
 1

MINLP optimisation strategies

for batch plant design problems

Ponsich Antonin*, Azzaro-Pantel Catherine, Domenech Serge, Pibouleau Luc

Laboratoire de Génie Chimique UMR 5503 CNRS/INP/UPS

5 rue Paulin Talabot BP1301

31106 TOULOUSE Cedex 1

Authors to whom correspondence should be addressed :

{Catherine.AzzaroPantel@ensiacet.fr; Antonin.Ponsich@ensiacet.fr}

Abstract

Due to their large variety of applications, complex optimisation problems induced a great effort to

develop efficient solution techniques, dealing with both continuous and discrete variables involved in

non-linear functions. But among the diversity of those optimisation methods, the choice of the relevant

technique for the treatment of a given problem keeps being a thorny issue.

Within the Process Engineering context, batch plant design problems provide a good framework to test

the performances of various optimisation methods : on the one hand, two Mathematical Programming

techniques – DICOPT++ and SBB, implemented in the GAMS environment – and, on the other hand,

one stochastic method, i.e. a genetic algorithm. Seven examples, showing an increasing complexity,

were solved with these three techniques. The result comparison enables to evaluate their efficiency in

order to highlight the most appropriate method for a given problem instance. It was proved that the

best performing method is SBB, even if the GA also provides interesting solutions, in terms of quality

as well as of computational time.

Keywords : optimisation methods, genetic algorithm, Mathematical Programming, batch plant design.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12039003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

A great variety of applications, drawn from a wide range of investigation areas, can be

formulated as complex optimisation problems. It covers, for instance, the famous travelling

man problem studied by Padberg and Rinaldi
1
 as well as frequencies allocation for radio-

mobile networks (Hao and Dorne
2
), process networks optimisation (Lee and Grossmann

3
),

physicochemical equilibrium calculations (Teh and Rangaiah
4
), or hydrology computing (Jain

and Srinivasalu
5
).

This large number of optimisation problems arises from models that have to enable, for

industrial requirements, a truly realistic representation of the system they account for.

Consequently, these models tend to show an increasing sophistication degree that derives into

higher complexity and, thus, solution difficulties. The complexity of the formulated models is

basically due to the nature of the functions and of the variables involved in the optimisation

problem. The former ones may be not only non-linear, but moreover, they often prove to be

non-convex, which is a strongly penalizing characteristic in the typical minimization case.

Then, for constrained problem, determining the feasible space turns to be a really difficult

task. With regard to variable nature, most of engineering problems consider both continuous

and discrete variables, introducing discontinuities in the objective function and in the search

space : those are called mixed-integer problems. Furthermore, the discrete variables induce an

important combinatorial effect : this point is emphasized with NP-hard problems, for which

no algorithm leading to polynomial solution times is known. Since industrial size problems

have up to several thousands variables and constraints, the resulting computational times may

easily become prohibitive.

In order to face these problems, a significant investigation effort has been carried out to

develop efficient and robust optimisation methods. At the beginning, this aim was purchased

especially in the Operational Research and Artificial Intelligence areas. But the trend was

 3

subsequently followed by the Process System Engineering community, since this one

provides a wide number of applications formulated as complex optimisation problems. A

typical reference is constituted by design problems : heat or mass exchanger networks

(Zamora and Grossmann
6
), supply chain design (Guillén et al.

7
), multiproduct (Ravemark and

Rippin
8
) or multipurpose (Dedieu et al.

9
) batch plant design or retrofitting (Montagna and

Vecchietti
10
).

As a consequence, a great diversity of optimisation methods was implemented to meet the

industrial stakes and provide competitive results. But if they prove to be well fitted to the

particular case they purchase, these techniques performance cannot be constant whatever the

treated problem is. Actually, a method efficiency for a particular example is hardly

predictable, and the only certainty we have is expressed by the No Free Lunch theory

(Wolpert and Macready
11
) : there is no method that outdoes all the other ones for any

considered problem. This feature generates a common lack of explanation concerning the use

of a method for the solution of a particular example, and usually, no relevant justification for

its choice is given a priori.

This lack of justification for the use of an optimisation method is the issue of the present

study. The objective is then to propose some guidelines that may be useful for the choice of

an appropriate optimisation technique. Obviously, the quoted No Free Lunch theory prevents

from drawing any general conclusions, which could be extended to any class of problems. So,

the framework of this paper is restricted to one particular Process Engineering problem, i.e.

one typical batch plant design problem formulation. This Mixed-Integer Non Linear

Programming (MINLP) problem provides indeed a good application aid to evaluate several

methods efficiency.

The study is divided into five sections. The general aims and the adopted methodology are

developed in section 2. Section 3 describes the investigated optimisation methods. Some

 4

typical results are analysed in section 4. Finally, conclusions and perspectives are presented in

section 5.

2. Problem position

The following section recalls some essential features firstly about the existing MINLP

methods, and then about classical formulations for batch plant design. Then, the methodology

considered in the study will be stated in detail.

2.1 A great diversity of optimisation methods

Among the diversity of optimisation techniques, two important classes have to be

distinguished : deterministic methods and stochastic ones. Complete reviews are proposed by

Grossmann
12
 or Biegler and Grossmann

13
 for the former class, and by Hao et al.

14
 for the

latter one.

The deterministic methods involve the verification of mathematical properties of the

objective function and constraints, such as continuity or derivability. This working mode

enables them to ensure to get an optimum, which is a great advantage. Among the

deterministic class, the following ones stand out : the Branch & Bound methods (Gupta and

Ravindran
15
, Ryoo and Sahinidis

16
 and Smith and Pantelides

17
) ; the Generalized Benders

Decomposition (Geoffrion
18
) and the Outer Approximation (Duran and Grossmann

19
)

algorithms ; the Extended Cutting Plane method (Westerlünd and Petterson
20
) ; Disjunctive

Programming methods (Raman and Grossmann
21
). Even though most of the above-mentioned

methods keep being at academic level, some (commercial or free) computational codes are

available : the SBB, BARON, DICOPT++ and LOGMIP solvers (within the GAMS modelling

environment, see Brooke et al.
22
), MINLP_BB (Leyffer

24
) and αECP (Westerlünd and

Lundqvist
25
).

 5

The second class, namely metaheuristics or stochastic methods, is based on the evaluation

of the objective function at different points of the search space. These points are chosen

through the use of a set of heuristics, combined with generations of random numbers. Thus,

metaheuristics cannot guarantee to obtain an optimum. They are divided into neighbourhood

techniques (Simulated Annealing, Kirkpatrick et al.
26
 ; Tabu Search, Teh and Rangaiah

4
) and

evolutionary algorithms (genetic algorithms, Holland
27
 ; evolutionary strategies, Beyer and

Schwefel
28
 ; evolutionary programming, Yang et al.

29
).

2.2 Batch plant design framework

Due to the growing interest for batch operating mode, a lot of studies deal with the batch

plant design issue (Grossmann and Sargent
30
, Kocis and Grossmann

31
, Modi and Karimi

32
,

Patel et al.
33
, Wang et al.

34,35,36
). Generally, the objective consists in the minimization of plant

investment cost.

The model formulation for batch plant design problems adopted in this paper is based on

Modi’s approach (Modi and Karimi
32
). The formulation accounts for the synthesis of I

products treated in J batch stages and K semi-continuous units (pumps, heat exchangers,...).

The optimisation variables are the discrete number (mj for the batch stages and nk for the semi-

continuous ones) and continuous size (Vj and Rk) of the items of each stage. Moreover, S-1

intermediate storage tanks, with size Vs*, divide the whole process into S sub-processes. The

complete model will not be presented here, it is possible to report to Ponsich et al.
37
 to get the

detailed formulation. The main feature is the minimization of the investment cost for all the

items of the plant :

∑∑∑
−

===
++=

1

111

)(
S

j

γs
ss

K

j

βk
kkk

J

j

αj
jjj *VcRnbVmaMinCost (1)

 6

where αj and aj, βk and bk, γs and cs are classical cost coefficients (a complete nomenclature

is provided in Appendix A). This problem is submitted to one major constraint, forcing the

total production time for all products to be lower than a given time horizon H :

∑∑
==

=≥
I

i
i

i
I

i

i
odPr

Q
HH

11

 (2)

Then, the aim of batch plant design problems is to find the plant structure that respects the

production requirements within the time horizon, while minimizing the economic criterion.

The resulting MINLP problem proves to be non-convex and NP-hard (Wang et al.
34
).

2.3 Aims and methodology

As shown by the extent of literature devoted to optimisation methods, the performances

have been substantially improved and the range of problems that can be solved is wider.

However, the drawback is the lack of explanation concerning the use of a particular method. It

is known that a method that is well-fitted to an example will give better results than a generic

solution scheme. But most of times, the choice seems quite confused and is only justified by

the good results obtained for particular cases. So, there still exists a deficiency of studies that

would justify their use a priori.

Thus, the aim of this work is to evaluate the behaviour of optimisation techniques in order

to provide guidelines helping to choose the most appropriate one. Obviously, it will not be

possible to tackle all the existing MINLP methods, but in order to keep the conclusions as

general as possible, techniques deriving from both deterministic and stochastic classes will be

tested. Besides, another restriction is constituted by the considered problem : as it was stated

by the above-mentioned No Free Lunch theory, the conclusions will neither be extended to

another problem class, nor to another formulation.

So, these two remarks lead to develop the methodology basis for this work. To represent

the deterministic class, solvers of the GAMS environment were chosen, since this optimisation

 7

tool is widely used, and even stands as a reference for the solution of problems drawn from

Process Engineering : the SBB and DICOPT++ modules, that carry out, respectively, a

Branch & Bound procedure and the Outer Approximation method, were adopted. To illustrate

the stochastic methods, genetic algorithms will be used since they have already shown their

efficiency for batch plant design problems treatment, especially in cases of multiobjective

optimisation. Furthermore, by managing a population of individuals, they are able to provide

a set of good feasible solutions at the end of the search : a decision-maker could then choose

among them which is the most profitable option. Concerning the benchmark model for the

study, the equation-oriented formulation proposed by Modi and Karimi
32
 was adopted since it

allows the use of Mathematical Programming methods.

2.4 Example set

Finally, the issue of the problem size has to be investigated too. Indeed, the combinatorial

effect will make this point a crucial criterion within the objective of method evaluation. Thus,

a set of increasing complexity examples, all formulated in the same way, will be used here as

a bench for the three techniques. The comparison of the results obtained by every method

enables to evaluate their performances and to judge the relevance of their use according to the

studied problem instance.

This set was built on the basis of two existing problems drawn from the batch plant design

literature. The first one, consisting of only three batch stages, was chosen by Kocis and

Grossmann
31
. The second example was proposed by Modi and Karimi

32
 : the plant, divided

into two sub-processes, consists of four batch stages and six semi-continuous stages. This

problem was already solved with various stochastic techniques : simulated annealing (Patel et

al.
33
), genetic algorithm (Wang et al.

34
), tabu search (Wang et al.

35
) and finally ants foraging

 8

method (Wang et al.
36
). The best solution found is equal to 362130, but slightly violates the

time production constraint (Wang et al.
34
).

Due to the data similarities between these two problems, one intermediate size and four

higher size examples were built to have the set complete. Table 1 sums up the studied

examples and their respective complexity (computed according to the expression 3
StageNumber

).

All data corresponding to the tackled examples are available in Appendix B.

Table 1. Examples set and associated complexity

Example
Stage

number

Intermediate

Storage

Product

number
Combinatory

1 (Kocis and
Grossmann

31
)

3 0 2 2.70 10
1

2 7 0 2 2.19 10
3

3 (Modi and Karimi32) 10 1 3 5.90 10
4

4 21 2 3 1.05 10
10

5 42 5 3 1.09 10
20

6 84 11 3 1.20 10
40

7 105 14 3 1.25 10
50

3. Investigated optimisation methods

3.1 Mathematical Programming techniques

This section will not present an exhaustive description of the methods implemented in the

GAMS solvers, since they have been widely detailed in the devoted literature. An outline of

the basic features and principles of the used algorithms will only be given.

3.1.1 DICOPT++

The DICOPT++ solver relies on the Outer Approximation algorithm, initially developed

by Duran and Grossmann
17
. This one works by decoupling the problem into one continuous

NLP sub-problem and one MILP master problem. For the solution of the continuous sub-

 9

problem, the discrete variables are set to fixed values, corresponding to the result of the

previous master problem. If feasible, the solution of the NLP (obtained by means of solver

CONOPT3) provides an upper bound ZU of the initial problem. If the termination criterion is

not met, then the integer master problem is built by linearizing the constraints at the NLP

solution and adding them to all the linearizations computed in the previous iterations.

The resulting MILP problem is solved with the CPLEX solver (having the continuous

variables set to the last NLP solution values) in order to get a new lower bound ZL of the

global problem. The accumulation of constraint linearizations enables to describe more and

more precisely the feasible region. Consequently, the upper and lower bounds respectively

decreases and increases monotonically, at each major iteration of the algorithm. The

termination criterion is reached when a deterioration in the objective function is observed.

The drawback of the algorithm is that non-convexities could disrupt the process, either by

cutting regions of the feasible space with an invalid constraint linearization or by generating

invalid lower bounds. Thus, modifications were proposed through local and global convexity

tests (Kocis and Grossmann
31
) and augmented penalty (Viswanathan and Grossmann

38
). In

spite of these additional features, computational experience showed that avoiding to cutting

off the global optimum cannot be ensured.

3.1.2 SBB

The SBB solver looks like a classical Branch and Bound algorithm, and the whole

sequence will not be recalled here (see for instance Floudas
39
). This constructive technique is

based on the principle of separation of the initial problem by successively branching on the

discrete variables and tightening their respective bounds. The resulting sub-problems are

represented by nodes and relaxed to get continuous problems. Solving those relaxations

provides either a lower bound to the global problem or an upper bound when the solution is

 10

mixed integer and continuous, i.e. feasible. The bounds intersection is the termination

criterion.

The slight difference between a classical Branch & Bound method and SBB lies in the

MINLP nature of the initial problem, which leads to non-linear relaxation for each node.

These ones are solved with the NLP solver CONOPT3. It is to notice that, unlike DICOPT++,

SBB does not need any MILP solver since the discrete variables are handled by the Branch &

Bound procedure. Some SBB options are available to set the choice of the next variable to be

branched on and of the next node to be treated.

3.2 Stochastic method : Genetic Algorithms

As previously, only the the genetic algorithms (GAs) basic principles (Holland
27
) are

recalled and the following section just focuses on the specific parameters used in this study.

3.2.1 General principles

The principles of GAs lie on the analogy between a population of individuals and a set of

solutions of some optimisation problem. The algorithm makes the solution set evolve towards

a good quality, or adaptation, and mimics the rules of natural selection stated by Darwin : the

weakest individuals will disappear while the best ones will survive and be able to reproduce

themselves. By way of genetic inheritance, the characteristics that make these individuals

“stronger” will be preserved generation after generation.

The mechanisms implemented in the GAs reproduce this natural behaviour. Good solutions

are settled by creating selection rules, that will state whether the individuals are adapted or not

to the considered problem. Crossover and mutation operators then lead the population to

evolve in order to obtain, at the end of the run, a set of good quality solutions. The heuristics

are mixed with a strong stochastic feature, leading to a compromise between exploration and

intensification in the search space, which contributes to GAs efficiency.

 11

The algorithm presented in this study is adapted from a very classical implementation of a

GA. A major difficulty in GAs use lies in parameter tuning. The quality of this tuning greatly

depends on the user’s experience and problem knowledge. A sensitivity analysis was

performed to set parameters such as population size, maximal number of computed

generations or survival and mutation rates, to appropriate values.

3.2.2 Coding and associated genetic operators

The way the variables are encoded is clearly essential for GAs efficiency. The array

representing the complete set of all variables is called a chromosome. It is composed of genes,

each one encoding a variable by means of one or several locus/loci. A difference will be made

between genes encoding discrete variables from those encoding continuous ones. The former

ones are coded directly in a single-locus, integer-valued gene, containing the variable value.

The associated loci are thus able to take the values 1, 2 and 3 (which are the only acceptable

values for the item number of the stages).

Concerning the real variables encoding, binary or similar encoding techniques, based on

variable discretisation, received much attention from the evolutionary algorithms community.

But real-coded GAs have proved their efficiency and even superiority on binary coding in

many cases (see for instance Deb
40
). Thus, real-value genes were adopted to represent the

continuous variables. Since these ones are bounded, they can be written in a reduced form, as

a real number α defined within 0 and 1 that is coded directly on a real-value locus. A mixed

real-discrete chromosome is obtained, that will require specific genetic operators.

Firstly, unlike binary coding for which crossover procedures are carried out for the whole

chromosome structure, the crossover methods for real-coded GAs are applied gene after gene.

The most common methods usually rely on arithmetical or geometrical combinations of

parent genes, such as it is presented in equations (3) and (4).

 12

 yk
(1)
 = α.xk(1) + (1–α).xk(2) (3)

 yk
(2)
 = (1–α).xk(1) + α.xk(2)

 yk
(1)
 = [xk

(1)
]

α
.[xk

(2)
]
(1–α)

 (4)

 yk
(2)
 = [xk

(1)
]
 (1–α)

.[xk
(2)
]
 α

Where xk
(1)
 and xk

(2)
 represent genes k of both parents and yk

(1)
 and yk

(2)
 those of the

resulting children. α is a fixed parameter within 0 and 1. Then, different methods are

implemented according to the way of computing α (Michalewicz and Schoenauer41). Another

kind of crossover techniques works by arithmetical combinations of parent offspring too, but

also uses informations from the parent quality (see Raghuwanshi and Kakde
42
). This is the

case of the simplex method (SPX) that builds a new individual by analogy with the simplex

technique ; or of the direction based crossover (DBX) : if parent x
(1)
 is better than parent x

(2)
,

i.e. f(x
(1)
)< f(x

(2)
) considering minimization, then one child offspring is created according to

the following expression :

y = r.(x
(1)
–x

(2)
) + x

(1)
 (0< r< 1) (5)

The technique chosen for this study is a simulated binary crossover (SBX), proposed by

Deb and Agrawal
43
. The method consists in generating a probability distribution around

parent solutions to create two offspring. This probability distribution is chosen in order to

mimic the single-point crossover behaviour in binary coded GAs, and mainly involves the two

following features :

• The mean decoded parameter value of two parent strings is invariant among the

resulting children strings.

• If the crossover is applied between two child strings at the same cross-site as that

used to create them, the same parents strings will result.

 13

These assumptions generate higher probabilities to create offsprings close to the parents

than away from them. The resulting probability distribution trend is illustrated in figure 1, and

can be interpolated through a polynomial distribution. The addition of a random feature then

enables to compute the weight factors for both parents x
(j)
 in equation (3), to get the two

children y
(j)
.

0

P1 P2

0

P1 P2

Figure 1. Probability distribution for the location of an offspring, SBX crossover

The procedure for the generation of two children from two parent offspring is fully

explained in Appendix C. It is to note that this crossover procedure is carried out for each

locus of the chromosome (with some probability measure) and, as a consequence, the gene

position along the string does not matter. However, even though the SBX crossover does not

induce any problem for real variables, it may lead to real values for the discrete genes of the

resulting offspring. So, in this latter case, these real values were truncated in order to keep

only their integer part.

With respect to mutation, specific operators had to be implemented according to variable

nature. For the discrete ones, an intuitive subtraction of one unit to the bit value was adopted,

when possible. This technique is not a symmetric operator, thus it cannot prevent the

algorithm from being trapped in some local optimum ; but it proved to lead efficiently

towards minimization.

 14

On the other hand, for real-coded genes, an inventory of the variety of mutation methods is

proposed in Michalewicz and Schoenauer
41
or Raghuwanshi and Kakde

42
. They usually rely

on a noise added to the initial gene value, according to a specific probability distribution

(uniform, normal, polynomial…). Some strategies allow important disturbances at the

beginning of a run, and then reduce the possible range of variation around the initial gene

when the generation number becomes higher (and, thus, when the located individuals are

supposed to be close to the optimal solution). In this work, a uniform distribution probability

was chosen (without any change during the run), fitting into the scheme of a diversification

promoting strategy.

3.2.3 Constraint handling

Since constraints cannot be easily implemented just by additional equations, as in MP

techniques, their handling is a key-point of GAs. Indeed, an efficient solution will widely

depend on the correct choice of the constraint handling technique, in terms of both result

quality and computational time. In the framework of the studied problem, the constraint on

variable bounds is intrinsically considered in the variable encoding while the constraint on

productivities is implemented in the model. So the only constraint to be explicitly handled by

the GA is the time constraint formulated in equation (2), which imposes the I products to be

synthesized before a time horizon H.

A previous work (Ponsich et al.
37
) proved that the choice of the most adequate constraint

handling technique depends on the treated example size. Concerning small instances, that are

not really severely constrained, an elimination method is adopted : the infeasible individuals

should not be able to survive to the next generation. This is carried out by computing the

fitness Fi of each individual i, according to its objective function fi (for the minimization

case) :

 15

 Fi = fmax – fi if individual i is feasible (6)

 Fi = 0 elsewhere.

fmax is the worst objective function in the current generation. Then, the implementation of

the classical roulette wheel (Goldberg
44
) prevents infeasible individuals from passing the

selection step.

But for more complex problems, the elimination technique will induce very expensive

computational costs, essentially because of the need to randomly determine an initial

population that must be feasible. So, for those cases, a tournament method based on

domination rules was prefered. This method relies on rules proposed by Deb
40
 and Coello

Coello and Mezura Montes
45
, by means of an analogy with multiobjective optimisation.

Basically, they state that : (i) a feasible individual dominates an infeasible one ; (ii) if two

individuals are feasible, the one with the best objective function wins ; (iii) if two individuals

are infeasible, the one with the smallest constraint violation wins.

Then, these rules are implemented in a tournament : a fixed number of competitors is

randomly taken in the population and, among them, those that will survive are chosen thanks

to the above-mentioned rules. Here, a single tournament procedure was used, meaning that the

competitor number is equal to the population size while the winner number is the survivor

number : then, all the surviving individuals are determined in only one tournament instance

for each selection step.

An additional stochastic feature was introduced for the largest size examples, in order to

emphasize the population diversification. This was carried out through a probability Sr of

either selecting an individual according to the domination rules, or of choosing it randomly.

Finally, the elimination technique was implemented from example 1 to example 3, while the

tournament based on domination rules was applied for example 4 to 7, with Sr=0.95 for

examples 6 and 7.

 16

4. Numerical results and interpretation

Computational results given by the three above-mentioned optimisation techniques are

presented in this section. Then, from the perspective of comparing the techniques efficiency,

they are analysed in terms of quality and computational time. The number of function calls

could have been studied instead of the time criterion, but the former cannot be got from the

output files of the GAMS solvers (Brooke et al.
22
). The CPU time was measured for a Compaq

Workstation W6000.

4.1 Mathematical Programming techniques

The GAMS solvers were used without any initialisation. This presents a great advantage on

solvers such as those available in the IMSL library. So, for the first relaxed MINLP problem,

continuous and binary variables are automatically initialised, respectively, in the middle of

their definition range and to 1. The results obtained with DICOPT++ and SBB are provided in

table 2.

The first obvious comment is that even though DICOPT++ is really performing for the

three first examples, it failed to give any feasible result during a whole run for the remaining

ones. The computational time was limited to 24 hours, afterwards it was considered that no

result would be found. This is a quite deceiving trend, and from the output file it was

observed that no feasible NLP sub-problem was produced through the previous MILP

solution.

Table 2. Results with GAMS solvers

Example 1 2 3 4 5 6 7

Found

optimum
166079 122470 356610 - - - -

DICOPT++

CPU time < 1 s. < 1 s. < 1 s. - - - -

 17

Found

optimum
166079 120777 356610 957270 1925887 3865106 4786804

SBB

CPU time < 1 s. < 1 s. < 1 s. 4 s. 35 s. 29 min. 6.4 h.

On the other hand, SBB proves a great efficiency since it was able to provide an optimal

result for each treated instance. Moreover, the result obtained for example 2 highlights

another failure of DICOPT++ : the solution given by the latter is 1.4 % higher than SBB’s

one. This remark seems to point out that DICOPT++ stayed trapped in a local optimum, and

this assumption can be confirmed by comparing the integer variable set of both results : the

two plants show different structures, particularly for batch stages 1 and 2. Figure 2 gives an

illustration of both computed plants. The optimum determined by SBB is thus better than that

found by DICOPT++.

B1 B2 B3SC1 SC2 SC3 SC4

(a)

B1 B2

B3SC1 SC2 SC3 SC4

(b)

B1 B2 B3SC1 SC2 SC3 SC4

(a)

B1 B2 B3SC1 SC2 SC3 SC4

(a)

B1 B2

B3SC1 SC2 SC3 SC4

(b)

B1 B2

B3SC1 SC2 SC3 SC4

(b)

Figure 2. Structures of optima found by DICOPT++ (a) SBB (b)

With regard to SBB computational times, the first instances are solved very quickly, but

having the plant size growing, the time increases exponentially and reaches more than 6 hours

for the last example. This trend is consistent with the NP-hard nature of the problem, and is

confimed by the curve shown in figure 3.

Finally, as an intermediate conclusion for the Mathematical Programming methods, the

Branch & Bound algorithm proved a great efficiency. The computational time increases a lot

for the last examples, but optimal solutions are provided whatever the treated example is.

 18

Besides, the Outer Approximation method fails to give any result as soon as the problem size

begins to be restrictive.

y = 0,1027x - 0,8913
R2 = 0,9979

0,00

2,00

4,00

6,00

8,00

10,00

0 20 40 60 80 100 120

Number of discrete variables

Ln
 [C

P
U

 ti
m

e,
 s

.]

Ex. 3
Ex. 4

Ex. 5

Ex. 6

Ex. 7

Figure 3. Computational time for SBB

4.2 Genetic Algorithm

Just as for Mathematical Programming, the genetic algorithm performances will be

evaluated according to both result quality and computational time. The quality is estimated, of

course, through the distance between the best found solution and the optimal value. But, since

GAs are a stochastic method, their results have to be analysed also in terms of repeatability.

So, for each test, the GA was run 100 times. The criterion for repeatability evaluation is the

dispersion of the runs around GA best solution F*GA. The 2%-dispersion and 5%-dispersion

are then defined as the percentage of runs providing a result lying respectively in the range

[F*GA, F*GA+2%] and [F*GA, F*GA+5%].

The possibility to express the GA’s computation qualities in terms of mean and standard

deviation of the solution set was considered, but finally rejected : actually, standard deviations

will only provide information on what confidence degree an average value should be obtained

with. But it is to keep in mind that the aim is to minimize the objective function, i.e. to have a

 19

good concentration of the solutions as close as possible to the best found value. Formulating

in other words, 2% and 5%-dispersions enable to know if the solution set is well-distributed,

downward the objective function value axis. Figure 4 gives an illusration of the advantage of

the chosen repeatability criterion : each case (a) and (b) represents a set of runs, and each

point is a particular solution. The mean value is (more or less) equal in both cases, and the

standard deviation is better in case (b). But the 2%-dispersion highlights the fact that the run

set in case (a) is better than the one in case (b), since more solutions are close to best one.

Case (a)

Best solution
found by GA

Optimal value

2% -Dispersion

Best solution
found by GA

Obj. Function value

5% -Dispersion
Mean objective

value

2% -Dispersion

5% -Dispersion

Obj. Function value
Case (b)

Optimal value

Case (a)

Best solution
found by GA

Optimal value

2% -Dispersion

Best solution
found by GA

Obj. Function value

5% -Dispersion
Mean objective

value

2% -Dispersion

5% -Dispersion

Obj. Function value
Case (b)

Optimal value

Figure 4. Repeatibility indices : dispersions and mean value

The parameters chosen for the GA are the following ones : the survival (respectively

mutation) rate is equal to 40 % (resp. 30 %).

The termination criterion used in the following study is the maximum number of

generations. No convergence test, such as steadiness of the average/standard deviation of the

objective function in consecutive populations, was performed : indeed, the variation

magnitude of the associated criteria prevented from reaching a steady state from a generation

to the following one. Thus, in spite of the stochastic nature of the GA, the computational time

for a given example is the same for all the corresponding runs.

 20

The maximum generation number and the population size then depend on the example

complexity. Their values were chosen according to preliminary computations that enabled to

determine a “globally” steady state, i.e. a generation number beyond which there was not any

appreciable improvement of the (best and average) objective function. The corresponding

parameters are presented in table 3.

Table 3. GA parameters for each example

Example
Generation

number

Population

size

Constraint

handling

1 200 200 Elim.

2 200 200 Elim.

3 200 200 Elim.

4 1000 200 Single tour.

5 500 500 Single tour.

6 2000 2000 Single tour.

7 3000 6000 Single tour.

In agreement with the above-described operating mode and performance criteria, the

results obtained with the GA are presented in table 4. The reported computational times

correspond to only one GA run. For a more meaningful appreciation of the result quality,

figure 5 also shows the gap between the best solution found by the GA and the optimum

provided by SBB. Moreover, 2% and 5%-dispersions appear in figure 6.

Table 4. Results with the GA

Example 1 2 3 4 5 6 7

Best

solution
166089 120799 356635 958778 1958190 3961817 498854

CPU time < 1 s. < 1 s. 1 s. 8 s. 19 s. 14 min. 1.23 h.

The first example allows validating the good behaviour of the GA, since the best found

solution is almost equal to the MP methods optimum. Besides, the dispersions show that all

 21

the runs reach this value. Furthermore, an important decrease in the objective function mean

value in the population is observed. The latter falls from 409868 to 170991 between the first

(randomly generated) generation and the last one, i.e. 58%. The computational time is very

low.

0

0,5

1

1,5

2

2,5

3

3,5

4

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

G
ap

 w
ith

 S
B

B
 o

pt
im

um
 (

%
)

Figure 5. Distance between SBB optima and GA results

With regard to example 2, similar trends are noticed. However, this good performance is

now underlined by the fact that for this instance, DICOPT++ had been trapped in a local

optimum, corresponding to a plant that showed a different structure from the optimal one

located by SBB and the GA. That means that the stochastic method did enable to get around

the obstacle constituted by sub-optimal solutions. Both 2% and 5%-dispersions, as well as

computational time, are excellent too.

 22

0

10

20

30

40

50

60

70

80

90

100

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

%
 r

un
s

2%-Disp.
5%-Disp.

Figure 6. 2% and 5%-dispersions of GA runs

For example 3, results seem similar another time, since the optimum determined by the

deterministic methods is approached with a very good precision by the GA (the distance to the

optimum is lower than 0.01%). But the dispersions graph belies this assertion. Indeed, the

2%-dispersion is equal to 6%, meaning that a great proportion of the GA runs could not reach

the optimum. This behaviour is actually due to a local optimum, and the analysis of the

variable set at GA solution proves that some part of the runs stayed trapped on it. This local

optimum shows, just as for example 2, a structure different from that of SBB optimum, as that

can be observed in figure 7 : case (a) is the best one, which has been identified by the GAMS

solvers. However, in spite of this failing, it is to recall that the optimum was finally

determined. Moreover, 82% of the runs provide a result lying up to 5% from the optimal

solution, which is still an acceptable value from an economic point of view (let us recall that

we are considering a plant investment cost).

Then, from example 4 to example 7, the GA efficiency gradually deteriorates. The best

solution found within the 100 runs is more distant from the deterministic optimum when the

instance complexity increases. This gap to the optimum is still acceptable but reaches 3.5%

 23

for example 7. Actually, above example 4, the integer variable set of the optimal solution

found by SBB cannot be identified by the GA.

(a)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(b)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(a)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(a)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(b)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(b)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

Figure 7. Structures of optima found for example 3

Concerning result repeatability, 2%-dispersion does not show a steady evolution.

Nevertheless, for all instances, 5%-dispersion is quite close to 100%, meaning that the best

result found by the GA is quite often approached by all runs. This remark induces that the GA

proves a quite good robustness in its ability to determine an acceptable result, even if the

optimum is not located for the most complex plant instances.

It is quite difficult to give a reliable explanation to the fact that GA performances decrease

for the last examples. It can be however related with the number of feasible solutions visited

during a run. Figure 8 shows, for the four last examples, the ratio of feasible individuals in the

population at last generation : this ratio clearly decreases when the example complexity

increases. Thus, it is obvious that GA faces more difficulties to find results very close to the

optimum when the feasible individuals only represents about 40 % of the global population,

for problem 6 and 7. It is to note that, despite this difficulty to find feasible solutions, the GA

is able to locate the feasible space for all instances : there is no failed run that would mean

that no one feasible solution was found during the whole search.

 24

0

10

20

30

40

50

60

0 1 2 3 4 5

F
ea

si
bl

e
so

lu
tio

n
ra

tio
 (

%
)

Ex. 4 Ex. 5 Ex. 6 Ex. 7

Figure 8. Evolution of feasible solution ratio in last generation

Finally, in respect of computational times, these ones always stand comparison with those

of the SBB solver. One run takes indeed less time than the MP technique for the latest

examples, and even five times quicker for example 7. This competitive feature must be

moderated by the fact that SBB ensure an optimal solution.

So, to conclude on genetic algorithm performance, it is obvious that it cannot equal SBB

efficiency, since it hardly identifies the optimal plant structure when the example size is very

high. Examples 6 and 7 were studied in order to drive the optimisation method performances

to their limit : indeed, the combinatory effect prevents the GA from approaching the optimum.

However, the repeatability of GA solutions, measured through 2% and 5%-dispersions,

highlights the stochastic method ability to locate feasible, good quality solutions, within a

reasonable computational time.

5. Conclusions

This work tackled three optimisation techniques commonly used in Process Engineering, in

order to evaluate and compare their performances on a typical batch plant design problem.

 25

This issue is formulated as a complex, NP-hard, MINLP problem. A set of seven increasing

size examples was created in order to consider complexity as a parameter of the study.

First, two Mathematical Programming methods from the GAMS modelling environment

(Brooke et al.
22
) were investigated. The Outer Approximation technique, implemented in the

DICOPT++ solver, failed to give any result as soon as the problem exceeds a certain size.

Moreover, it was proved that it might easily stay trapped in a local optimum. On the other

hand, a Branch & Bound method, extended to MINLP problem treatment and available in the

SBB module, was tested. This latter could solve all the examples to optimality, in increasing

but reasonable computational times.

Besides, a stochastic technique, namely a genetic algorithm, was used to solve the seven

instances. This one was able to provide a feasible, good quality result, for all instances.

However, the distance between the optimum and the GA result increases with the problem

complexity. CPU time is comparable and sometimes even better than SBB’s one. But finally,

SBB seems to be the best fitted technique for this “equation-oriented” problem formulation,

since the result optimality is a great advantage with respect to the GA.

However, two kinds of restriction must be considered, apart from the direct solving

efficiency of the Branch & Bound method. Actually, the study did not, at any moment,

account for the necessary effort to implement the studied optimisation methods. On the one

hand, GAs are simple to implement, show an easy-understanding operating mode, and are a

priori a generic method, adaptable to a large range of problems. On the other hand, the MP

methods call for an important formulation effort that is based on a harsh study of the

mathematical properties of the involved functions, and that requires time and experience.

These are the prices for optimal results.

Besides, it is to underline that the considered model relies on assumptions that constitute a

weakness from the realism point of view. Going into the details of the plant description,

 26

taking operating conditions into account through process variables, adding plant scheduling

features, or only considering the unit volumes as discrete variables : all of these strategies

might strongly penalize the deterministic methods. On the contrary, GAs should be able to

tackle efficiently such kinds of formulation, that would not be necessarily built in an

“equation-oriented” way. But, despite these remarks, mathematical formulations and

deterministic solution techniques should be used whenever possible. Apart from the guarantee

to obtain optimal solutions, the methods force to apply a reasonning on the problem, then

producing an “understanding” of the system and of its variables. No such “understanding” is

proposed by stochastic techniques results.

Acknowledgements

We fully appreciated the technical support from the gridification project Grid’5000,

directed by Michel Daydé from ENSEEIHT (Toulouse). We are particularly greatful to Iréa

Touche, who transposed our code on the cluster and made all the necessary modifications in

order to have the computations presented in the study completed.

References

(1) Padberg M.; Rinaldi, G. A branch-and-cut algorithm for the resolution of large scale symmetric

travelling salesman problems. SIAM Rev. 1991, 33, 60.

(2) Hao, J. K.; Dorne R. Study of genetic search for the frequency assignment problem. Lecture

Notes in Computer Science; Springer Verlag: 1996, 1063, 333.

(3) Lee, S.; Grossmann, I. E. Global optimization of nonlinear generalized disjunctive

programming with bilinear equality constraints : applications to process networks. Comput. Chem.

Eng. 2003, 27, 1557.

 27

(4) Teh, Y. S.; Rangaiah, G. P. Tabu search for global optimization of continuous functions with

application to phase equilibrium calculations. Comput. Chem. Eng. 2003, 27, 1665.

(5) Jain, A.; Srinivasalu, S. Determination of an optimal unit pulse response function using real-

coded genetic algorithms. J. Hydrol. 2005, 303, 199.

(6) Zamora, M. Z.; Grossmann, I. E. A global MINLP optimization algorithm for for the synthesis

of heat exchanger networks with no stream splits. Comput. Chem. Eng. 1998, 22, 367.

(7) Guillén, G.; Badell, M.; Espuña, A.; Puigjaner, L. Simultaneous optimization of process

operations and financial decisions to enhance the integrated planning/scheduling of chemical supply

chains. Comput. Chem. Eng. 2006, 30, 421.

(8) Ravemark, D. E.; Rippin, D. W. T. Optimal design of a multiproduct batch plant. Comput.

Chem. Eng. 1998, 22, 177.

(9) Dedieu, S.; Pibouleau, L.; Azzaro-Pantel, C.; Domenech, S. Design and retrofit of

multiobjective batch plants via a multicriteria genetic algorithm. Comput. Chem. Eng. 2003, 27, 1723.

(10) Montagna, J. M.; Vecchietti, A. R. Retrofit of multiproduct batch plants through generalized

disjunctive programming. Math.Comp. Model. 2003, 38, 465.

(11) Wolpert, D. H.; Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1997, 1, 67.

(12) Grossmann, I. E. Review of nonlinear mixed-integer and disjunctive programming techniques.

Opt. Eng. 2002, 3, 227.

(13) Biegler, L. T.; Grossmann, I. E. Retrospective on optimization. Comput. Chem. Eng. 2004, 28,

1169.

(14) Hao, J. K.; Galinier, P.; Habib, M. Métaheuristiques pour l’optimisation combinatoire et

l’affectation sous contrainte. Rev. Intell. Artif. 1999, 13, 121.

(15) Gupta, O. K.; Ravindran, V. Branch and bound experiments in convex nonlinear integer

programming. Manag. Sc. 1985, 31 ,1533.

(16) Ryoo, H. S.; Sahinidis, N. V. Global optimization of nonconvex NLPs and MINLPs with

applications in process design. Comput. Chem. Eng. 1995, 19, 551.

 28

(17) Smith, E. M. B.; Pantelides C. C. A symbolic reformulation/spatial branch-and-bound

algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 1999, 23, 457.

(18) Geoffrion, A. M. Generalized benders decomposition. J. Opt. Th. Appl. 1972, 10, 237.

(19) Duran, M. A.; Grossmann, I. E. An outer-approximation algorithm for a class of mixed-integer

nonlinear programs. Math. Prog. 1986, 36, 307.

(20) Westerlünd, T.; Petterson, F. A cutting plane method for solving convex MINLP problems.

Comput. Chem. Eng. 1995, 19, S131.

(21) Raman, R.; Grossmann, I. E. Modelling and computational techniques for logic based integer

programming. Comput. Chem. Eng. 1994, 18, 563.

(22) Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. GAMS User’s Guide; GAMS Development

Corporation, 1998.

(24) Leyffer, S. User manual for MINLP_BB; University of Dundee Numerical Ananlysis Report

NA/XXX: Dundee, USA, 1999.

(25) Westerlünd, T.; Lundqvist, K. Alpha-ECP, Version 5.04. An interactive MINLP-solver based

on the extended cutting plane method; Report 01-178-A, Process Design Laboratory, Abo Akademi

University: Abo, Finlande, 2003.

(26) Kirkpatrick, S.; Gelatt Jr., C. D.; Vecchi, M. P. Optimization by simulated annealing; IBM

Research Report RC9355, 1982.

(27) Holland, J. H. Adaptation in natural and artificial systems; University of Michigan Press, Ann

Arbor: MI, 1975.

(28) Beyer, H. G.; Schwefel, H. P. Evolution Strategies, a comprehensive introduction. Natur.

Comp. Int. J. 2002, 1, 3.

(29) Yang, Y. W.; Xu, J. F.; Soh, C. K. An evolutionary programming algorithm for continuous

global optimization. Eur. J. Oper. Res. 2006. 168, 354.

(30) Grossmann, I. E.; Sargent, R. W. H. Optimum design of multipurpose chemical plants. Ind.

Eng. Chem. Proc. Des. Dev. 1979, 18, 343.

(31) Kocis, G. R.; Grossmann, I.E. Global optimisation of nonconvex mixed-integer non linear

programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 1988, 27, 1407.

 29

(32) Modi, A. K.; Karimi, I. A. Design of multiproduct batch processes with finite intermediate

storage. Comput. Chem. Eng. 1989, 13, 127.

(33) Patel, A. N.; Mah, R. S. H.; Karimi, I. A. Preliminary design of multiproduct non-continuous

plants using simulated annealing. Comput. Chem. Eng. 1991, 15, 451.

(34) Wang, C.; Quan, H.; Xu, X. Optimal design of multiproduct batch chemical process using

genetic algorithms. Ind. Eng. Chem. Res. 1996, 35, 3560.

(35) Wang, C.; Quan, H.; Xu, X. Optimal design of multiproduct batch chemical process using tabu

search. Comput. Chem. Eng, 1999, 23, 427.

(36) Wang, C.; Xin, Z. Ants foraging mechanism in the design of batch chemical process. Ind. Eng.

Chem. Res. 2002, 41, 6678.

(37) Ponsich, A.; Azzaro-Pantel, C.; Pibouleau, D.; Domenech, S. Constraint handling strategies in

genetic algorithms – Application to optimal batch plant design. Chemical Engineering and Processing.

Under Press.

(38) Viswanathan, J.; Grossmann, I. E. A combined penalty function and outer-approximation

method for MINLP optimisation. Comput. Chem. Eng. 1990, 14, 769.

(39) Floudas, C.A. Non-linear and mixed-integer optimization, Fundamentals and applications;

Oxford University Press, 1995.

(40) Deb, K. An efficient constraint handling method for genetic algorithms. Comp. Meth. Appl.

Mech. Eng. 2000, 186, 311.

(41) Michalewicz, Z.; Schoenauer, M. Evolutionary algorithms for constrained parameters

optimization problems. Evol. Comp. 1996, 4, 1.

(42) Raghuwanshi, M. M.; Kakde O. G. Survey on multiobjective evolutionary and real coded

genetic algorithms. Proceedings of the 7
th
 International Conference on Adaptative and Natural

Computing Algorithms: Coimbra (Portugal), March 21
st
-23

rd
, 2005.

(43) Deb, K.; Agrawal, R. B. Simulated binary crossover for continuous search space. Complex

Sys. 1995, 9, 115.

(44) Goldberg, D.E. Genetic algorithms in search, optimization and machine learning; Addison-

Wesley Publishing Company Inc.: MA, 1989.

 30

(45) Coello Coello, C. A.; Mezura Montes, E. Constraint-handling in genetic algorithms through

the use of dominance-based tournament selection Advanced Engineering Informatics. 2002, 16, 193.

Appendix A. Nomenclature

aj : cost factor for batch stage j.

bk : cost factor for semi-continuous stage k.

cs : cost factor for intermediate storage tanks.

H : time horizon [h].

Hi : production time of product i [h].

i : index for products.

I : total number of products.

j : index for batch stages.

J : total number of batch stages.

k : index for semi-continuous stages.

K : total number of semi-continuous stages.

mj : number of parallel out-of-phase items in batch stage j.

nk : number of parallel out-of-phase items in semi-continuous stage k.

prodi : global productivity for product i [kg.h
-1
].

Qi : demand in product i [kg.h
-1
].

S : total number of sub-processes.

Vj : size of batch stage j [L].

Vs* : size of intermediate storage tank [L].

αj : power cost coefficient for batch stage j.

βk : power cost coefficient for semi-continuous stage k.

γs : power cost coeficient for intermediate storage.

 31

Appendix B. Data for the tackled examples

Some data are common to all examples, and are gathered together in tables 5 (cost factors)

and 6 (time horizon, size factors for semi-continuous units and storage tanks). Data specific to

each example are presented from tables 7 to 10.

Table 5. Cost factors

aj 250
Batch stages

αj 0.60

bk 370 Semi-continuous

stages βk 0.22

cs 278 Intermediate

storage tanks γs 0.49

Table 6. General data

Time horizon H 6000 [h]

Duty factors for semi-continuous stages Dik 1 [L.kg
–1
.h
–1
]

Size factors for storage tanks Sis 1 [L.kg
–1
]

Table 7. Data for example 1

General data
Recipe for each sub-

process

I 2 s = 1 {B1,B2,B3}

J 3

K 0

S 1

Q [kg] {150.10
3
, 200.10

3
}

 B1 B2 B3

i = 1 2 3 4
Sij

i = 2 4 6 3

i = 1 6 16 3
pij

0

i = 2 7.5 8 2.25

i = 1 0.4 0.35 0.15
gij

i = 2 0.6 0.5 0.2

i = 1 0.4 0.3 0.2
dij

i = 2 0.4 0.3 0.2

 32

Table 8. Data for example 2

General data Recipe for each sub-process

I 2

J 3
s = 1

{SC1, B1, SC2, B2,

SC3, B3, SC4}

K 3

S 1

Q {kg] {150.10
3
, 200.10

3
}

 B1 B2 B3

i = 1 2 3 4
Sij

i = 2 4 6 3

i = 1 6 16 3
pij

0

i = 2 7.5 8 2.25

i = 1 0.4 0.35 0.15
gij

i = 2 0.6 0.5 0.2

i = 1 0.4 0.3 0.2
dij

i = 2 0.4 0.3 0.2

Table 9. Data for example 3

General data Recipe for each sub-process

I 3 s = 1 {SC1, B1, SC2}

J 4

K 6
s = 2

{SC3, B2, SC4, B3,

SC5, B4, SC6}

S 2

Q [kg]
{437.10

3
, 324.10

3
,

258.10
3
}

 B1 B2 B3 B4

i = 1 8.28 9.70 2.95 6.57

i = 2 5.58 8.09 3.27 6.17 Sij

i = 3 2.34 10.30 5.70 5.98

i = 1 1.15 9.86 5.28 1.20

i = 2 5.95 7.01 7.00 1.08 pij
0

i = 3 3.96 6.01 5.13 0.66

i = 1 0.20 0.24 0.40 0.50

i = 2 0.15 0.35 0.70 0.42 gij

i = 3 0.34 0.50 0.85 0.30

i = 1 0.40 0.33 0.30 0.20

i = 2 0.40 0.33 0.30 0.20 dij

i = 3 0.40 0.33 0.30 0.20

 33

Examples 5 to 7 are built just by reproducing several times the structure of example 4.

Example 5 represents two added up instances of example 4. Example 6 represents four added

up instances of example 4. Example 7 represents five added up instances of example 4. The

number of batch stages, semi-continuous stages and intermediate storage tanks can be

deducted from the structure of example 4, so as corresponding recipes. The size factors and

coefficients for the processing times computations keep being the same as in example 4. Thus,

no data is given for those last examples.

Table 10. Data for example 4

General data Recipe for each sub-process

I 3 s = 1 {SC1, B1, SC2, B2, SC3}

J 9

K 12

S 3

s = 2
{SC4, B3, SC5, B4, SC6,

B5, SC7, B6, SC8}

Q [kg]
{437.10

3
, 324.10

3
,

258.10
3
}

s = 3
{SC9, B7, SC10, B8,

SC11, B9, SC12}

 B1 B2 B3 B4 B5 B6 B7 B8 B9

i = 1 8.28 6.92 9.70 2.95 6.57 10.60 7.59 6.74 8.90

i = 2 5.58 8.03 8.09 3.27 6.17 6.57 5.23 4.21 5.35 Sij

i = 3 2.34 9.19 10.30 5.70 5.98 3.14 7.41 3.92 6.63

i = 1 1.15 3.98 9.86 5.28 1.20 3.57 6.25 2.22 10.00

i = 2 5.95 7.52 7.01 7.00 1.08 5.78 4.38 4.57 4.02 pij
0

i = 3 3.96 5.07 6.01 5.13 0.66 4.37 3.86 1.39 5.89

i = 1 0.20 0.36 0.24 0.40 0.50 0.40 0.47 0.16 0.68

i = 2 0.15 0.50 0.35 0.70 0.42 0.38 0.29 0.25 0.51 gij

i = 3 0.34 0.64 0.50 0.85 0.30 0.22 0.32 0.27 0.45

i = 1 0.40 0.29 0.33 0.30 0.20 0.35 0.39 0.18 0.26

i = 2 0.40 0.29 0.33 0.30 0.20 0.35 0.39 0.18 0.26 dij

i = 3 0.40 0.29 0.33 0.30 0.20 0.35 0.39 0.18 0.26

 34

Appendix C. SBX crossover

Deb and Agrawal
43
 make the assumption that the probability distribution described in

figure 1 (see section 4.2.2), that reproduces the single-point crossover for binary coding, can

be approached by the following polynomial distribution, of order n.

 C(β) = 0,5(n+1)βn
 on the left-hand side of the parent, (7)

 C(β) =
2n

1)1n(5,0 ++ β on the right hand side.

According to the previous expression, for higher n values, the crossover procedure will have a

more “contracting” effect, i.e. a greater probability to create children close to the parents.

Then, drawing a random number u between 0 and 1 and according to the probability

distribution C(β), the corresponding abscissa β* is computed by the expression :

 β* = 1n
1

)u2(+ if u ≤ 0.5, (8)

 β* =
1
1

)1(2
1 +









−

n

u
 elsewhere.

In case of bounded variables, equation (8) becomes :

 β* = 1
1

1)(+nuα if u ≤ 1/α, (9)

 β* =
1
1

12
1

+








−

n

uα
 elsewhere.

With :

α1 =
)1(

2)(2 +−− nα (10) α2 = [])2()1(

)1()2(
,min21 xxxx

yy
UL −−

−
+ (11)

It is to notice that in equation (11), x
(1)
 is implicitly lower than x

(2)
.

Finally, the children offspring are created :

 35

 y
(1)
 = 0,5.[(1+β*).x(1) + (1–β*).x(2)] (12)

 y
(2)
 = 0,5.[(1–β*).x(1) + (1+β*).x(2)]

This procedure is carried out for all loci with a probability px. If the locus codes an integer

variable, the decimal part is truncated to get a consistent child offspring. The px probability is

used to control the disturbance of the chromosomes, to ensure that only a part of them is

modified by the crossover (like in a single-point crossover, for binary coding). Thus, two

parameters must be set for the SBX crossover implementation. This was realized thanks to

preliminary sensitivity analyses :

- the order of the polynomial probability distribution ; here, n was chosen equal to 1

(which does not characterize a “contracting” but an “expanding” procedure).

- the px probability is set to 0.2.

List of captions

Figure 1. Probability distribution for the location of an offspring, SBX crossover

Figure 2. Structures of optima found by DICOPT++ (a) SBB (b)

Figure 3. Computational time for SBB

Figure 4. 2% and 5%-dispersions

Figure 5. Distance between SBB optima and GA results

Figure 6. 2% and 5%-dispersions of GA runs

Figure 7. Structures of optima found for example 3

Figure 8. Evolution of feasible solution ratio in last generation

