12 research outputs found

    Ecodesign of Batch Processes: Optimal Design Strategies for Economic and Ecological Bioprocesses

    Get PDF
    This work deals with the multicriteria cost-environment design of multiproduct batch plants, where the design variables are the equipment item sizes as well as the operating conditions. The case study is a multiproduct batch plant for the production of four recombinant proteins. Given the important combinatorial aspect of the problem, the approach used consists in coupling a stochastic algorithm, indeed a Genetic Algorithm (GA) with a Discrete Event Simulator (DES). To take into account the conflicting situations that may be encountered at the earliest stage of batch plant design, i.e. compromise situations between cost and environmental consideration, a Multicriteria Genetic Algorithm (MUGA) was developed with a Pareto optimal ranking method. The results show how the methodology can be used to find a range of trade-off solutions for optimizing batch plant design

    Mutual benefits of two multicriteria analysis methodologies: A case study for batch plant design

    Get PDF
    This paper presents a MultiObjective Genetic Algorithm (MOGA) optimization framework for batch plant design. For this purpose, two approaches are implemented and compared with respect to three criteria, i.e., investment cost, equipment number and a flexibility indicator based on work in process (the so-called WIP) computed by use of a discrete-event simulation model. The first approach involves a genetic algorithm in order to generate acceptable solutions, from which the best ones are chosen by using a Pareto Sort algorithm. The second approach combines the previous Genetic Algorithm with a multicriteria analysis methodology, i.e., the Electre method in order to find the best solutions. The performances of the two procedures are studied for a large-size problem and a comparison between the procedures is then made

    Strategies for multiobjective genetic algorithm development: Application to optimal batch plant design in process systems engineering

    Get PDF
    This work deals with multiobjective optimization problems using Genetic Algorithms (GA). A MultiObjective GA (MOGA) is proposed to solve multiobjective problems combining both continuous and discrete variables. This kind of problem is commonly found in chemical engineering since process design and operability involve structural and decisional choices as well as the determination of operating conditions. In this paper, a design of a basic MOGA which copes successfully with a range of typical chemical engineering optimization problems is considered and the key points of its architecture described in detail. Several performance tests are presented, based on the influence of bit ranging encoding in a chromosome. Four mathematical functions were used as a test bench. The MOGA was able to find the optimal solution for each objective function, as well as an important number of Pareto optimal solutions. Then, the results of two multiobjective case studies in batch plant design and retrofit were presented, showing the flexibility and adaptability of the MOGA to deal with various engineering problems

    Reversible Action Design for Combinatorial Optimization with Reinforcement Learning

    Full text link
    Combinatorial optimization problem (COP) over graphs is a fundamental challenge in optimization. Reinforcement learning (RL) has recently emerged as a new framework to tackle these problems and has demonstrated promising results. However, most RL solutions employ a greedy manner to construct the solution incrementally, thus inevitably pose unnecessary dependency on action sequences and need a lot of problem-specific designs. We propose a general RL framework that not only exhibits state-of-the-art empirical performance but also generalizes to a variety class of COPs. Specifically, we define state as a solution to a problem instance and action as a perturbation to this solution. We utilize graph neural networks (GNN) to extract latent representations for given problem instances for state-action encoding, and then apply deep Q-learning to obtain a policy that gradually refines the solution by flipping or swapping vertex labels. Experiments are conducted on Maximum kk-Cut and Traveling Salesman Problem and performance improvement is achieved against a set of learning-based and heuristic baselines

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Mixed-Integer Nonlinear Programming Optimization Strategies for Batch Plant Design Problems

    Get PDF
    Due to their large variety of applications, complex optimisation problems induced a great effort to develop efficient solution techniques, dealing with both continuous and discrete variables involved in non-linear functions. But among the diversity of those optimisation methods, the choice of the relevant technique for the treatment of a given problem keeps being a thorny issue. Within the Process Engineering context, batch plant design problems provide a good framework to test the performances of various optimisation methods : on the one hand, two Mathematical Programming techniques – DICOPT++ and SBB, implemented in the GAMS environment – and, on the other hand, one stochastic method, i.e. a genetic algorithm. Seven examples, showing an increasing complexity, were solved with these three techniques. The result comparison enables to evaluate their efficiency in order to highlight the most appropriate method for a given problem instance. It was proved that the best performing method is SBB, even if the GA also provides interesting solutions, in terms of quality as well as of computational time

    Optimisation du développement de nouveaux produits dans l'industrie pharmaceutique par algorithme génétique multicritère

    Get PDF
    Le développement de nouveaux produits constitue une priorité stratégique de l'industrie pharmaceutique, en raison de la présence d'incertitudes, de la lourdeur des investissements mis en jeu, de l'interdépendance entre projets, de la disponibilité limitée des ressources, du nombre très élevé de décisions impliquées dû à la longueur des processus (de l'ordre d'une dizaine d'années) et de la nature combinatoire du problème. Formellement, le problème se pose ainsi : sélectionner des projets de Ret D parmi des projets candidats pour satisfaire plusieurs critères (rentabilité économique, temps de mise sur le marché) tout en considérant leur nature incertaine. Plus précisément, les points clés récurrents sont relatifs à la détermination des projets à développer une fois que les molécules cibles sont identifiées, leur ordre de traitement et le niveau de ressources à affecter. Dans ce contexte, une approche basée sur le couplage entre un simulateur à événements discrets stochastique (approche Monte Carlo) pour représenter la dynamique du système et un algorithme d'optimisation multicritère (de type NSGA II) pour choisir les produits est proposée. Un modèle par objets développé précédemment pour la conception et l'ordonnancement d'ateliers discontinus, de réutilisation aisée tant par les aspects de structure que de logique de fonctionnement, a été étendu pour intégrer le cas de la gestion de nouveaux produits. Deux cas d'étude illustrent et valident l'approche. Les résultats de simulation ont mis en évidence l'intérêt de trois critères d'évaluation de performance pour l'aide à la décision : le bénéfice actualisé d'une séquence, le risque associé et le temps de mise sur le marché. Ils ont été utilisés dans la formulation multiobjectif du problème d'optimisation. Dans ce contexte, des algorithmes génétiques sont particulièrement intéressants en raison de leur capacité à conduire directement au front de Pareto et à traiter l'aspect combinatoire. La variante NSGA II a été adaptée au problème pour prendre en compte à la fois le nombre et l'ordre de lancement des produits dans une séquence. A partir d'une analyse bicritère réalisée pour un cas d'étude représentatif sur différentes paires de critères pour l'optimisation bi- et tri-critère, la stratégie d'optimisation s'avère efficace et particulièrement élitiste pour détecter les séquences à considérer par le décideur. Seules quelques séquences sont détectées. Parmi elles, les portefeuilles à nombre élevé de produits provoquent des attentes et des retards au lancement ; ils sont éliminés par la stratégie d'optimistaion bicritère. Les petits portefeuilles qui réduisent les files d'attente et le temps de lancement sont ainsi préférés. Le temps se révèle un critère important à optimiser simultanément, mettant en évidence tout l'intérêt d'une optimisation tricritère. Enfin, l'ordre de lancement des produits est une variable majeure comme pour les problèmes d'ordonnancement d'atelier. ABSTRACT : New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline, namely, the presence of uncertainty, the high level of the involved capital costs, the interdependency between projects, the limited availability of resources, the overwhelming number of decisions due to the length of the time horizon (about 10 years) and the combinatorial nature of a portfolio. Formally, the NPD problem can be stated as follows: select a set of R and D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while copying with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGA II type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. An object-oriented model previously developed for batch plant scheduling and design is then extended to embed the case of new product management, which is particularly adequate for reuse of both structure and logic. Two case studies illustrate and validate the approach. From this simulation study, three performance evaluation criteria must be considered for decision making: the Net Present Value (NPV) of a sequence, its associated risk defined as the number of positive occurrences of NPV among the samples and the time to market. Theyv have been used in the multiobjective optimization formulation of the problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. NSGA II has been adapted to the treated case for taking into account both the number of products in a sequence and the drug release order. From an analysis performed for a representative case study on the different pairs of criteria both for the bi- and tricriteria optimization, the optimization strategy turns out to be efficient and particularly elitist to detect the sequences which can be considered by the decision makers. Only a few sequences are detected. Among theses sequences, large portfolios cause resource queues and delays time to launch and are eliminated by the bicriteria optimization strategy. Small portfolio reduces queuing and time to launch appear as good candidates. The optimization strategy is interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Optimal synthesis, design and operation of hybrid separation processes

    Get PDF
    Hybrid separation systems have recently been hailed as one of the most promising alternatives to conventional capital and energy intensive separation processes. Hybrid separation systems are able to effectively separate mixtures commonly encountered in the fine chemical and pharmaceutical industries that are difficult or impossible to separate by conventional distillation processes due to azeotropic behaviour or low relative volatilities. In a hybrid process where a distillation column unit and a pervaporation unit are integrated into one process, the shortcomings of one method are outweighed by the benefits of the other. The addition of a pervaporation unit to the conventional distillation process, either before, after or fully integrated, adds complexity to the system but also more degrees of freedom which, if properly chosen, can result in capital and operating costs savings and can consequently increase the overall profitability of the system, particularly for difficult separations. The objective of this work was to study the optimal configuration, design and operation of hybrid distillation/ membrane processes taking into account the extra degrees of freedom afforded by these processes. This is achieved by firstly developing detailed mathematical models from first principles to accurately describe the distillation, membrane and their hybrid processes. Secondly, rigorous optimisation strategies were employed to study the hybrid systems and their constituents processes. The feasibility of the hybrid system was investigated through various studies. In the first study, the batch configuration, design and operation of the hybrid system was considered for the first time. The second study considers the optimal synthesis of continuous hybrid processes where more degree of freedoms have been explored than previously reported. The third study considered the novel multi-criteria optimisation of these systems. It was demonstrated in these studies that significant savings can be achieved when the optimal hybrid process is used instead of distillation or pervaporation alone

    Optimization of gas transmission networks

    Get PDF
    The transport of large quantities of natural gas is carried out by pipelines. Typically, natural gas compressor stations are located at regular intervals to boost the pressure lost. Two main issues are generally highlighted when considering pipeline transmission networks, i.e., designing and operating a gas pipeline network. This work is intended to provide a MINLP formulation (mixed integer non linear programming) for modelling and optimizing gas pipelines networks and is applied to a series of case studies covering a range of significant problems. Typical problems in industrial scales for fuel consumption minimization serve as an illustration. Then, a methodology for gas pipeline design, involving capital cost as an optimization criterion is presented. Finally, a more prospective concern, dedicated to the transport of a mixture of natural gas-hydrogen mixture in a transition period towards the so-called predicted “hydrogen economy” is tackled
    corecore