation with a gloved finger produced superior results.

In another design, haptic feedback was provided to an endoscopic grasper [29]. The design was 

more general purpose however, including force amplification to the end effector grasper for uses 

such as the ligation of vessels and severing tissue. It was not specifically designed for sensitive 

environments like lung tissue palpation.

Hu et al. [26] developed a robot assisted master slave grasper with haptic feedback displayed 

on a PHANToM (Sensable Technologies, Woburn, MA). The goal was to make a system in which a 

surgeon could tele-operate a grasping device and feel what was being grasped by it. Strain gauges 

were used to sense the force of grasping in the instrument grasper. Experiments proved that strain 

gauges were suitable to determine the tissue stiffness, and that stiffness could be determined using
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only haptic feedback. When determining the effectiveness of haptic feedback alone, two people out 

of a ten person group were not able to properly assess the tissue stiffness, suggesting the need for 

device training. The experiments were performed with one person operating the grasping device, 

and another person operating the PHANToM. This combination was of course unrealistic and 

could have both eliminated and added undesirable side effects in tumour detection performance.

To determine the best type of information to relay to a surgeon during a minimally invasive 

force feedback procedure, a study was done comparing visual force feedback, kinaesthetic force 

feedback, and a combination of both [7]. The combination of feedback methods outperformed both 

single feedback methods. Individually, visual feedback outperformed kinaesthetic feedback. These 

experiments utilized a custom tele-operated system with a PHANToM for kinaesthetic feedback 

and motor current sensing for grasping force measurement. A major design consideration was the 

use of cable driven mechanisms to reduce backlash in the end effector.

The main drawbacks of kinaesthetic feedback are the nonlinear effects due to indirect sensing, 

the ability to only sense bulk force, and the lack of tactile perception. Tactile sensors inherently 

solve mechanical nonlinearities such as friction by being in direct contact with tissue and also 

eliminate calibration processes that need to be undertaken for a variety of grasper positions and 

shapes. Tactile sensing can also determine the underlying shape of the palpated tissue. For 

example, tactile sensing could differentiate a bronchial tube from a tumour. Furthermore, tactile 

sensors provide the ability to palpate tissue. Kinaesthetic sensors can only sense grasping force, 

which does not directly translate to tissue stiffness.

2.2 Tactile Instruments

Tactile information is a combination of tissue stiffness and texture. Often, pressure data is used 

to display tactile information. Many researchers [9-15,17,18,30-33] have tried to use existing or 

newly developed tactile sensors with different feedback methods to help detect tumours. Unlike ki­

naesthetic sensors, tactile sensors do not suffer from mechanical nonlinearities because the sensor is 

in direct contact with the palpated tissue. Types of tactile sensors include optical emitter/detector 

pairs, elastomer based, capacitive, piezoresistive, current sensing arrays, and polyvinylidene flu­
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oride (PVDF) films. However, not all of these sensors can be used for MIS. Since an area of 

the tissue can be sensed, tactile sensors are often used for palpation to determine different tissue 

characteristics, in addition to grasping tissue with an upper bound force to prevent tissue damage.

Tactile sensors are more complicated to manufacture and incorporate into a minimally invasive 

device because they require many sensing elements within a small area. Still, the advantage of 

relaying more information about the tissue often outweighs the added complexity.

2.2.1 Types of Sensors

Dargahi et al. [12] developed a scissor-like minimally invasive grasping instrument using PVDF 

as the sensing medium with four sensing elements. Validation of the instrument was done by 

comparing the actual sensor output to FEA simulations. The sensor was constructed in layers 

beginning with four individual upper PVDF electrodes placed in a line, followed by a large PVDF 

film to cover them all, followed by a large lower PVDF electrode. The sensor could measure loads 

in four locations along the length of the sensor making it a one-dimensional (ID) tactile sensor. 

The sensor was placed on the jaws of a surgical grasper. The use of only four sensing elements 

made the design compact, robust, and inexpensive. However, ID sensors have severe limitations. 

The ability to sense in two dimensions proves beneficial for obtaining a topographical pressure 

map without having to sweep the sensor over a region.

Based on piezoresistive material, a tactile sensor was developed for ID and two-dimensional 

(2D) sensing in [31]. A single element was composed of a piezoresistor sandwiched between two 

conductive tracks. Applying a force to the sensor would decrease its resistance. Tests performed 

on artificial bowels validated the sensor. Though the prototype was not designed for MIS, the 

sensor was inexpensive and could be miniaturized to make it suitable for MIS.

Pawluk et al. [33] described a high sensitivity pressure distribution sensor able to replace a 

human finger. The design used several perpendicular copper strips separated by thin pieces of 

a silicone dielectric. Increasing pressure on the crossings of the array brought the copper strips 

closer together, reducing their capacitance. The change in capacitance was closely proportional 

to the change in applied pressure. This sensor forms the basis for a commercial sensor offered by 

Pressure Profile Systems, Inc. (PPS).
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Two elastomer-based tactile sensors were reviewed for their suitability in a tactile sensor [30]. In 

one type, carbon or silver was embedded within rubber, such that compression of the rubber caused 

a local increase in the concentration of the embedded media, thereby increasing the conductivity. 

The resulting sensor had a few millimetres of spatial resolution. Eltaib et al. [30] also tested a 

similar sensor to Pawluk [33]. The problems associated with the sensor were noise, hysteresis, 

creep, and crosstalk. Furthermore, the properties of the rubber layer limited the dynamic range 

of the sensor, and connecting to a conductive rubber was a source of noise on its own.

Dollar et al. [11] discussed the use of optical reflectance for tactile sensors. With the use of 

an LED and a photodetector mounted within a casing, deformation of the casing caused a change 

in the amount of light the detector received, thereby changing the current through the detector. 

This sensor used inexpensive components but was too large for MIS.

Schostek et al. [10] developed a sensor that was constructed in three layers. The first layer was 

an array of spherical conductor electrodes, the second layer was a thin conductive film, and the 

third layer was a copper film. With an applied force, the current passing through the electrodes 

changed. Similar to PPS sensors, the medium between opposing layers was air. Unlike PPS 

sensors, this sensor was entirely encased, making it waterproof. It proved to have a large 0-60 N 

operating range with a 1.4 mm spatial resolution, comparable to a human finger.

A slightly different approach used by Sedaghati et al. [32] was the development of a piezoelec­

tric tactile sensor for use in MIS that measured tissue compliance. A single tactile element was 

composed of an inner cylinder made of rubber surrounded by a concentric compliant outer cylinder 

made of softer rubber. A circular piece of PVDF film was placed under the inner cylinder, sized 

to the same diameter. The assembly was then mounted to two rigid plates separated by PVDF 

film. The two sets of film allowed for force sensing on a particular element of the array and the 

overall force on the sensed object, providing a combination of tactile and kinaesthetic information. 

The problem with the sensor was its size. The size of the prototype was not suitable for MIS, 

and if constructed smaller, the sensing elements become easy to damage, especially with sliding 

palpation motions.

A commercially available PPS tactile sensor was used to determine its capability to produce 

a pressure profile of a tissue using several palpations [18]. Experiments were conducted to pal­



2.2 Tactile Instruments 17

pate tumour embedded ex vivo porcine lung tissue manually, and with robotic assistance. Under 

robotics-assisted palpation, the maximum pressure of palpation decreased by 35% and increased 

successful tumour localization by 50% over manual palpation. The optimal force application with 

robotics-assisted palpation was found to be 4 N with a sensor area of about 240 mm2. This suggests 

manual palpation would benefit from mechatronic assistance.

Ottermo et al. [15] conducted a tumour palpation study to compare the relative performances 

between a gloved finger, a standard laparoscopic instrument, and a custom designed laparoscopic 

instrument fitted with a PPS sensor. It was found that the sensorized instrument did not perform 

better than the standard instrument when differentiating hardness and size of tumour phantoms. 

The gloved finger was not significantly better than the sensorized instrument when judging the 

hardness of a tumour. The findings suggest that the visual feedback form used was not intuitive, 

or that it was not an ideal way of representing the tactile sensor information. It was suggested 

that the tactile information display should be on the same screen as the endoscopic video feed.

2.2.2 Mechanical Designs

An instrument designed by Miller et al. [14] using a PPS sensor featured tactile information 

overlaid on the endoscopic video screen. The method of tactile information display proved to be 

very intuitive. To map the sensor readings to the tissue on the screen, optical tracking of LEDs 

mounted to the palpation probe was used. The tactile sensor was mounted on a cylindrical shaft 

which had one degree of freedom (DOF) — a rotational joint controlled by a knob, allowing for 

a wider range of palpation angles. Validation experiments on foam lung phantoms embedded 

with phantom tumours determined that the device could detect tumours better and faster than 

a sensorless rigid probe. However, the device did not have the ability to grasp tissue. The 

experiments were performed with tissue on a rigid surface.

The authors of [34] used an ultrasound probe mounted on the distal end of an endoscopic 

instrument, attached to a parallelogram style joint. This added DOF allowed the ultrasound 

probe to be moved up and down without having to rotate the endoscope about the fulcrum at the 

trocar, which would change the apparent angle of the surface to palpate.

In another attempt to add articulation to MIS, a device was designed to mimic the kinaesthetic
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movement of a surgeon’s bent or extended finger as a 1 DOF system using two joints and a cable 

driven mechanism requiring no electrical power [35]. This mechanism was developed to regain the 

same movements a surgeon would use in open thoracoscopic surgery.

For the purpose of cutting tissue, a hand held endoscopic system was designed with grasper 

like jaws [36]. The articulation of the device was similar to that developed by Miller [14] in that 

it had an extra joint, but this system had a grasper as an end effector.

Also similar to Miller [14], a device was made that used no rigid backing when palpating [37]. 

It did however use two flat tactile sensors. The tactile sensors were hinged on the distal end of the 

instrument shaft and were able to open and close, similar to a grasper, but without coupled jaw 

movement. By knowing the angle of the sensors relative to the shaft, tumour location could be 

determined. This method of sensing helped align the instrument shaft with a tumour, making a 

biopsy easier. The device was not designed specifically for tumour localization. However, obvious 

parallels can be drawn for lung tumour localization using a similar device.

2.2.3 Combining Technologies

Feller et al. [13] used a PPS capacitive tactile sensor using haptics to provide the sensation of 

palpation onto the user’s finger. An array of densely packed vertically moving pins was constructed 

such that the displacement of the individual pins was proportional to the sensed tactile pressure. 

The design was targeted towards remote breast and liver palpations and was never intended for 

MIS. One experiment was conducted by mounting the sensor on a robotic arm, tele-operated by 

one hand through a PHANToM, while the other hand felt the haptic tactile array with one finger. 

Another experiment was performed by controlling the sensor by hand, while feeling the haptic 

tactile array with the other. Each experiment used the same phantom tumour model, ranking 

three levels of tumour stiffness. Both methods were equally accurate in tumour detection. In the 

tele-operated case, the applied force was significantly lower than the direct palpation case, but also 

took 150% longer than the hand controlled case. The force feedback gain was varied to improve 

tumour detection, but proved to have no effect.

Using the haptic tactile feedback array to mimic tissue stiffness may have been sufficient, but a 

combination of kinaesthetic and tactile feedback are necessary to properly represent touch [18]. In
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fact, the quality of tactile data is dependent on the applied force, and the performance in tumour 

detection depends on how consistent the force is. This suggest that automatically controlled 

palpation would increase the likelihood of detecting a tumour.

Ottermo et al. [9] developed a remote palpation device that included a 30 element piezoelectric 

tactile sensor and a haptic tactile array. The device was remotely controlled and was designed to 

have the haptic feedback array attached to the controlling arm of the device. This eliminated the 

use of two hands to control and feel, as was required by Feller’s [13] device. In trying to mimic 

the resolution of a human finger, the haptic array consisted of 3x10 micro motors placed at 2 

mm increments, the smallest two point discrimination distance of a finger tip [38]. The design 

implemented a silicon rubber film over the tactile sensor for low pass filtering as described in [39]. 

Rounded edges of the tactile sensor reduced edge effects.

Using a similar haptic tactile display, a study was conducted to examine the effect of different 

algorithms for haptic tactile sensor display [17]. A test was set up to observe the effect of using the 

raw tactile sensor information and subtracting a fixed pressure value, and subtracting a pressure 

value that was linearly dependent on the applied force. The sets of sensor data were displayed 

on the haptic tactile array. The tests were performed on several different tissue phantom models. 

The fixed pressure subtraction value was unique to each tumour model. Therefore, calibration 

was necessary for every type of palpation medium. However, the algorithm significantly improved 

tumour localization and decreased the exploration time. Subtracting a pressure value proportional 

to the applied force further improved localization while keeping the exploration time the same. 

Tumour localization error was reduced by 37%, the required time to find the tumour was reduced 

by 44%, but the maximum force increased by 7% from the case of no pressure value subtraction. 

This suggests that it is necessary to display the tactile information differently from the raw sensor 

information for more intuitive results. It also may suggest that the improved performance was due 

to a higher palpation force.

2.2.4  M ultiple Modalities

Hyung et al. [40] documented tumour localization for submucosal tumours using two different 

ultrasound devices. Tumours were successfully removed in two human cases after first localizing
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them with endoscopic and laparoscopic ultrasound. Ultrasound was used because the tumours 

were too deep to be palpated. This procedure proves that multiple sensing modalities could help 

localize a region of interest. Although it was not minimally invasive and was done on non-palpable 

tissue, it still justifies the use of multiple sensing modalities to detect lung tumours.

In fact, a multi-modal device for tele-operative breast examinations was constructed [41]. The 

device included two sensing modalities, tactile and ultrasound, and also provided haptic feedback. 

The tactile sensor worked on optical total internal reflection. The claim was that the system may 

actually outperform a physician’s own hand. Though not suitable for MIS, the increased modalities 

are an attractive option to pursue due to the possible increase of tumour detection performance.

A similar handheld device used ultrasound and tactile pressure sensing for the primary use of 

palpating breast tumours [42]. The two sensors were mounted at different positions on the device 

and thus had different physical perspectives that needed to be accounted for by tracking their 

respective positions. The sensor information could be combined to determine tumour position and 

depth. The device also had the capability to repeat palpation in the same orientation with the 

same amount of force for subsequent breast examinations. This feature may be appropriate for 

lung tumour localization if a surgeon needed to re-explore a previously marked area of interest.

2.3 Summary and Conclusions

In the development of a minimally invasive lung tumour localization device using multiple sensing 

modalities, it was necessary to determine that such a solution does not yet exist. It is hypothesized 

that such a device could advance the performance of detecting tumours during minimally invasive 

surgery. The following chapters are dedicated to the design, analysis, control, and validation of 

the proposed system.

Most current technologies in the author’s opinion are too simplistic to transfer enough infor­

mation to a surgeon to help locate tumours. This includes all axially palpating sensing means, 

including implementations where a region of tissue could be sensed to develop a tactile map, which 

may consume too much time and may be difficult. ID sensors as well require extra time to palpate 

a region of tissue to obtain tactile information.
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Tactile sensing appears the most useful, because it transfers the most amount of information 

about the palpated region almost immediately. The higher the spatial resolution of a tactile sensor, 

the easier it is to visualize the underlying tissue, providing the ability to distinguish between 

tumours and bronchial tubes.

It is also shown through the literature that including multiple sensing means can increase 

the likelihood of tumour detection. For this reason ultrasound was chosen as a sensing means 

to be coupled with tactile sensing. The two sensors together should be able to provide a better 

understanding of the palpated tissue.

Finally, the last advancement in the presented project is the mechanical design. To reduce time 

and complexity of palpation without damaging tissue, a mechanical design introducing 2 DOF is 

constructed. This mechanism completely redefines the act of palpating, allowing robotics-assisted 

functionality to be added to standard human controlled palpation. This optimizes the palpation 

for varying tissue sections and can enforce a safe limit on the maximum palpable force, preventing 

damage to the tissue.



Chapter 3

Design and Analysis

3.1 Introduction

The focus of the design for the hand held minimally invasive instrument was primarily on the 

end effector. The requirement of minimizing the overall size, forced the load bearing areas to be 

supported by small components, which subsequently increased the material stresses. All moving 

parts were designed to fold around each other to minimize frontal cross section and device stiffness 

was maximized by utilizing parts with a high tolerance. The design was required to support a 

human lung, which can exert a force of approximately 20 N. FEA results showed that the system 

had a factor of safety of 4 with heat treated material. FEA was an essential step in the creation 

of the prototype to verify performance, and to reduce the number of constructed prototypes to 

one. The required machining and heat treating costs to build the end effector were too high to 

justify a design process that included multiple machined prototypes and experimental tests for 

validation. Sub-systems were not analyzed in detail because preliminary calculations showed a 

higher factor of safety than the end effector. These sub-systems included the motor housing, 

tensioning mechanism, actuating mechanisms and handle.

The design process of the end effector was iterative, and was mostly concerned with the devel­

opment of different mechanisms of movement. Initially based off of a Babcock grasper, five different 

designs were modelled using SolidWorks 2010, three of which were rapid prototyped and assem­

bled to have a better physical understanding of the weak areas of the design. The fundamental

22
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difference between the final design and the Babcock grasper was the use of cable actuation rather 

than push/pull rods. This was intended to accommodate wrist joints for increased instrument 

articulation. With the final concept chosen, FEA was used to determine the required material 

properties, which changed some of the design features, but maintained the overall structure of the 

mechanism.

3.2 Design Requirements

The main requirements that guided the design process were fitting the device through a 12 mm 

diameter tube, using a cable driven mechanism, including the ability to manipulate a lung and 

palpate varying lung shapes, to use multiple sensing modalities (kinaesthetic, tactile, and ultra­

sound), and to obtain repeatable results. Future work includes enhancing the performance of the 

end effector by using an intuitive control system, and adding functionality such as robotics-assisted 

palpation, visual and haptic feedback.

The dimensions of the end effector and total instrument length were modelled after an Ethicon 

Echelon Flex 60 articulating linear cutter (Figure 3.1) following a recommendation from an expert1 

in the field of minimally invasive thoracosopic surgery (MITS). As such, the entire instrument had 

to fit through a 12 mm diameter trocar (Figure 3.2), and the jaws with which to palpate the lung 

had to be 90 mm long.

The use of a cable driven mechanism was desired for integration of wrist joints for more degrees 

of freedom and better positional flexibility. However, wrist joints were not included in the final 

design to increase its robustness and factor of safety (FOS). Additionally, removing wrist joints 

reduced the complexity of control systems, subsequently improving intuitive human control of the 

end effector. It also provided more space for sensor cable routing, and reduced possible undesired 

effects of bending sensor cables. Furthermore, removal of additional DOF reduced the total length 

of the end effector making it suitable to use in a wider spectrum of chest cavity sizes. The use 

of actuating cables saved space compared to alternative actuation means, such as a push/pull rod 

configuration.

1Dr. Richard Malthaner MD, Division of Thoracic Surgery and the Department of Epidemiology & Biostatistics, 
London Health Sciences Centre.
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Figure 3.1: Ethicon Echelon Flex 60 Articulating Linear Cutter.

f

Figure 3.2: A trocar is a device used to create a passage for minimally invasive instruments from 
the outside to the inside of a body.

The maximum design load of the device was the force required to manipulate a human lung. 

Designed for the worst case scenario of lifting the entire lung, a 20 N force on the jaws of the end 

effector was used. This was deemed sufficient since the entire lung is not manoeuvred all at once, 

rather sections of it at a time, lessening the total load on the jaws. Dynamic load cases were not 

considered because the device would be used in a quasi-static manner.

In order to increase the probability of detecting a tumour, avoid damaging tissue, reduce the 

time of surgery, and attempt to restore the surgeon’s natural perceptions during surgery, the 

inclusion of kinaesthetic, tactile, and ultrasound sensing modalities were incorporated into the 

design. The actuating mechanisms were designed around the most voluminous cabling, which was 

connected to the tactile sensor. All components were designed to allow a cable of 2.5 x 5 mm 

cross-sectional area to pass through the length of the device. The ultrasound cabling required less 

room than the tactile sensor in terms of thickness, possibly allowing for stronger linkages, but the 

actuating mechanisms were designed to maintain symmetry. Strain gauges were introduced for
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accurate measurement of kinaesthetic forces on the instrument end effector. While the integration 

of different sensing modalities is beyond the scope of this report, the design can accommodate 

three sensing methods that can be combined with data fusion algorithms to display palpation 

information in an intuitive manner.

Palpating against soft tissue can produce varied results because of the variable stiffness of the 

supporting tissue. The use of a grasper design was justified because it guarantees that the tactile 

sensor always palpates tissue that is supported by a rigid backing. This increases the repeatability 

of measurements.

For the best sensor readings from both tactile and ultrasound sensors, the sensors should be in 

contact with the tissue over as much of the sensing surface as possible. Since different lungs are of 

different shapes, the device was required to have the ability to adapt to different contact profiles. 

To occupy as little volume as possible while trying to conform to different lung shapes, the jaw’s 

motions should be coupled. Coupling minimizes the number of actuating mechanisms and saves 

space to make room for sensor cabling. All topographical morphologies would include the jaws 

ability to grasp tissues of varying thickness, inline angle, and perpendicular angle (Figure 3.3). 

Lung tissue is flexible and conforms to the palpating surfaces, in this case two flat sensors. To 

limit the occupied space and to make room for sensor cabling while still maintaining the ability to 

conform to tissue shapes, only two degrees of freedom were included; varying thickness, and varying 

inline angle (Figure 3.3, left). As recommended by a MITS surgeon, the maximum palpable tissue 

thickness was set at 50 mm. The maximum inline angle of palpation depended on the palpation 

thickness, but had a range of —21.5° to 69.6° (Figure 3.4).

Improving the utility of the grasper requires robot assisted functionality [18]. The controls 

would utilize the kinaesthetic, tactile and ultrasound sensors to palpate the tissue in an optimal 

manner without surgeon intervention. This meant the proximal end of the surgical instrument had 

to include motors and associated electronics to properly control the end effector, while maintaining 

an appropriate size to be held by an operator. Data acquired by the sensors could then be relayed 

back to the surgeon in the form of haptic and visual feedback. These feedback methods were not 

included in the project but are considered as future work.
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Change in Thickness
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Perpendicular Angle
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Change in Inline Angle
♦

Figure 3.3: Types of lung morphologies that should be addressed by a palpation device.

Figure 3.4: Angle range of the end effector jaws.
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A summary of the design requirements can be referred to in table 3.1. Some of these require­

ments are discussed in later sections of this chapter.

Table 3.1: A list of design requirements for the instrument end effector.

Design Requirements
End effector outer diameter 12 mm
Palpable geometry 50 mm thick
End effector actuation Cables
Maximum load 20 N
Palpation force 3-5 N
Material Sterilizable
Sensors Ultrasound, tactile, strain gauges, position
Sensor wiring dimensions Two side-by-side 2.5 mm diameter sensor 

wires mounted to each jaw, running down 
the length of the instrument shaft

End effector mechanism Grasper-type design
Control Semi-automated palpation
Actuators Minimize weight, attain a cable tension 

of at least 90 N
Ergonomics Hand held, light weight

3.3 Instrument Design

The design process began with the redesign of a Babcock Grasper to use a cable mechanism for 

actuation. This design was modelled in SolidWorks and is shown in Figure 3.5. The concept of 

using a sliding mechanism to actuate the jaws was developed at this early stage. The grasper 

housing is shown transparent to display the internal mechanism. This design was the first of an 

iterative design process. Figure 3.5 also shows the same design mounted on a wrist joint. Some 

of the designs created were realized as physical prototypes using a 3D printer to produce the 

linkage and housing components. The purpose of constructing the designs was to gain a better 

understanding of how the mechanism worked, find where structural weaknesses were located, and 

to test its ease of use. For example, it was noticed that manually positioning the end effector to 

a desired configuration with one or more wrist joints integrated was not possible because of cable



3.3 Instrument Design 28

movement, varying cable tension, and slack in the system. For this reason and those listed in 

Section 3.2, wrist joints were not used in the final prototype.

Figure 3.5: Cable actuated Babcock Grasper mechanism connected to a wrist joint.

Before the addition of a second DOF, other 1 DOF grasper concepts were developed to reduce 

the possible near-pivot point stress concentration on a classic scissor-like grasper design. A paral­

lelogram four bar mechanism was designed to palpate tissue with parallel jaws (Figure 3.6), but 

it was noticed that the total end effector length increased, making it unsuitable for the majority 

of lung cavity sizes. A similar design created a virtual pivot point of the grasper jaws far behind 

the end effector causing the jaws to be parallel when closed and angled at 15° when fully opened.

Nearing the final design, a 2 DOF mechanism was created with slightly different linkages than 

that of the final prototype. Apart from geometrical differences, the design shown in Figure 3.7 

has reversed applied slider forces when opening and closing the grasper jaws. This design was 

not chosen because the extended back linkages add to the total length of the device, making it 

unsuitable for use in small chest cavities.

Figure 3.6: End effector with consistently parallel jaws.

The final grasper design is a five bar mechanism designed with one horizontally sliding joint. 

Two degrees of freedom are incorporated by adding both the sliding joint and the means to actuate
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Figure 3.7: 2 DOF end effector concept.

another joint by coupling it to a separate sliding mechanism. As a result, the palpation jaws can be 

arranged into a wide variety of positions. The measure of palpation angle of the jaws was chosen as 

the angle from the lower jaw to the upper jaw (Figure 3.8). The internal mechanisms (Figure 3.9) 

were designed with a tolerance of 0.02 mm to reduce system slack. Figure 3.10 explains the joint 

naming system used in FEA simulations described later in this chapter. These joints correspond 

to pin locations. The pins used in the device were selected based on FEA results and experimental 

results. By the ISO 2338 standard, the 1 mm diameter dowel pins have a double shear strength 

of 700 N, 500 N higher than the highest expected load. All pin joints in the device were modelled 

similar to a double shear strength test, maintaining a high tolerance between linkages to avoid 

bending (Figure 3.11). Pin joint holes were machined to a diameter of 1.016 mm such that the 

pins could be slid in. Swaging was done where necessary to guarantee the pins would not slide 

out.

The reference system of the device is described in Figure 3.12. The same figure shows the 

location of the ultrasound transducer (bottom jaw) and tactile sensor (top jaw). Figure 3.13 

shows the Front and Back Sliders. The sliders are controlled by motors pulling cables attached to 

them to actuate jaw movement. The routing of the cables through the Front Slider is shown in 

Figure 3.14. The blue and orange contours on the left of the figure outline where the actuating 

cables are terminated. The right side of the figure shows a top view of the cables routed through 

the slider. The Back Slider is similarly routed such that no cables interfered with each other. The 

tungsten actuating cable is fitted with a 304 stainless steel 1.5 mm diameter ball, with a breaking 

strength of 290 N, 200 N higher than the highest expected load. Tungsten was chosen because it 

was easy to add a swaged fitting to terminate the cable compared to non-metal cables. It also has 

the smallest bending radius compared to other metal cables.
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Parallel jaws, zero inline angle

Figure 3.9: Internal components, housing not shown.
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Figure 3.10: Joint naming system shown on one half of the instrument.

Figure 3.11: Joint set up 
joint shown.

in double shear to prevent bending forces on the joint pin. Jaw Back

Right

Front Left
Ultrasound Transducer Location 
(Bottom Jaw)

Tactile Sensor Location 
(Top Jaw) Back

Figure 3.12: End effector reference naming system.
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Figure 3.13: Front Slider (left) and Back Slider (right) shown in half of the grasper housing.

Figure 3.14: Cable routing of the Front Slider. One cable pulls the slider backwards, the other 
loops around joint Front Spacer (Figure 3.10) to pull the slider forward.

To ensure that the sliders move easily in the sliding rails, their sides are covered with polyether 

ether ketone (PEEK), a high strength, low friction sterilizable plastic. Space was provided for 

the PEEK components without significantly losing structural strength (Figure 3.15). The PEEK 

material covering the tabs on the sliders also prevents the pins from falling out (Figure 3.16).

The “plugs” (Figure 3.17) were used to secure the pins for the Front Spacer and Back Spacer 

joints (Figure 3.10). The reason for their separation from the housing was to isolate the pins 

holding the Front and Back Spacers to predominantly shear forces. The plugs themselves are held 

in place by permanently swaging the pin on both ends. The maximum exerted shear force on 

either the Front or Back Spacers is less than 160 N (Section 3.4), and the pin’s maximum shear 

strength is 700 N. It will also be shown that 178 N of shear load does not permanently deform the 

pin (Section 3.4.1.3).
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The jaws were heat treated to attain a higher FOS (Section 3.4.1). The motor housing with 

combined electronics and handle will be described in Section 3.5.

Figure 3.15: Left to right: PEEK component to cover slider sides, Front Slider with PEEK covers, 
end effector front view without PEEK covers, end effector front view with PEEK 
covers.

Figure 3.16: An illustration of how the PEEK covers prevent the pin joints from falling out.

Figure 3.17: Front and Back Spacer “plugs” separated from the end effector housing.
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Finally, Figures 3.18 through 3.24 show the assembly of the device. In Figure 3.18, the entire 

part is disassembled. First the jaw and linkages are joined together with pins (3.19). The two 

linkage assemblies are then inserted in the sliders, also joined by pins (3.20). The PEEK slider 

covers are then placed on the sliders to prevent the slider pins from slipping out and to reduce 

friction effects (3.21). The entire jaw-linkage-slider assembly is then slid into the grasper housing 

(3.22). The front and back spacers are then aligned (3.23), and finally the plugs are positioned 

(3.24). A pin is inserted through the front and back plugs and spacers and the assembly of the 

end effector is complete.

Figure 3.18: End effector assembly, Step 1: Exploded view of all components.
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Figure 3.19: End effector assembly, Step 2: Connecting jaws and linkages.

Figure 3.20: End effector assembly, Step 3: Connecting the jaw-linkage assemblies to the sliders.

Figure 3.21: End effector assembly, Step 4: Connecting the PEEK slider covers over the sliders.
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Figure 3.22: End effector assembly, Step 5: Inserting the jaw-linkage-slider assembly into the 
grasper housing.

Figure 3.23: End effector assembly, Step 6: Aligning the front and back spacers.

Figure 3.24: End effector assembly, Step 7: Inserting the front and back plugs.
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3.4 Finite Element Analysis and Material Selection

A number of properties were considered in material selection, including corrosion resistance and 

the ability to be sterilized. Following a review of existing instruments, stainless steel was selected. 

Since the grasper should not permanently deform, the material stresses should not surpass the 

material yield strength using the von Mises stress criteria, suitable for ductile materials such as 

steel [43].

Initial simulations of the end effector were carried out to determine stresses in the linkages and 

jaws, and to find the resultant forces on the pin joints. SolidWorks Simulation 2010 was used for 

all FEA cases. For these analyses, a generic sensorless jaw geometry was used since the final jaw 

geometries had not yet been determined. This generic jaw connects to the linkages in the same 

manner as the final jaw geometries, providing validity to the results in the remaining components. 

Specific jaw geometry will be discussed later in the chapter. Five different grasper positions were 

analyzed. The five positions included (Figure 3.25):

Case I) A jaws parallel and closed position,

Case II) A jaws parallel and half opened position,

Case III) A jaws parallel and fully opened position,

Case IV) A jaws opened with a large positive inline angle position, and 

Case V) A jaws opened with a large negative inline angle position.

In each of the five position cases, four different load cases were analyzed, shown in Figure 3.26 

on the parallel open configuration (Case III):

Case a) A 20N force downward on the lower jaw,

Case b) A 20N force downward on the upper jaw,

Case c) A 20N force perpendicular to a jaw in the left direction, and 

Case d) A 20N force perpendicular to a jaw in the right direction.
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The load cases were chosen to represent the worst case scenarios of loadings — the maximum 

load in all possible directions in a variety of palpation scenarios.

Case II Parallel Half Open

Case III -  Parallel Open Case V -  Acute Open

Figure 3.25: Configurations used for FEA studies.

Case a) 20 N downward, lower jaw Case c) 20 N left

Case b) 20 N downward, upper jaw Case d) 20 N right

Figure 3.26: Load cases for all configurations displayed on the parallel open configuration (Case
h i).
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The identified areas of interest are presented in the next series of figures showing FEA results 

on Case III in Load Cases a through d of the grasper. Exploded views are used to better visualize 

the stresses on individual components. To simplify the model, all pin joints in Configurations 

I through V were modelled as rigid connectors, free of axial translation, and frictionless. The 

resultant forces on the pins obtained from FEA results were used for subsequent FEA modelling 

of joint strength, including contact stresses and nonrigid pins.

Figure 3.27: An exploded view of the end effector. Area numbers are referred to in the following 
figures.
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Figure 3.28: Area 1: von Mises stress, lower jaw, Load Case a.
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Figure 3.29: Area 2: von Mises stress, upper jaw, Load Case b (View 1).

Figure 3.30: Area 2: von Mises stress, upper jaw, Load Case b (View 2).
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Figure 3.31: Area 2: von Mises stress, upper linkages, Load Case c.
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Figure 3.32: Area 2: von Mises stress, upper linkages, Load Case d.
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Figure 3.33: Area 3: Resultant force on sliders, Case a.

The area of highest stress concentration in all models was found in Load Case b around the pin 

Jaw Front (Figures 3.29 and 3.30), with a maximum value of 260 MPa. These results immediately 

eliminated the use of 300 series stainless steels because of their low yield strength. The stress scale 

shown was therefore adjusted for a higher strength steel alloy, 448 MPa yield strength for alloy 

440C. Alloy 440C can be heat treated to further increase its yield strength. The Front and Back 

Sliders were fixed in the finite element model at the points shown in Figure 3.33. The sliders are 

actuated by cables. If the reaction forces in Figure 3.33 were directed forward on the sliders, the 

cables holding their positions would have to wrap around the Front and Back Spacers, using them 

as pulleys. This would induce a shear stress on the Front and Back Spacer pins. Forward direct 

forces were therefore used to determine the shear force on the pins at the Front and Back Spacer 

locations. Figure 3.34 graphically explains the reasoning behind this. In the figure, the Front 

Spacer and Back Spacer are referred to as the Front Pulley (FP) and Back Pulley (BP) since they 

are used as pulleys for the actuating cables, and to differentiate from the abbreviated Front Slider 

(FS) and Back Slider (BS).
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The stresses on pin joints were predominantly shear stresses because the high tolerance between 

mating parts eliminated bending. This simplified pin model is appropriate since no axial or bending 

loads had to be applied to analyze joint strength. The highest shear force on each pin as identified 

from all studies was used on the weakest joint for analysis. The weakest joint was deemed to be 

the one that had the least amount of supporting material. Table 3.2 lists the highest pin shear 

forces from all configurations and load cases, and Figure 3.10 shows the joint naming system on 

half of the grasper design. Because of symmetry, the maximum shear force from either one of the 

symmetrical joints may be used for analysis.
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Table 3.2: Table of joint reactions from all configurations and all loads. The maximum load for 
each joint is shown in bold and listed at the bottom. All forces in Newtons.

Configuration Load
Case

Jaw
Front

Jaw
Back

Linkl Link2 Link3 Front
Spacer

Back
Spacer

I a 66.7 64.1 13.7 13.7 66.6 0.0 26.9
b 81.7 79.3 14.6 14.6 81.7 154.2 65.1
c 9.9 9.8 3.2 3.2 9.9 0.0 3.0
d 6.0 6.0 1.7 1.7 6.0 21.4 7.1

II a 83.7 76.6 44.9 44.9 83.7 0.0 49.8
b 88.2 81.0 39.7 39.7 88.1 154.2 44.0
c 3.2 3.1 2.3 2.3 3.2 0.0 6.1
d 3.2 3.1 2.3 2.3 3.2 7.7 0.4

III a 52.2 38.9 51.7 51.7 52.2 0.0 112.1
b 51.5 38.2 45.9 45.9 51.5 49.2 16.6
c 1.4 0.8 1.0 1.0 1.4 0.0 3.2
d 1.4 0.8 1.0 1.0 1.4 2.2 0.8

IV a 55.1 42.1 67.6 67.6 55.1 0.0 157.0
b 54.3 41.2 60.4 60.3 54.3 69.6 24.1
c 1.3 0.8 1.4 1.4 1.3 0.0 5.9
d 1.3 0.8 1.4 1.4 1.3 3.1 1.3

V a 63.1 52.7 18.4 18.4 63.1 0.0 25.6
b 64.0 53.6 16.5 16.5 64.0 67.4 39.1
c 1.6 0.9 0.5 0.5 1.5 0.0 0.9
d 1.6 1.0 0.5 0.5 1.6 2.8 1.1

Maximum 88.2 81.0 51.7 51.7 88.1 154.2 112.1

The pin joints were designed the same as a double shear test — one linkage forked to let the 

next linkage fit in between, all held together by a pin (Figure 3.11). The weakest joints, assumed to 

be those which had the least supporting material, were analyzed with the largest resultant shear 

force because of the similarity between all joints, even if the resultant force did not act in the 

weakest direction. If the weakest joints were able to withstand the largest experienced force, then 

all joints could withstand their respective applied forces. As such, joints Link 1 and Link 3 were 

both analyzed under a 90 N load.
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The studies of Link 1 and Link 3 both show a stress higher than yield strength for alloy 440C 

around the portion of the link that experienced compression. Nonlinear material analysis or testing 

could both be used to examine the effect of local yielding on the performance of the pin joints. 

Given the alternative to FEA, it was decided to address the problem by testing. Experiments were 

carried out to determine joint strength for both heat treated and untreated samples of 440C steel.
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Figure 3.35: Finite element analysis results on joint Link 1 (von Mises Stress).
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Figure 3.36: Close up of finite element analysis results on joint Link 1 (von Mises Stress).
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Figure 3.37: Finite element analysis results on joint Link 3 (von Mises Stress).
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Figure 3.38: Close up of finite element analysis results on joint Link 3 (von Mises Stress).
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3.4.1 Heat Treating

A heat treatment procedure and a tensile test experiment were designed to analyze the effect of 

heat treatment on the mechanical properties of 440C steel. Heat treating was considered to assess 

the comparative performance between treated and untreated linkage joints, as well as to increase 

the yield strength of the palpation jaws. The analysis of the end effector jaws will be discussed later 

in this section since the geometry is different for both the jaw holding the ultrasound transducer 

and the jaw holding the tactile array. As will be shown, the jaws require the use of heat treated 

440C.

3.4.1.1 Tensile Experiment

A tensile experiment was designed to test the yield strength of heat treated steel. Holes of different 

diameter were drilled into the tensile specimen to assess the effects of shrinkage or enlargement 

after heat treating. The experiment was designed in SolidWorks 2010. To verify the forces required 

to cause yield in a specimen with a yield strength of 1900 MPa, which is the highest attainable 

yield strength for heat treated 440C [44], a sample with a rectangular cross section of 7.72 mm2 

was used. This cross section assumed that the sample could be tested in a QTest QT/25 machine 

capable of a 25 kN tensile load. With a purchased 440C sheet thickness of 1.93 mm, a 4.00 mm 

width was designed such that the breaking force of 1900 MPa x 1.93 mm x 4.00 mm =  14.668 

kN was less than the maximum 25 kN of the machine. Figure 3.39 shows the design of the test 

specimen and jig to hold it.

Figure 3.39: Tensile specimen and jig for material testing. Left: Assembled. Right: Exploded.
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3.4.1.2 Heat Treatment

The objective of the heat treatment procedure was to increase the yield strength of the 440C alloy. 

Simultaneously, the shrinkage or enlargement after heat treating was assessed. The procedure 

consisted of the following steps:

1. Place the specimen in an oven at room temperature. Set the temperature to heat to 550 °C 

over 5 hours [45]. Let the parts sit for 1 hour [46].

2. Set the temperature to heat to 760 °C (from 550 °C) over 3 hours [45]. Let the specimen sit 

for 30 minutes.

3. Increase the heat rapidly to 1035 °C [45], wait until the temperature has been reached. Wait 

30 minutes, and remove the parts [45]. Oil quench the specimen to room temperature.

4. Immediately after quenching (when the part is cool to the touch), place the specimen in 

an oven at room temperature and gradually heat to 315 °C at 100 °C per hour. When the 

temperature has been reached, leave the specimen in the oven for an hour. Remove and air 

quench to room temperature [46].

5. Repeat Step 4 to remove retained austenite [47].

A temperature-time graph of the procedure is shown in Figure 3.40. It was noted that the 

specimens were covered by a film of oxidation due to the presence of air during the heat treatment 

cycle. The film was sanded off by pressing the specimens against 400 grit sandpaper. Warpage 

and bending were exhibited in some of the specimens. The holes drilled into the specimen were 

of 5 different sizes ranging from 0.9398 mm to 1.0668 mm (size #58-63 drill bits). These sizes 

were chosen due to the use of 1 mm diameter pins for pin joints in the final design. There was no 

shrinkage or enlargement found in pressing a 1 mm pin through the different sized holes after heat 

treating. Holes drilled larger than 1 mm before heat treatment still allowed the 1 mm pin to pass 

through them. Similarly the 1 mm pin could not pass through the holes originally drilled smaller 

than 1 mm.

Some specimens exhibited undesirable pitting (Figure 3.41). The presence of the oxidation and 

the pitting meant that if the parts were to be heat treated, they would have to be machined twice;
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once to an approximate dimension followed by heat treating, and again to remove excess material 

that would include the oxidation film and pitting effects, an undesirable side effect that would 

increase the cost of manufacturing. It is noted that heat treating in the presence of an inert gas 

would reduce the exhibited negative consequences of heat treating.

Figure 3.40: Temperature-time graph of the heat treatment procedure.

Figure 3.41: Pitting effects from heat treatment.

A QTest QT/25 tensile strength testing machine was used to assess the ultimate tensile strength 

of the specimens. Seven samples were tested resulting in ultimate tensile forces of 13.950 kN, 

13.243 kN, 13.191 kN, 13.234 kN, 13.917 kN, 14.425 kN, and 13.774 kN. An average breaking force 

of 13.676 kN and standard deviation of 0.469 kN was calculated. The heat treated specimens 

exhibited a brittle fracture, and showed no measurable necking as measured with a digital caliper 

accurate to 0.01 mm. To make a conservative conclusion, the breaking strength of the heat treated 

specimens was calculated as the average breaking strength minus two standard deviations, 12.737 

kN. This resulted in an ultimate strength of 1650 MPa. The 12.737 kN breaking load was then
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simulated in SolidWorks Simulation 2010 to compare experimental and theoretical results (Figure

3.42) , and to validate the force output readings of the QTest QT/25 instrument. Analysis of the 

principle stresses was carried out due to the brittle nature of the heat treated steel [43] (Figure

3.43) .

■ I  304 Steel ■■ 440C Stainless Steel, Heat Treated

Figure 3.42: Load case for FEA analysis of tensile specimen.

■ m P V  V I M  I P I (MPa)
0.000 1,900.000

Figure 3.43: Theoretical principle stress in the tensile specimen.

The central portion of the specimen shows the highest first principle stress, corresponding to 

the tensile stress. Analyzing a single node on the yielding portion of the specimen shows a stress 

of 1631 MPa. With a percentage error of less than 1.2% between experiment and theory, 1650 

MPa was concluded to be the conservative ultimate tensile strength of the heat treated steel.

3.4.1.3 Testing Heat Treated Parts

The effect of heat treatment on pin strength was studied in a test duplicating the design of the 

joint to be used. Weights were hung to apply a load on the pin joint. The FOS on the pin joints 

compared to the maximum force results from Table 3.2 were examined. An untreated specimen 

was milled to a thickness of 1 mm, and the edges around one of the 1.016 mm holes was ground 

down to a width of 2.8 mm around the hole (Figure 3.44), simulating a worse case than that of
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the final design which had a material width of 4 mm around the joint hole with the same 1 mm 

thickness. Weights were then hung from the pin joint in a double shear manner (Figure 3.45).

Thickness 
1.00 mm

2.8 mm Hole Diameter 
1.016 mm

Figure 3.44: Sample for joint strength test.

Figure 3.45: Double shear test setup.

With an applied load of 178 N, there was no visible damage to the supporting pin or the 

specimen. This was 23 N higher than the expected load on pin Front Spacer, the pin with the 

highest expected shear loading. The tested pin sustained 364 N of applied load (Figure 3.46). 

With the exhibited factor of safety of roughly 4, the experiment was not carried out to failure. 

Though the sample did not break, at the 364 N load some damage was visible after the removal of 

the weights (Figure 3.47). Under load, the hole expanded due to local deformation and subsequent 

hardening of the material. The pin’s rated shear strength in double shear was 700 N to failure, 

which explained why it did not break. Qualitatively, the effects of hole enlargement in the heat
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treated sample were smaller. This experiment provided insight on the joint strength in that heat 

treating the joints was not a necessity, but could provide better system response by reducing 

nonlinearities with regards to control systems by reducing play in the joints. To determine this, 

closer inspection of hole enlargement under load for both heat treated and untreated samples would 

have to be assessed.

Figure 3.46: Joint strength test sample with 364 N applied load.
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Figure 3.47: Pin yielding in shear.

The inclusion of ultrasound and tactile sensors require top and bottom jaw geometry to be dif­

ferent due to the sensor mounting techniques used for sensor specific requirements. The presented 

CAD jaw geometry thus far has been for a generic sensorless jaw. Jaw geometry for the ultra­

sound mounted jaw is presented and analyzed to show the necessity of the heat treated material. 

Similarly, the jaw geometry for the tactile sensor must be analyzed. However, during the course 

of this project, a final geometry was not yet determined and is considered as future work.

The heat treatment process showed that a conservative estimate on the ultimate strength of the 

material was 1650 MPa. Although the disadvantage of the heat treated material was its brittleness, 

its high strength was necessary for the palpation jaw holding the ultrasound transducer, which 

exhibited stress concentrations of up to 421 MPa, a FOS of 1.06 with untreated 440C, in its worst 

configuration (Figure 3.48). Using the heat treated 440C alloy was therefore necessary to improve 

the FOS from 1.06 to 4.

Figure 3.48: Tensile stresses in ultrasound jaw geometry.
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3.5 Design and Analysis of the Motor Housing

This section discusses all of the components other than the grasper. Immediately attached to the 

grasper is the stainless steel tube that houses the wires and cables attached to the grasper jaws 

and sliders. With a standard tube diameter of 12.7 mm, it was verified that the tube could fit 

through a 12 mm Ethicon Endopath XCEL trocar. Two studies were carried out on the 12.7 mm 

diameter, 1.422 mm thick, stainless steel tube, alloy 304. The first was a linear buckling analysis 

on a 400 mm long section of tubing to determine the capability of the shaft to hold a load without 

buckling. An axial load was used in analysis because the cables attached to the sliders produce 

this type of load. A buckling load of 1431 N was found. Comparing the largest combination of 

shear force exerted on pins Front Spacer (155 N) and Back Spacer (112 N) (Table 3.2), which 

translates to the total axial force on the shaft of 267 N, to the buckling load, it was clear that the 

buckling load was significantly higher than the maximum possible axial force. Even though a linear 

buckling analysis provides a nonconservative result, with such a large buckling load compared to 

the maximum possible force, it was concluded that the tube would not fail in buckling (Figure 

3.49).

Buckling Load = 1431 N
Figure 3.49: Result of buckling load analysis of the instrument tube.

The second load case was that of the shaft holding a 20 N radially directed load representing 

the weight of the supported lung, and a 266 N load axially representing the reaction forces on 

the cables from the sliders in the highest load scenario. The load case was simulated on a 150 

mm long section, representing the depth with which the end effector would penetrate the trocar 

during manipulation of the lung. The simplifying assumption is explained in Figure 3.50. Due to 

modelling the tube as rigid at one end, the FOS was artificially low because of over constraining. 

The tube followed the ASTM A269 standard, having a yield strength of 241 MPa, and therefore 

a factor of safety greater than 3.8. It was concluded that the tube would not yield and was 

appropriate for the design (Figure 3.51).
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Simplified

Figure 3.50: Simplifying assumption for tube analysis model -  the tube replaces the geometry of 
the end effector.

20 N

267 N

von Mises (MPa)

0 ------ ► Yield Strength: 241 MPa 63

Figure 3.51: von Mises stress on the instrument tube.

The motor housing includes a method to twist the grasper jaws without twisting the entire 

instrument. Additionally it holds the motors that actuate the cables and subsequently the palpator 

jaws, the cable tensioning system, electrical wire routing, and electronics controlling the motors. 

The housing is held by an acrylonitrile butadiene styrene (ABS) handle to encase everything into 

a holdable item (Figure 3.52).

In the foremost position of the motor housing, a handle is able to twist the end effector without 

having to twist the entire motor housing. This cylindrical handle is made of PEEK and is mounted 

to the grasper shaft. The angular position of the grasper is maintained by a toothed clutch pressed 

together with a spring. The PEEK handle is able to slide lengthwise along the shaft and rotate 

the instrument shaft by pushing against a welded tab. The welded tab, running parallel to the 

shaft, prevents the handle from twisting about the shaft, but allows for movement along the shaft. 

To twist the grasper to a new position, the handle is pushed outwards, twisted, and released to 

re-settle the toothed clutch into its new position (Figure 3.53). With this method, the angular 

position of the grasper relative to the motor housing is meant to be set and maintained during
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Figure 3.52: The entire instrument not including the grasper.

MIS. It was deemed that this would be less strenuous than twisting the entire motor housing and 

attached components. The range of twisting is 90 degrees in either direction with a total of 11 

discrete positions. The extension of the cables over the 90 degree twist is less than 0.046 mm on 

a conservatively measured 325 mm long cable, and therefore does not require compensation. The 

twisting of the end effector adds approximately 4.4 N of force on the cables (Figure 3.54), and 

therefore adds 8.8 N on the Front and Back Spacer pins. With this additional force, the shear pin 

force is still less than 178 N (see Section 3.4.1.3), a force that does not cause permanent damage 

to the pins. Using the 178 N force as the upper limit, the cables could be pre-tensioned with a 14 

N force.

With the presented tensioner system, no feedback in terms of measuring cable tension exists. 

Even so, the maximum forces on the end effector apply to the Front Spacer pin. If this pin deforms 

under load, it does not affect the geometry related to the grasper; however the cable would likely 

have to be tensioned again due to the deformation of the pin.

The presented tensioner system tensions each cable. This allows integration of strain gauges 

to measure cable tension on each cable moving the Front and Back Sliders, allowing dynamic 

measurement of cable tension. This is considered as future work. Tungsten cables were used for 

their high tensile strength and small end mountings, as inspired by the da Vinci surgical robot 

made by Intuitive Surgical Incorporated. With a 304 stainless steel ball swaged on the end, the 

cables had a breaking strength of 290 N, exceeding the maximum expected loads by 200 N.

The motor housing holds the motors in place, routes the actuating cables through the tensioning
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Figure 3.53: Twisting the end effector. The PEEK handle is shown translucent.

Figure 3.54: Load-displacement plot of the tungsten cable used in the design. Initial cable length 
of 250 mm.

system and to the gear head shaft (Figure 3.55), and has the post gear head encoders mounted to 

it. Since the entire assembly was designed to be sterilized, those components that could not be 

sterilized were designed for easy disassembly.
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Gear head/Cable Shaft

Tensioners
Figure 3.55: Cable routing in the motor housing from the end effector to the gear head shafts.

The two cable routes on the left cable shaft attach to the Front Slider. The two cable 
routes on the right cable shaft attach to the Back Slider.

The encoders attached to the motors could not be sterilized, so the whole motor assembly was 

designed to be removable. The gear head shaft can be rotated by hand to fasten into the cable 

winding shaft without introducing backlash, while at the same time allowing the removal of the 

motors. (Figure 3.56).

Post gear head encoders have been included to assess backlash caused by the gear heads and 

to eliminate its effect should it be negative. US Digital E5 Optical Encoders with 1250 pulses per 

revolution were selected and mounted on the motor housing in an easily removable manner.

The tensioning system for the tungsten cables was designed to be used without requiring 

disassembly of the housing. Rotating screws move the tensioners back and forth to increase or 

decrease the tension in the cables (Figure 3.57). The pulleys used are 7.23 mm in diameter and 

rotate about 2.37 mm diameter pins, both stainless steel. To eliminate back-driving, a fine-pitch 

screw was used in the tensioning mechanism. No tensioning springs were included because the 

system could be tensioned by hand when necessary.

Fitting together in two halves, the ABS handle surrounds the motor housing assembly. The 

handle provides space for placing electronics and routing power and sensing cables to their data ac-
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Figure 3.56: Steps of how to disassemble motors from the motor housing.

quisition units. Mounting the electronics on the handle also allows for the separation of electronics 

from the motor housing for sterilization purposes (Figure 3.58).
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As the final part of the design, the mechanical linkages make room for strain gauges to be 

mounted to monitor the applied force more accurately to prevent excessive palpation forces leading 

to tissue damage. The Vishay EA-06-015DJ-120 strain gauge was chosen to be used in multiple 

locations to measure strain. The highly resistive constantan foil, in combination with a flexible 

polyimide backing is well-suited for both static and dynamic strain analysis with an error of 3% 

and temperature resistance up to 175 °C. The temperature compensated gauges are specifically 

suited to high strength stainless steels and are also compensated for the thermal expansion of the 

mounting material. Finally, the linear configuration of the gauge and its compact size (2.54 mm 

x 0.51 mm) allow for easy mounting to 6 linkages on the device (Figure 3.59). The strain gauges 

were not mounted as part of this thesis, and are considered as future work.

Figure 3.58: Steps in assembling the motor housing and handle.

Figure 3.59: Location of strain gauges for extrinsic force measurements on the grasper jaws high­
lighted in red on half the grasper model.
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3.6 Conclusion

With an iterative design process initially inspired by a Babcock grasper, a novel 2 DOF device was 

constructed. The device was designed to hold a 20 N load in a multitude of configurations. Using 

finite element analysis, it was determined that a FOS of 4 could be attained for the instrument 

end effector and instrument shaft.

Guiding the design of the end effector were constraints including a maximum 12 mm cylindrical 

diameter, the use of cable driven mechanisms, and providing multiple degrees of freedom, all while 

maintaining space for sensor cabling — a 2.5 x 5 mm channel — for each end effector jaw.

It was determined that stainless steel alloy 440C with a yield strength of 448 MPa had to be 

used for the majority of the end effector components. Finite element analysis was conducted on 

the ultrasound sensor jaw and results showed that heat treated 440C alloy would be required to 

raise its FOS to 4.

A heat treating procedure was developed and tested, resulting in an ultimate tensile strength 

conservatively estimated to be 1650 MPa using the 440C alloy. Two draw backs exist. Pre­

machining is required to heat treat the part in a close-to-completion geometry to reduce the effects 

of internal stresses. Post heat treatment machining is then required to eliminate the effects of 

pitting and warpage. This leads to a higher cost of manufacturing. The second drawback is the 

brittle nature of the heat treated steel. During post heat treatment machining, the parts can crack 

and be rendered useless. Additionally, a brittle fracture during a minimally invasive procedure 

could be catastrophic for the device and dangerous for the patient.

In a comparative study between untreated and heat treated 440C alloy, the performance of 

the selected pins was assessed. In the untreated case, the pin was able to maintain 364 N of 

load without breaking. The study was not carried to failure because the pin could significantly 

outperformed the forces introduced by the end effector. It was seen that the pin could sustain 178 

N of force without any visible permanent deformation. The pins were deemed appropriate because 

of the ability to resist the expected loads.

In addition to the design of the end effector, all other required sub-systems were designed. This 

includes the means to actuate the grasper jaws, hold associated electronics, route power, tension
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the actuation cables, twist the end effector up to 90° in either direction, measure post gear head 

backlash, and hold the device.

The motor housing was made entirely of stainless steel alloy 304. This sub-system includes a 

method to easily mount and dismount other components including: actuation motors, post gear 

head encoders, the handle and electronics for motor controllers and future strain gauge measure­

ment. The housing also includes a device to easily rotate the end effector into 11 discrete positions 

over a 180° range. Twisting did not have a large effect on the elongation of cables.

Future work for this system includes making and integrating sensor specific jaw geometries, 

and mounting strain gauges to the linkages and calibrating their output to a known device position 

and applied load.



Chapter 4

Electronics and Control System

4.1 Overview

The base electrical system of the device was designed to use commercially available components: 

a tactile sensor and corresponding data acquisition system provided by Pressure Profile Systems 

Inc., with libraries for integration on a personal computer; an ultrasound transducer including 

the same, provided by Blatek, Inc.; and motors with controllers using a proportional integral 

derivative (PID) control scheme, provided by Maxon Precision Motors, Inc. This chapter covers 

the implemented control system, and outlines the sensors used to demonstrate the control system 

in the absence of tactile and ultrasound sensors.

4.2 Control of the End Effector

A demonstrative control system is presented to examine the performance of the design. In doing 

so, the modelled system only physically controls half of the designed end effector. This is due to 

the symmetry of the end effector. Symmetric movement was deemed appropriate because of the 

compliance of the tissue, which can deform to the jaw faces in varying configurations.

The governing equations for the position of the end effector and sliders were first derived. 

Figure 4.1 depicts one half of the grasper and the symbols representing the linkage lengths and 

joint angles. Table 4.1 defines the variables in the model. Equations 4.1 through 4.6 show the

63
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reverse kinematics starting with the desired position of the jaw. The tissue thickness for palpation, 

¿d, is defined to be approximately in the middle of the jaw length (Point # 8  in Figure 4.1). The 

angle of palpation, 0<j, is defined to be the angle of the jaw from the x-axis. Equations 4.7 through 

4.16 show the forward kinematics starting with the slider positions from the origin, and Zgg.

The reverse kinematics equations are used in the real time control system on the constructed 

prototype. Sensor inputs on the end effector are used to determine the desired new thickness, t ,̂ 

and angle, 6d, of palpation, should it be changed. The known thickness and angle are then used 

to determine the unknown slider positions, and Ẑ g, which are inputs controlled physically by 

motors.

The forward kinematics equations are used to model the presented control system with MAT- 

LAB. In this case, the known slider positions, Z  ̂ and Zgg, dictate the unknown end effector position 

and orientation — the thickness and angle of palpation. Their path from one position to the next 

also dictates the path from one end effector position to the next. With a desired change in thickness 

and angle, the forward kinematics equations will model the path of thickness and angle actually 

taken.



s

Figure 4.1: Kinematic model of the grasper.
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Table 4.1: Table of variable definitions from Figure 4.1.

Desired Inputs

d̂, 0d

Desired Outputs
i* I**31» *36

Variables

012, 013, 023, 024, 034, 045, 064, 06

Constants

¿12 = 11.00 mm
—*
¿32 = 5.50 mm
¿34 = 15.00 mm
¿45 = 20.00 mm
—♦
¿65 = 18.00 mm
—*
¿57 = 0.738 mm
¿78 = 30.794 mm
$24 = 22.50 degrees

To derive the reverse kinematics equations we first start by summing the vertical components 

of Vectors 3 —> 4 —> 5 —> 7 —>8:

¿34 sin $64 +
—*
¿45 sin $d + ¿57 sin ( # „  -  I )  + ¿78 sin Od

id -
—»

¿45 sin  $a —
—*

¿57 sin (*<i - 1 )  -  r78 sin 0^

—*

¿34

(4.1)

We must find two solutions of t<$ because the manipulator has a closed design. In an open, or 

serial configuration, one DOF is joined to the next DOF or end effector and thus, one DOF rela­

tively controls the position of subsequent DOFs. In a closed configuration, such as that presented,
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multiple DOFs control the same subsequent DOFs. In this case, multiple DOFs control the jaws. 

Summing the vertical components of Vectors 6 —> 5 -> 7 —> 8, we get:

id = ¿65 sin # « + ¿57 sin (^d -  +  ¿78 sinfld

— sin - l ( td ~ ¿57 sin (#a -  f  ) -
—♦

¿78 sin Od \

\ ¿65
(4.2)

On the triangle defined by Joints 1,2,3, we can use the sine law to solve for #23 and for #13:

¿32 ¿12

sin (#23) sin (#32)

¿12

sin (n — #24 — #64) 

#23 =  sin-1

—♦
¿32 sin (n — 10 1 CT> .U

¿12
(4.3)

#13 — 7T — #23 — #32 

=  #24 +  #64 — #23- (4.4)

Now, using Equation 4.1 and Equation 4.4, we can solve for the desired output l£lt starting 

with the sine law on the triangle defined by Joints 1,2,3:

12

sin (#13) sin (# 32)

1*
‘ 31

¿12 s in (#13)

s in (# 32)

¿12 s in (#13)

Sin (7T -  #24 -  #64)
(4.5)

Again, because of the closed configuration of the manipulator, we must find two solutions, one
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for /$!, and one for 1%6. The solution for Z36 is found by summing »-components:

5 =  3

'34 cos (9m) +  /45 cos (0d) = 36 + ¿65 COS (06 )

36 ¿34 COS (064) +  ¿45 COS (0d) -  l 65 COS (06) . (4.6)

The forward kinematics are more easily proven separately rather than using the inverse kine­

matics equations in reverse order, because both of the output variables and 1%6 are coupled 

with id and 0d, making them difficult to separate. Forward kinematics equations are used in the 

modelling of the implemented control system, and are presented here. Starting from the triangle 

defined by Joints 1 ,2,3, the cosine law is used to solve for 032 and 064:

¿12 — ¿31

.032 =  COS-1

+

/

¿32

/*‘ 31

-  2 31 ¿32

+ ¿32

V
/*‘ 31

¿12

C O S (032)

2\
¿32

— TT — 032 — 024-

(4.7)

(4.8)

Then, looking at the triangle defined by Joints 3 ,4 ,6 , we intermediately solve for the distance 

between Joints 6 and 4, using the cosine law:

¿64 ¿34 + 36 - 2 ¿34 36 C O S (064)

_ ^ 2 2 —*
¿64

= v
¿34 + / **36 1 to ¿34

7*
*36 COS(064). (4.9)

Knowing Iq4 , we can use the cosine law to solve for 034 on the triangle defined by Joints 3 ,4 ,6 ,

and again use the cosine law to solve for 045 on the triangle defined by Joints 4 ,5 ,6 :
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¿34

$34 =  COS

¿45

$45 =  COS

COS ($34) 

2

(4.10)

(4.11)

We can then solve for $6 with Equation 4.10 and Equation 4.11:

— n  — $34 — $45. (4.12)

To solve for $d, we sum the x and y components of the vectors defined by Joints 3 —> 4 —>■ 5, 

and 3 —> 6  —> 5:

3 —̂ 4 —̂ 5 — 3 —y 6  —̂ 5

¿34

¿34

—*

¿45 COS($d) = ¿36

¿45 sin ($d) =
—*

¿65

+ ¿65 COS ($6) (4.13)

(4.14)

Then we divide Equation 4.14 by Equation 4.13, and rearrange to solve for $d

tan ($d) =

—+

¿65 s i n ( $ 6 ) - ¿34 s i n ( $ 64 )

—*
/**36 + ¿65 C O S( $ 6 )  - ¿34 COS ( $ 6 4 )

#d =  tan-1 ¿65 sin ($6) -
—*

¿34 sin ($64)

/**36 + ¿65 COS ($6) — ¿34 COS ($64)
(4.15)

Having solved for all angles, we can add the vertical components from Joints 6 -> 5 —► 7 -*  8
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to solve for fd:

id = ¿65 sin (06) ¿57 Bin ( « „  -  f  ) + ¿78 sin (0d) . (4.16)

The presented equations define the position of the jaws and the required slider positions. The 

sliders are set by cables attached to motors. In operation, it was desirable to have the palpation 

thickness, fd, and palpation angle, 0d, move linearly from current to desired values. The approach 

used was a continuous point-to-point motion. Though kinematically coupled, the thickness and 

angle were treated separately in the presented approach. Between the current palpation thickness 

and angle, and the desired thickness and angle, the path was broken down into multiple linear 

segments to lessen the computational burden compared to solving the linear movement of the end 

effector and subsequent motion of variables ¿3, and 1%6 analytically. This was necessary due to 

the coupled nonlinearity between l̂ x and l%6, and and 6 Instead, with a discretized path, the 

variables and l%6 were given a new position and a velocity with which to reach the position 

for each path segment (Figure 4.2). The higher the number of discrete points between the desired 

start and end positions, the more accurate the path. Figure 4.3 shows the effect of discretizing 

the desired path on the actual output path. The path shown in blue is due to the linear velocity 

of motors. The more points the path is broken into, the closer it is to the desired path. The 

number of steps between two different locations was chosen as the highest number of points that 

can be produced by the hardware controlling the motors. Path smoothing and velocity smoothing 

techniques were implemented to prevent piecewise continuous movement, resulting in a smooth 

motion of the grasper jaws. Within a certain error margin of reaching a desired point, the slider 

movement for the next desired point was updated, providing smooth motion between points. 

Without path smoothing, the velocity at each intermediate point between current and desired 

values would be zero, resulting in a jerky movement of the jaw.

In order to set a desired value for the jaw position, it is required that, in the case that a 

position is not kinematically possible, the jaw should move to the closest possible position. This 

is a necessity when used with sensor feedback. If the implemented control system were to provide 

a position that is impossible to reach due to the jaw geometry, the program running the system
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Value 2 Value 2

Figure 4.2: Discretized path trajectory.

Left: Desired path from Value 1 to Value 2. Right: Discretized path from Value 1 to Value 2.

Figure 4.3: Reducing the step size of the path drawn by variable t changing from 3 mm to 10 
mm. Desired path shown as the straight red line. Actual output path shown as the 
piecewise continuous blue line. Discontinuity points are the discretized path points. 
Left to right: 2 steps, 3 steps, 5 steps, 71 steps.

could freeze, or the grasper may experience lock-up or failure.

In order to implement a control system, a large scale model of half the grasper was built, as 

shown in Figure 4.11. To prevent damage to the system, the work area of all possible thickness 

and angle positions of the end effector were mapped out onto a reference image. Using the reverse 

kinematics equations, the workspace was determined for the large scale design for thickness values 

ranging from 0 to 120 mm in 0.1 mm increments, and for angle values ranging from -10 to 40° in 

0.05° increments. The result was a 1000 x 1200 pixel image coloured white where the end effector 

position was possible, and black where the position was not possible (Figure 4.4).

The resultant image was refined to remove sharp corners and add a single pixel wide outline of 

the work area. Sharp corners were rounded for cases in which the jaw position was to follow the 

outer edge. With rounded corners, the change of thickness and angle are more gradual. A single 

pixel outline of the workspace was included for the determination of its outer edge, the physical 

limit of the end effector.
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120 mm

-10° 0° 40°

Figure 4.4: Workspace of the large scale prototype.

Using the edited image, a function was developed to determine whether or not the desired 

location was possible. By providing the desired thickness and angle and converting them into their 

associated pixel values, the image is used essentially as a lookup table of possible positions. If 

the desired location was within the workspace, then the reverse kinematics equations are used to 

determine the appropriate slider positions. If the desired location is not within the workspace, then 

the chosen location is selected as the one with the smallest pixel distance to the desired location, 

as shown in a general workspace in Figure 4.5. This is done by following the outer edge of the 

workspace along its complete path. The distance of each pixel on the outer edge to the desired 

position pixel is calculated, storing in memory which pixel had the shortest distance.

For cases in which two minimum distances exist, the function also includes inputs for the 

previous jaw position, choosing the location closest to the previous position (Figure 4.6).

MATLAB was used to model the trajectory of the jaw given two inputs — the current position 

of thickness, tcurrent> and angle, ĉurrent? called Position 1, and the desired position, ¿desired and 

d̂esired? called Position 2. The number of intermediate steps between positions is determined by
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Figure 4.5: A demonstration of how the closest position to the desired position is chosen when 
outside of the workspace.

setting a maximum allowable change in both thickness and angle. The change in value of thickness 

and angle between Position 1 and Position 2 are divided by their maximum allowable change per 

step, respectively. The result with a higher number of steps is chosen as the number steps to 

split the path into. Figure 4.7 shows the change from a thickness and angle of 70 mm and 10° 

to 30 mm and 0°. In this figure, the chosen maximum allowable change for thickness and angle 

per step was 50 mm and 50°, resulting in no discretization of the path. The red line shows the 

desired path between points, a straight line, and the blue line shows the path taken. The image 

on the right side of the figure shows the path trajectory in the workspace image. The time scale 

shown was determined by setting variables that dictate the time between consecutive points. The 

model does not take into account the time taken to communicate with the motor controllers, or 

the actual velocity profile of the motors. The same position inputs are shown in Figure 4.8 but 

with a maximum allowable change of thickness and angle per step of 2 mm and 2°, resulting in 20 

intermediate points. It is evident here that with a smaller maximum allowable change per step, 

the higher the degree of discretization, and the closer the actual path is to the desired path.

The MATLAB program to generate the path taken first determines the closest possible current
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^  P a th  fr o m  c lo s e s t  p o s i t io n
to  d e s ir e d  p o s i t io n

P r e v io u s  p o s i t i o n D e s i r e d  p o s i t i o n
m

|

Figure 4.6: Method of choosing new position when two possible positions exist.

Figure 4.7: Left to right: change in thickness from Position 1 to Position 2, change in angle from 
Position 1 to Position 2, workspace path from Position 1 to Position 2.

position, and the closest possible desired position. A path is then discretized between the two 

points. This means that if either of the positions lies outside of the workspace, and no discretization 

is necessary, then the path will not follow the closest possible path to that desired. Figure 4.9 

shows the desired path in yellow, the closest possible path that follows the desired path up to its 

workspace limit in black, and the path generated with no discretization — a straight line from 

current to desired values. Since the discretization algorithm adds points along the desired path,



4.2 Control o f the End Effector 75

Figure 4.8: Left to right: change in thickness from Position 1 to Position 2, change in angle from 
Position 1 to Position 2, workspace path from Position 1 to Position 2.

each intermediate point is determined possible or not. This means that discretizing the path causes 

the path generated to follow the desired path, only deviating from it when the workspace limit is 

encountered. This is shown in Figure 4.10. The difference between this figure and Figure 4.9 is 

the maximum allowable change per step for both thickness and angle variables. Figure 4.9 does 

not discretize the path and generates a straight line from current to desired positions. Figure 4.10 

has a small step size and generates a path which follows as closely as possible the desired path 

(which leaves the workspace).

Figure 4.9: With no path discretization, the actual path does not follow the closest possible path 
(Yellow line: desired path, Black line: closest possible path, Light blue line: actual 
path).
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Figure 4.10: With a discretized path, the actual path approaches the closest possible path (Yellow 
line: desired path, Black line: closest possible path, Light blue line: actual path).

4.3 Sensor Feedback

During the design phase of the project, it was not known if the ultrasound and tactile sensors would 

be mounted to the first prototype. In the case of unexpected failure, it would be an undesirable 

expense. In order to demonstrate the use of the end effector jaws with feedback using a closed 

loop palpation scheme, a large scale version of half of the grasper was constructed, as shown in 

Figure 4.11. Rather than using tactile sensing, two force sensing resistors (FSR) were used to 

obtain data related to the total force of palpation and the angle of palpation. In this manner, a 

force-controlled automated palpation method was developed. The motors used to articulate the 

jaw were the same as the ones used in the final design. Spectra cables were used to actuate the 

sliders, and tensioners were added to the system to reduce backlash.

Before operation, the controlling software used an automated calibration function to determine 

the slider’s position relative to the origin, Joint 3 (Figure 4.1). The motors were driven using the 

constant current mode offered by the motor controllers with a user set maximum velocity to prevent 

damage to the system. To calibrate the Front Slider, it was set into constant current mode moving 

towards Joint 3. The motor’s encoder count was then analyzed. If the encoder count position 

was consistently the same for 100  readings in a row, the slider was assumed to be immobile and 

the encoder position was recorded. The home position was then calculated as the recorded count 

minus the number of encoder counts required to move the slider half of its own length, minus the
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Figure 4.11: A picture of the large scale model of the grasper jaw with identifying features.

radius of the pin at Joint 3 (Equation 4.19). The same technique was used for the Back Slider.

Zero Position =  Encoder Count at Immobile Position 

 ̂Slider Length RacJius ^  Joint 3^

2ir (Cable Pulley Diameter)
(Encoder Pulses Per Revolution) (Gear Head Ratio)

2n (Cable Pulley Diameter)

The FSRs used were Part No. 400 from Interlink Electronics. They were adhered to the large 

scale palpator jaw with double sided tape and a rounded bumper was mounted to them to try 

to distribute the load on them evenly and repeatably from any direction of force (Figure 4.12). 

The FSRs became active with about a 0.5 N force and were given an upper limit of 10 N, set in 

software. The scale from 0 to 10 N was normalized to 1 , then multiplied by 1000. The reason for 

scaling the sensor output to a number between 0  and 1000  was to make use of integer numbers

(4.17)

(4.18)
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to decrease the computation time as compared to floating point numbers. The scale of 0 to 1000 

exhibited sufficient resolution for the control system.

The control scheme used was two independent proportional controllers (P controllers): one for 

palpation thickness control, and one for angle control. Figure 4.13 and Figure 4.14 show the block 

diagram of the two control systems. Two FSRs were required to be able to interpret the angle of 

palpation. The force controller’s reading was calculated by averaging both FSR values, resulting in 

a number between 0 and 1000. This number was then scaled and interpreted as a required change 

in palpation thickness. The angle controller’s reading was determined by calculating the difference 

between the two FSR readings. The result was scaled and interpreted as a required change in 

palpation angle. By combining the two P controllers, the palpator jaw is able to conform to 

approximately flat surfaces.

Figure 4.12: The mounted FSR.

For demonstration purposes, a desired palpation force of 2 N was used along with a desired 

palpation angle of 0°. Shear forces do have an affect on the sensor reading but were not taken into 

account in the control scheme and were attempted to be minimized by using materials that would 

easily slide against each other. This was an acceptable simplification because some sliding always 

occurs during lung palpation.

To demonstrate the designed automatic palpation process, a flexible plastic beam was used



4.3 Sensor Feedback 79

Setpoint AFSR

Figure 4.13: The thickness control system block diagram.

Setpoint Average FSR

Figure 4.14: The angle control system block diagram.

to palpate against. The beam’s flexibility shows that the system is robust and can work around 

changing object geometries. Similarly, lung tissue has some flexibility. During testing, the palpator 

jaw moved such that it was always flat against the beam, whether the beam pushed hard against 

the jaw, increasing the palpation force to over 2 N, or completely removed, forcing the jaw to slowly 

close until it made contact once again with the beam. In the cases where the jaw was physically 

unable to reach the beam, it moved to the closest possible position, not necessarily in contact with 

the beam. It is also noted that it was impossible to back-drive the motors by pushing or pulling 

on the jaw. All movement was completely sensor driven.

FSR reading and P controller calculations were done by an Atmel AVR ATmega644 micro­

controller, sending values to Windows XP Professional serially using the RS-232 communication 

protocol. The remainder of the control loop was programmed for Windows XP Professional using 

the Nokia QT libraries and C ++ . This method was chosen for demonstrative purposes because 

speed was not an issue, so a low, infrequent sampling frequency caused by Windows scheduling 

was acceptable. Furthermore, libraries were provided for the motor controllers to work over a 

serial port on Windows. To use the motor controllers with embedded hardware would require 

recreating the library functions, a task outside of the scope of this thesis. The speed of the motors
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was calculated based on the desired time of 1 second between steps, with a maximum allowable 

change per step for thickness and angle of 10 mm and 10°. Figure 4.15 shows a series of photos of 

the jaw palpating against the beam.

Figure 4.15: A series of pictures showing the palpator jaw converging to the position of the palpated 
object.
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4.4 Conclusions

In the development of the control system, a kinematic model was first developed for the end effector 

jaw, modelling only half of it due to symmetry. Reverse and forward kinematic equations were 

derived for the input variables, thickness and angle of palpation; and the output variables, the slider 

positions. Reverse kinematic equations were used in the real time control of the system. Forward 

kinematic equations were used in the modelling of the system. The linkages of the device were not 

serially connected, and as such, robotic linkage equations were not used. Instead, standard vector 

math was employed.

With the developed kinematic equations, it was desired that the output values of thickness and 

angle move linearly from one position to the next. To do so, rather than deriving equations for 

the required motor speed and position, a continuous point-to-point motion algorithm was used. 

A model was programmed in MATLAB to assess the jaw movement with the desired movement 

function. This model only included the kinematics of the robot, and not the motor position profile, 

backlash, or cable elongation phenomena.

Before demonstrating a closed loop implementation of an automated palpation process, a sys­

tem was put in place to prevent the end effector from moving to geometrically impossible positions. 

This was desired in the case that the control system inputs to the end effector were not physically 

possible, which can happen when nearing the workspace boundary of the device. As a preventative 

measure, an image based lookup table of allowable positions was created on a large scale mock up 

of the jaw geometry. The image provides the ability to locate the closest possible physical position 

of the jaw geometry to the desired jaw position by finding the closest pixel in the workspace to 

the pixel in the desired location. If the desired location is located inside the workspace, then an 

exact solution of slider positions can be calculated.

Along with maintaining the closest possible position, it was desired to follow the closest pos­

sible path. Due to the implemented continuous point-to-point method, discretization of the path 

between current and desired positions was necessary to follow the closest possible path. Although 

many levels of discretization exist, the more there are, the slower the device moves due to the 

communication time between the personal computer (PC) and the motor controllers. The path
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step size was chosen empirically.

To demonstrate the desired movement of the jaw geometry, a large scale prototype was built 

using a Windows PC as the control system. The sampling frequency was slow enough in this 

demonstration that the effect of using a PC as a control system was negligible. The mock design 

made use of two force sensing resistors (FSR). The two FSRs had the ability to sense if the overall 

force on a flat object was equally distributed over the sensors, and whether or not both sensors 

were in contact with a flat surface.

To implement the control system, two P controllers were used, using both FSRs as inputs. The 

first averaged the FSR readings, gaining insight on the total applied load on the palpated surface. 

The second subtracted one FSR reading from the other, giving insight on the current angle to the 

palpated surface. This control system was only used for demonstration purposes, and in fact the 

real control system using tactile and ultrasound sensor inputs will likely be different.

The implemented control system performed the tracking of a flexible plastic beam, showing 

robustness in the control system. The jaw was able to settle on, and track the motion of the beam.

As a proof of concept, no quantitative results were collected. It was noticed however that 

in some positions, due to the selected jaw geometry, that there was a degree of sliding. This 

could be minimized by using a different path generation scheme or using slightly different link 

geometries. Ultimately, the problem is that for each possible thickness and angle there exists 

only one geometric position. For example, with a constant thickness of palpation, and a change 

from negative to positive palpation angle, the jaws will inherently have to move forward. This 

effect could be eliminated with the addition of one more degree of freedom to compensate for the 

undesired sliding motion.



Chapter 5

Validation of the Final Prototype

5.1 Introduction

This chapter describes the final prototype. It will show the final constructed prototype and outline 

the main features of the design. A number of experiments are used to validate the workspace of 

the mechanism and test its load carrying capacity compared to the results of the finite element 

analysis conducted in Chapter 3. The control system developed in Chapter 4 is implemented and 

qualitatively assessed. Throughout each section, the strengths and weaknesses of the designed 

mechanism are discussed.

5.2 Overview of the Final Prototype

This section presents images of the final prototype, based on the design presented in Chapter 3. 

Before detailed images of the end effector and motor housing are shown, the fully constructed 

prototype is presented from several different angles. First, in Figure 5.1, the design in its entirety 

is displayed. The end effector is in a jaws-closed configuration, and the wires leaving the back of 

the handle are used to power and communicate with the motor controllers. A closer view of the 

handle and installed electronics is displayed in Figures 5.2 and 5.3, showing two different views 

of the instrument handle. Figure 5.2 shows the end effector twisting mechanism, the motors, the 

gear head shaft encoders, the motor housing, the handle, and the motor controllers. In Figure 5.3

83
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all the same is visible but the motors.

Figure 5.1: Entire instrument assembled.

Figure 5.2: The assembled handle holding the motor housing, encoders, motors, and motor con­
troller electronics (View 1).
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A

Figure 5.3: The assembled handle holding the motor housing, encoders, motors, and motor con­
troller electronics (View 2).

Figure 5.4 shows how the end effector twisting mechanism works. In these images, nothing 

but the twisting mechanism, instrument shaft, and grasper housing are assembled. The top left 

picture shows the handle locked in place. The top right picture shows the handle pulled out and 

in the process of twisting. The bottom two photos from left to right show the effect of twisting 

the mechanism on the end effector. Although the grasper jaws are not installed in this image, the 

grasper housing can be seen twisting.

Figures 5.5 through 5.9 detail the grasper mechanism on its own with PEEK slider covers 

attached. Figure 5.5 shows the grasper from the side in an open position, and Figure 5.6 shows 

the same, with a view from the bottom, providing some visual detail of the sliders. Through holes 

for the uninstalled cables can be seen and are indicated. Figure 5.7 shows the grasper in its closed 

position. In this position, its outer diameter is 12.7 mm. In all of these images, the pins used for 

the linkage joints can be seen to be swaged in permanently. Eventual installation of jaws with 

attached tactile and ultrasound sensors would require drilling the pins out.
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Figure 5.4: Twisting of the end effector (grasper mechanism not included).

Figure 5.5: The grasper mechanism with black-coloured PEEK covers on the sliders.
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Figure 5.6: The jaws, links, and sliders. Through holes on the sliders for tungsten cables are circled 
in red.

Figure 5.7: The grasper in a jaws closed position.

In Figure 5.8, the grasper mechanism is installed in the grasper housing, which is attached to 

the instrument shaft. In addition to previous images, this closeup shows the sliding rails in the 

grasper housing, the tungsten cables installed in the sliders (untensioned), and the installed Front 

Spacer and Back Spacer. The tungsten cables wrap around the Front and Back Spacers using 

them as pulleys. The spacers rotate about concentric pins, which in the image are sticking out for 

easy removal in the case of required disassembly during construction. The plugs embedded within 

the grasper housing, which support the spacer pins, can also be seen. They differ from the CAD 

model only by not being flush against the grasper housing. This change was made to simplify the 

machining process. Finally, the grasper mechanism installed in the grasper housing is once again 

shown from the side in Figure 5.9.
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Front Spacer

pacer pins

Untensioned cables

Figure 5.8: The assembled grasper in the instrument shaft with untensioned cables.

Figure 5.9: The assembled grasper in the instrument shaft (side view).
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Lastly, the cable routing system is shown. In Figure 5.10, the bottom of the motor housing is 

shown empty for reference, with only the twisting mechanism and tensioners assembled. Figure 5.11 

shows the assembled cable tensioning system from the side. Here, the cable spools are attached to 

the cable shafts which connect with the gear head shaft. Not shown is how the cable shaft extends 

upwards through the top of the motor housing. The protruding shaft is then attached to the optical 

encoders for post gear head backlash assessment, and possible further control considerations. Pins 

and pulleys have been installed in the bottom of the motor housing for the cables to wrap around. 

Two cables coming from each grasper slider are routed back through individual tensioners and are 

terminated at the cable spool. An additional difference from Figure 5.10 is a PEEK cover on the 

instrument shaft. This was installed for smooth movement when using the end effector twisting 

mechanism. Figure 5.12 once again shows the tensioner system from the back view. In this figure, 

screws threaded through the tensioners can be seen as the means for tensioning the cables. As 

well, ample space is provided for the possible installation of cable tension sensing mechanisms. 

Particularly, something could integrate with the current tensioners, or replace them. If sensors are 

installed on individual tensioners, they could provide insight on the tension in both ends of the 

cables attached to the sliders. Empty holes in this and the previous figure have been threaded and 

are used for screwing together neighbouring parts such as the motors and the top of the motor 

housing.

Figure 5.10: The bottom of the empty motor housing.



5.2 Overview o f the Final Prototype 90

Figure 5.11: The cable tensioning system. PEEK covers the instrument shaft for smooth twisting 
(View 1).

Figure 5.12: The cable tensioning system (View 2).
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5.3 Testing and Validation

5.3.1 Workspace Assessment

The first design assessment considered the general motion of the device and the comparison of the 

real workspace to the CAD model workspace. It was observed that the instrument was able to 

reach all theoretical limits when compared to the SolidWorks 2010 model (Figures 5.13 through 

5.16). Only the angle was measured as a comparison in these figures. It was deemed unnecessary 

to extensively evaluate the workspace limits, because the grasper was designed to separate its 

jaws wider than necessary. Only in vivo experiments could truly assess the device workspace 

applicability. Furthermore, it was not important to determine positional accuracy because cable 

elongation, which largely contributed to the accuracy of the desired jaw configurations, was not 

taken into account. Visually it can be seen that the prototype closely matches the CAD model. 

An important feature relating to the geometry was the ability to pass through a trocar. Although 

the prototype shaft was constructed using a 12.7 mm outer diameter tube, the instrument in 

jaws closed position was still capable of passing through a 12 mm diameter trocar, which clearly 

provided some leeway.

Post gear head optical encoders were included on the prototype to assess the amount of backlash 

in the system. With the 53:1 gear ratio of the 22 mm diameter Maxon Planetary Gearhead GP 22 

C, a backlash of 1.6° existed. The range of motion of the Front and Back Sliders was 13.78 mm 

and 10.03 mm, respectively. As a conservative estimate for linear resolution, assuming a minimal 

rotational increment of 1.6° and the existing 5.58 mm diameter pulley mounted to the gear head 

shaft, the Front and Back Sliders could move in 0.078 mm increments with 163 and 128 discrete 

positions respectively. This does not take into account effects of cable elongation under tension. 

With the post gear head optical encoders providing 1250 lines per revolution mounted to eliminate 

the effects of backlash, the upper bound for linear resolution of the Front and Back Sliders was 

0.0035 mm, with 3937 and 2865 discrete positions respectively, also not taking into account effects 

of cable elongation under tension. With a maximum cable load of half the largest shear load (77 

N from Table 3.2) plus 14 N of pre-tension for no pin deformation, the cable strain is less than 

0.4%, or 2 mm in a 500 mm long cable (Figure 3.54).



5.3 Testing and Validation 92

■ if o°

Figure 5.13: Jaws closed position.

Figure 5.14: Jaws fully open position.

Figure 5.16: Jaws largest positive angle position.
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5.3.2  Load Carrying Capacity

To validate the grasper’s load carrying capacity, an experiment was set up to move the jaws over 

a number different positions with a varying applied load. This involved setting the Back Slider in 

four positions such that Joint 1 (Figure 4.1) was set to four positions over its range. In each of 

these positions, the Front Slider (Joint 6) was moved between its extremes with a force applied to 

one jaw at a time such that the jaws were being forced open or closed. The test setup is shown 

in Figure 5.17. The moment arm from the pivot point to the applied load and the jaw was 180 

mm. The initial force of the hanger was 1 N. Additional force could be added in increments of 

100 grams. Although the instrument was designed for loads up to 20 N, a force up to 10 N was 

applied in these initial tests.

Figure 5.17: The experimental setup to apply varying load to the end effector jaw. One thousand 
grams is loaded on the hanger applying load to one of the jaw configurations.

The jaw was successfully able to manoeuvre 10 N of force in most positions. With well tensioned 

cables, the play in the jaw was minimized, which reduced the amount of jaw movement in any
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desired position. The effect of jaw movement in a desired jaw position was due to cable elongation. 

The best performing positions were with a large thickness and low angle of palpation, similar to 

Figure 5.14. These positions exhibited the least jaw play and ease in moving the applied load.

In the forward position of the Back Slider with the jaw under load, Joint 4 moved through an 

inflection point. This is illustrated on the CAD model in Figure 5.18, and shown on the prototype 

in Figure 5.19. The load on the jaw causes a reaction force on Joint 4 that exceeds the maximum 

possible counter force exerted by the Back Slider. Additionally, the effect of cable elongation 

physically moves the Back Slider when it should ideally be stationary. When the Back Slider 

moves under load, it reduces the component of force counteracting the movement of Joint 4, which 

increases the force required for static equilibrium from the Back Slider. When the maximum force 

of the slider is exceeded, the joint passes through its inflection point. Without considering cable 

elongation, the inflection of Joint 4 occurs easily.

Eliminating the effect of cable elongation would significantly increase the performance of the 

grasper in near closed positions by maintaining both Front and Back Sliders in their desired 

positions. It is possible to control the slider positions while simultaneously taking into account 

cable tension. Cable extension contributed to less than 1 mm of travel in either slider. This is 

shown on the prototype in Figure 5.20. The two images were photographed from the bottom of 

the grasper so the slider positions could be seen. The top image was taken with the jaws squeezed 

together by hand. In the bottom image, the jaws were forced apart. It can be seen that the 

Front Slider moved under load. This figure shows that the jaw position can be changed without 

any input from the controlling motors, which do not take into account cable elongation. This can 

significantly effect the desired configuration of the jaw when under load.
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Figure 5.18: Forces on the jaw causing the inflection of Joint 4. 
arm to counteract the joint force.

The link has a smaller moment

Figure 5.19: Inflection of joints. Left: 2 N force applied. Right: 3 N force applied. Motor positions 
are constant, cable extension causes movement of the Back Slider and makes it easier 
for the joints to inflect.
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Back Slider Front Slider Jaw

Figure 5.20: An illustration of slider play caused by cables. Top: slider positions with jaws physi­
cally pinched together. Bottom: slider positions with jaws physically forced apart.

Avoiding the inflection of Joint 4 must also be considered. Although this reduces the workspace, 

further assessment could be done to examine if doing so would be altogether detrimental. Figure 

5.21 shows three plots of possible palpation thicknesses and angles. The white area describes 

possible combinations of thickness and angle values, referring to the same variables defined in 

Figure 4.1 — i<j and 6 The left plot shows the untampered workspace, and the middle and right 

plots show a restricted workspace. In the restricted workspace, an upper limit is set on the angle 

defined by Joints 3 -* 4 —> 5. For reference, the middle plot restricts this angle to a maximum 

of 180°. The right plot shows a more realistic workspace, limiting the angle to a maximum of 

170°. Coupled with considering cable elongation and making sure that the sliders do not move 

significantly under load, this can prevent Joint 4 from passing through its inflection point. It also 

results in a lower maximum counteracting force for the Back Slider than in the 180° case. With 

this restriction, the device workspace is reduced, but not significantly. As the right plot shows, a 

palpation thickness of 2.4 mm and 0° can still be achieved. This means that with a 170° restriction, 

the jaw can still close with parallel jaws and fit through the trocar. It is also important to note 

that this thickness is measured from approximately half way down the jaw length, and as such, 

thinner lung sections can be palpated by using the tip of the jaws and a negative palpation angle.
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Figure 5.21: Different prototype workspaces. Left: No restrictions. Middle: 180° restriction on 
inflection joint. Right: 170° restriction on inflection joint.

Applied load

Figure 5.22: High components of force are required to maintain equilibrium in a near-closed posi­
tion.

In working with the joint inflection in the worst possible jaw configuration, the jaws were still 

able to manoeuvre a 3 N load (Figure 5.23). This movement represents the motion of a standard 

Babcock grasper, having 1 DOF and moving in a scissor like manner. Similar to the Back Slider, 

when in a near closed jaw position, the Front Slider has a small component of force to react against 

the jaw force (Figure 5.22). The upper limit of force that the Front Slider could exert was not 

determined to prevent damage to the grasper and the cables.



5.3 Testing and Validation 98

Figure 5.23: With a 3 N force, the end effector was able to move through its range of motion 
similar to a Babcock grasper.

Figure 5.24: Jaw under side load. Deformation of the jaw prevents it from closing because it would 
collide with the housing.

Finally, the capability to hold a load across the jaws was tested. A 10 N load was applied to 

the jaws. This was to examine the effects on the jaw when manipulating a lung. No permanent 

damage was observed, and under load the jaws were able to articulate. Due to deformation of the 

jaws and the attached linkages under this load, this jaw movement was not suitable for palpation, 

because part interference would have occurred with the jaws and the grasper housing, preventing 

the jaws from closing (Figure 5.24).
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5.3.3 Control System

The control system presented in Chapter 4 was implemented on the final prototype. The only 

difference between the system presented in Chapter 4 and here is the different jaw geometry. 

Different workspace images were rendered as shown in Figure 5.21. However, the use of the 

restricted workspaces had no effect on the prototype since cable elongation was not taken into 

account.

Figure 5.25: Automatic palpation control system on the prototype.
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The control system worked as desired — within its workable limits, the jaw geometry would 

adhere to different shapes, making sure the jaws stayed parallel to the palpated object. As in 

the mock design presented in Chapter 4, a flexible plastic beam was used to palpate against, 

demonstrating automatic object tracking by the grasper. Figure 5.25 shows the grasper with 

two FSRs mounted to the upper jaw closing down on an object and conforming to its shape. 

Through the first three images, the object to palpate starts horizontal, and the grasper jaws orient 

themselves accordingly. In the fourth image, the object geometry changes, and in the fifth image, 

the jaws once again orient themselves accordingly.

The calibration procedure used the same methods as described in Chapter 4 — a constant 

current mode was selected and the Front and Back Sliders moved until obstructed. On the final 

prototype, first the Front Slider moved towards the Front Spacer, then both sliders moved back 

until physically stopped. The Front Slider made contact with the Back Spacer, and the link 

attached to the Back Slider made contact with the grasper housing (Figure 5.26). In this manner, 

the grasper jaws never made contact with each other, preventing damage to the system during 

this open loop procedure. The slider positions were then designated their distances from the Back 

Spacer, Joint 3 in Figure 4.1. In an attempt to minimize cable elongation effects, two methods 

of determining the slider reference positions were used. In the first, when an object obstructed 

movement, the motors stayed in constant current mode until 100 consecutive equivalent readings 

were measured. In the second, the motors first waited for 100 consecutive readings in constant 

current mode, then the constant current mode was disabled. This relaxed the cables. Another 100 

consecutive equivalent readings were read and the slider positions determined. Neither of the two 

methods performed any better during automatic palpation, and the first method was arbitrarily 

chosen for subsequent experiments.

As mentioned in the previous section, the main drawback of the control system was the dis­

regard for cable elongation. Thin geometries could not readily be palpated. Thin palpation jaw 

configurations could not be achieved because the force of the palpated object would spread the 

jaws apart. By ignoring cable elongation, the separation of the jaws could not be corrected for. 

One possible method of reducing cable elongation effects without changing the current system 

would be to monitor the motor current and include it in the control loop. This would provide a
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Figure 5.26: The prototype calibration procedure. 1 -  A general jaw position. 2 -  Front Slider 
forward. 3 -  Front and Back Sliders backward. 4 -  Ready to palpate.

low accuracy estimate of the cable tension, but could demonstrate the benefits of taking elongation 

into account.

5.4 Conclusion

The workspace of the grasper was shown to be equal to the theoretical workspace of the CAD 

model. There were no evident problems in the movement of the graspers under the no-load 

condition. Assessment of positional accuracy of the jaws was not undertaken due to the presence 

of cable elongation, which contributed to the majority of play in the system. It is a necessity to 

include cable elongation in the control loop or to use direct sensing means for the positions of the 

sliders.

The 2 DOF system has a joint inflection point that must be worked around. Cable play 

exaggerated the effect of joint inflection by allowing the Back Slider to move. If cable play could 

be minimized and the workspace of the grasper redefined to avoid the inflection point, the grasper 

could work as desired. After examination of the grasper load capacity using a maximum of 10 N, 

it is hypothesized that by removing the effects of the inflection point, the grasper could hold and
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manoeuvre a 20 N load as it was designed to do.

The proposed control system worked as desired within the operable workspace of the grasper. 

The 2 DOF were imperative for the ability to palpate different object geometries. This was 

successfully shown using FSRs on the palpator jaws and the closed loop control system described 

in Chapter 4. The jaw positions were limited by cable elongation effects and could not palpate thin 

geometries due to the jaws separating under force. One method of accounting for cable elongation 

effects is to monitor the motor current, which increases with increasing cable tension.



Chapter 6

Conclusions

6.1 Summary

This thesis describes the design and development of a novel hand held minimally invasive lung 

tumour localization device. Its purpose is to surpass the performance of present laparoscopic 

devices and approach the capabilities of the human finger without the need for open surgery. To 

do so, the device is designed to incorporate the use of multiple sensing modalities, and uses a novel 

mechanical linkage for optimal tissue palpation. Also presented is a proof of concept for a control 

scheme to improve palpation over surgeon-controlled palpation. A thorough review of the relevant 

literature concludes that no such device has been developed before.

With an iterative design process and design analyses, it was determined the proposed device 

could be used under the expected 20 N load of a human lung, while achieving a factor of safety of 

4. The design includes the ability to hold both an ultrasound and tactile sensor. After the final 

prototype construction, it was shown that the device could attain its theoretical workspace, and was 

able to manipulate and move loads of 10 N. A proof of concept control system using force sensing 

resistors in replacement of the tactile sensor demonstrated that the presented design could palpate 

different thicknesses and orientations of tissue automatically. Due to the cost and uniqueness 

related to the presented prototype, validation experiments were not conducted to failure.

103
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6.2 Concluding Remarks

This thesis provides basis for future work on a minimally invasive lung tumour localization device

adhering to fundamental design restrictions. The project consists of three novel ideas:

Multiple Sensing Modalities

The use of multiple sensors in a minimally invasive lung tumour palpation device is an 

idea not yet tested. In particular, the design holds two imaging sensors, ultrasound and 

tactile. Ultrasound is a standard method of examining subsurface tissue. Its obtained image 

is perpendicular to the ultrasound sensor surface. Tactile sensing creates a topographical 

pressure map of tissue, which is an image parallel to the sensor surface. Combining these 

two technologies increases the available information on the tissue and underlying features. 

Considering the two orthogonal imaging planes, it is reasonable to assume that a three- 

dimensional (3D) model of the subsurface tissue can be created using data fusion techniques. 

In addition to the aforementioned sensors, the device may also make use of kinaesthetic force 

feedback sensors mounted on linkages of the grasper mechanism. These sensors are intended 

for more accurate bulk force measurement over the palpated region than can be achieved 

with the tactile sensor alone. Furthermore, they can enhance the real time capabilities of 

possible control systems on the device since they have the capability to be sampled with a 

higher frequency than the ultrasound and tactile sensors, especially if data fusion is included 

in the control loop.

Two Degrees of Freedom

In traditional grasper-based minimally invasive palpating designs, only one degree of freedom 

is used. This severely limits the palpable regions of tissue. The two degrees of freedom 

incorporated in the presented design allow for varying geometries of tissue to be palpated. 

Angled, flat, thick, and thin tissue samples can be palpated in an optimal manner presenting 

two benefits. The first is that a large portion of the imaging sensor surfaces can be used 

since they have the ability to align themselves tangentally to the tissue. The second is that 

uniform pressure can be applied to the tissue, improving imaging and preventing damage.
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Robotics-Assisted Palpation

It was shown in the literature that robotics-assisted palpation increases the performance 

of localizing lung tumours. With the included sensors and degrees of freedom on the end 

effector design, an automated palpation process can be applied. This has yet to be seen 

for minimally invasive palpation mechanisms. Coupled with the data acquiring sensors, the 

tissue can be palpated in an optimal manner in a repeatable way, which is hypothesized to 

increase tumour localization performance. Taking advantage of the 2 DOF, a demonstrative 

control system was presented using force sensing resistors.

6.3 Recommendations and Future Work

During the course of this project, a prototype was designed and constructed. Time limitations 

prevented the integration of the proposed sensors. However, using force sensing resistors, a proof of 

concept for an automated control scheme was presented. Preliminary validations were conducted 

on the device, but further examination of system performance should be done. Possible future work 

is discussed in three sections — mechanical, electrical and controls, and testing and validation.

6.3.1 Mechanical Recommendations

The first recommendation is the inclusion of strain gauges on the grasper links. The strain gauges 

have already been selected but not mounted. Including the strain gauges is also coupled with 

their subsequent calibration. A test setup needs to be designed to apply varying loads along a 

single jaw and both jaws, in varying directions for varying end effector configurations. The results 

could be tabulated and referred to during automatic palpation. In particular, this may help to 

approximate the palpation load while simultaneously acquiring information from the ultrasound 

and tactile sensors.

Strain gauges should also be placed on the cable tensioners for cable tension and elongation 

feedback. This may include designing something to work with the existing tensioners, or something 

to replace them. The location of the current tensioners provides ample space for sensor integration. 

To further reduce cable elongation, solid drawn wire may be used to replace sections of the cable
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that do not experience bending. This may help by minimizing the working cable length. Challenges 

include proper cable clamping to the intermediate material to maintain cable strength.

Force measurements from live patient surgeries could be obtained to provide information on 

the loads that actually occur during lung tumour localization and excision. This information could 

allow for more accurately defined design specifications, resulting in the creation of either thinner, 

more complex designs, or thicker, more robust designs. Results could conclude that heat treated 

material for the jaws is unnecessary. Eliminating the required heat treating process is desired due 

to the added cost and complexity in manufacturing.

The integration of the ultrasound and tactile sensors remains to be carried out. This involves 

work communicating with the sensor manufacturers to develop specific geometry for each sensor 

that will comply to the design requirements of the end effector, such as applied load and size. This 

work may also involve investigating different materials to remove the restriction of using stainless 

steel alloy 440C.

The use of wrist joints should be considered. The inclusion of wrist joints could improve the 

use of the end effector by increasing its spatial configurations, making it easier to palpate tissue 

in otherwise hard to reach or impossible locations. Several challenges accompany the inclusion of 

wrist joints. End effector positional accuracy would be reduced due to the accumulation of error 

in additional degrees of freedom. The end effector total length would likely increase, making it 

unsuitable for the chest cavities of certain patients. The effect of bending, and sliding of the sensor 

and actuating cables against neighbouring components may be detrimental. Finally, the added 

complexity of the system may no longer allow for intuitive human control of the device.

Assessment of the geometry of the current design could be undertaken. Following the recom­

mendations of an experienced thoracic surgeon, the end effector geometry was designed similar to 

a commercial product. The current jaw length and end effector workspace should be re-examined 

following experimental trials.

The motor housing was over designed for simplicity. A material assessment could be undertaken 

to replace the steel components with light weight materials, lessening the strain on the surgeon 

holding the device. A more aesthetically pleasing design could be produced, which may include 

encompassing the motors within the housing. Other considerations for the motor housing include
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simple assembly and disassembly, preferably using plastics that can easily snap in and out of place 

without affecting the system performance. This could make for easy separation of components for 

sterilization. Ideally, the complete device should be sterilizable.

Due to the sliding effect seen in the proof of concept control system, a third degree of freedom 

— the ability to move the end effector back and forth should be reviewed. Sliding could cause 

tissue damage and its effect should also be assessed. The addition of a degree of freedom could 

require a complete redesign of the motor housing.

Finally, haptics and visual feedback are desired. This may serve as grounds for a new research 

project, as these elements were beyond the scope of this project. This could include but is not 

limited to a redesigned instrument handle including input controls currently not present, and 

haptic feedback to the hand of the operator.

6.3.2 Electrical and Controls Recommendations

With the inclusion of strain gauges on the cable tensioners, identifying tension in both the Front 

and Back Slider actuating cables could provide more effective control solutions. As is, the system 

performance is limited by the flexibility caused primarily by cable elongation. The motor controllers 

do not take this into account. Another method to remove cable elongation effects would be to 

include a position sensor directly measuring the slider positions. Such a sensor may have to be 

custom designed due to space restrictions.

Linkage-mounted strain gauges should be used to assess palpation force. In combination with 

the imaging sensors, the strain gauges could be used as a high frequency palpator force feedback 

method between imaging sequences to optimize control of palpation.

Future research regarding the control systems of the device could focus on developing a method 

to fuse the data of the ultrasound and tactile sensors. This should result in an intuitive information 

display and provide more information on the palpated tissue attributes. In a clinical context, 

it could also provide an accurate method of localizing a tumour and eliminate the need for a 

radiologist to be on site during surgery.

Backlash in the system has not been determined. Post gear head optical encoders already exist 

on the device but have not been used. It should be determined if they are required to compensate
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for the effects of backlash, or whether the gear heads can be used alone.

Haptic and visual feedback are desired. Haptic feedback requires a control system that can 

interact with the surgeon, somehow relaying the existence of a tumour, to be designed. Related 

to this is the possibility of including a visual feedback system that could help the device operator 

identify and differentiate different tissue attributes.

Above all, the sampling frequency of the system using imaging sensors is low. The raw infor­

mation from the selected tactile sensor alone has a frequency of 10 Hz. Including algorithms for 

fusing data with ultrasound information and overall image manipulation, the frequency could be 

even lower. This may restrict real time operation. The proof of concept control system for this 

project was used on Windows XP Professional because of the simple integration with the motor 

controllers. Similarly, the ultrasound and tactile sensors integrate with a Windows environment. 

Designing an embedded system could increase the performance of the device. Possible options 

include the use of Windows CE or IntervalZero RTX to maintain a Windows environment. This 

would simplify the integration of components with a computer while at the same time achieving a 

real time solution.

6.3.3  Testing and Validation Recommendations

Tests should be done to assess the effect of sliding palpation on lung tissue, which is currently 

caused by the 2 DOF in the presented design. The assessment and performance difference of an 

additional DOF can be analyzed by mounting the design on a robotic arm. The robotic arm could 

simulate the third DOF — the ability to move forward and backward to reduce sliding.

To validate the ease of use and effectiveness of the current system, palpation experiments on 

tissue (with phantom tumours embedded) should be conducted using multiple instrument operators 

with varying levels of expertise. System performance could be judged by the sensitivity and 

specificity of the device as a diagnostic test, and the ability of the operator to use the device. 

Similarly, the instrument should be tested in vivo to compare its performance against currently 

available minimally invasive localization devices.
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