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Abstract 

Due to their large variety of applications, complex optimisation problems induced a great effort to 

develop efficient solution techniques, dealing with both continuous and discrete variables involved in 

non-linear functions. But among the diversity of those optimisation methods, the choice of the relevant 

technique for the treatment of a given problem keeps being a thorny issue. 

Within the Process Engineering context, batch plant design problems provide a good framework to test 

the performances of various optimisation methods : on the one hand, two Mathematical Programming 

techniques – DICOPT++ and SBB, implemented in the GAMS environment – and, on the other hand, 

one stochastic method, i.e. a genetic algorithm. Seven examples, showing an increasing complexity, 

were solved with these three techniques. The result comparison enables to evaluate their efficiency in 

order to highlight the most appropriate method for a given problem instance. It was proved that the 

best performing method is SBB, even if the GA also provides interesting solutions, in terms of quality 

as well as of computational time. 
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1. Introduction 

A great variety of applications, drawn from a wide range of investigation areas, can be 

formulated as complex optimisation problems. It covers, for instance, the famous travelling 

man problem studied by Padberg and Rinaldi
1
 as well as frequencies allocation for radio-

mobile networks (Hao and Dorne
2
), process networks optimisation (Lee and Grossmann

3
), 

physicochemical equilibrium calculations (Teh and Rangaiah
4
), or hydrology computing (Jain 

and Srinivasalu
5
). 

This large number of optimisation problems arises from models that have to enable, for 

industrial requirements, a truly realistic representation of the system they account for. 

Consequently, these models tend to show an increasing sophistication degree that derives into 

higher complexity and, thus, solution difficulties. The complexity of the formulated models is 

basically due to the nature of the functions and of the variables involved in the optimisation 

problem. The former ones may be not only non-linear, but moreover, they often prove to be 

non-convex, which is a strongly penalizing characteristic in the typical minimization case. 

Then, for constrained problem, determining the feasible space turns to be a really difficult 

task. With regard to variable nature, most of engineering problems consider both continuous 

and discrete variables, introducing discontinuities in the objective function and in the search 

space : those are called mixed-integer problems. Furthermore, the discrete variables induce an 

important combinatorial effect : this point is emphasized with NP-hard problems, for which 

no algorithm leading to polynomial solution times is known. Since industrial size problems 

have up to several thousands variables and constraints, the resulting computational times may 

easily become prohibitive. 

In order to face these problems, a significant investigation effort has been carried out to 

develop efficient and robust optimisation methods. At the beginning, this aim was purchased 

especially in the Operational Research and Artificial Intelligence areas. But the trend was 



 3 

subsequently followed by the Process System Engineering community, since this one 

provides a wide number of applications formulated as complex optimisation problems. A 

typical reference is constituted by design problems : heat or mass exchanger networks 

(Zamora and Grossmann
6
), supply chain design (Guillén et al.

7
), multiproduct (Ravemark and 

Rippin
8
) or multipurpose (Dedieu et al.

9
) batch plant design or retrofitting (Montagna and 

Vecchietti
10
). 

As a consequence, a great diversity of optimisation methods was implemented to meet the 

industrial stakes and provide competitive results. But if they prove to be well fitted to the 

particular case they purchase, these techniques performance cannot be constant whatever the 

treated problem is. Actually, a method efficiency for a particular example is hardly 

predictable, and the only certainty we have is expressed by the No Free Lunch theory 

(Wolpert and Macready
11
) : there is no method that outdoes all the other ones for any 

considered problem. This feature generates a common lack of explanation concerning the use 

of a method for the solution of a particular example, and usually, no relevant justification for 

its choice is given a priori. 

This lack of justification for the use of an optimisation method is the issue of the present 

study. The objective is then to propose some guidelines that may be useful for the choice of 

an appropriate optimisation technique. Obviously, the quoted No Free Lunch theory prevents 

from drawing any general conclusions, which could be extended to any class of problems. So, 

the framework of this paper is restricted to one particular Process Engineering problem, i.e. 

one typical batch plant design problem formulation. This Mixed-Integer Non Linear 

Programming (MINLP) problem provides indeed a good application aid to evaluate several 

methods efficiency. 

The study is divided into five sections. The general aims and the adopted methodology are 

developed in section 2. Section 3 describes the investigated optimisation methods. Some 
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typical results are analysed in section 4. Finally, conclusions and perspectives are presented in 

section 5. 

 

2. Problem position 

The following section recalls some essential features firstly about the existing MINLP 

methods, and then about classical formulations for batch plant design. Then, the methodology 

considered in the study will be stated in detail. 

2.1 A great diversity of optimisation methods 

Among the diversity of optimisation techniques, two important classes have to be 

distinguished : deterministic methods and stochastic ones. Complete reviews are proposed by 

Grossmann
12
 or Biegler and Grossmann

13
 for the former class, and by Hao et al.

14
 for the 

latter one. 

The deterministic methods involve the verification of mathematical properties of the 

objective function and constraints, such as continuity or derivability. This working mode 

enables them to ensure to get an optimum, which is a great advantage. Among the 

deterministic class, the following ones stand out : the Branch & Bound methods (Gupta and 

Ravindran
15
, Ryoo and Sahinidis

16
 and Smith and Pantelides

17
) ; the Generalized Benders 

Decomposition (Geoffrion
18
) and the Outer Approximation (Duran and Grossmann

19
) 

algorithms ; the Extended Cutting Plane method (Westerlünd and Petterson
20
) ; Disjunctive 

Programming methods (Raman and Grossmann
21
). Even though most of the above-mentioned 

methods keep being at academic level, some (commercial or free) computational codes are 

available : the SBB, BARON, DICOPT++ and LOGMIP solvers (within the GAMS modelling 

environment, see Brooke et al.
22
), MINLP_BB (Leyffer

24
) and αECP (Westerlünd and 

Lundqvist
25
). 



 5 

The second class, namely metaheuristics or stochastic methods, is based on the evaluation 

of the objective function at different points of the search space. These points are chosen 

through the use of a set of heuristics, combined with generations of random numbers. Thus, 

metaheuristics cannot guarantee to obtain an optimum. They are divided into neighbourhood 

techniques (Simulated Annealing, Kirkpatrick et al.
26
 ; Tabu Search, Teh and Rangaiah

4
) and 

evolutionary algorithms (genetic algorithms, Holland
27
 ; evolutionary strategies, Beyer and 

Schwefel
28
 ; evolutionary programming, Yang et al.

29
). 

 

2.2 Batch plant design framework 

Due to the growing interest for batch operating mode, a lot of studies deal with the batch 

plant design issue (Grossmann and Sargent
30
, Kocis and Grossmann

31
, Modi and Karimi

32
, 

Patel et al.
33
, Wang et al.

34,35,36
). Generally, the objective consists in the minimization of plant 

investment cost. 

The model formulation for batch plant design problems adopted in this paper is based on 

Modi’s approach (Modi and Karimi
32
). The formulation accounts for the synthesis of I 

products treated in J batch stages and K semi-continuous units (pumps, heat exchangers,...). 

The optimisation variables are the discrete number (mj for the batch stages and nk for the semi-

continuous ones) and continuous size (Vj and Rk) of the items of each stage. Moreover, S-1 

intermediate storage tanks, with size Vs*, divide the whole process into S sub-processes. The 

complete model will not be presented here, it is possible to report to Ponsich et al.
37
 to get the 

detailed formulation. The main feature is the minimization of the investment cost for all the 

items of the plant : 
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where αj and aj, βk and bk, γs and cs are classical cost coefficients (a complete nomenclature 

is provided in Appendix A). This problem is submitted to one major constraint, forcing the 

total production time for all products to be lower than a given time horizon H : 
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Then, the aim of batch plant design problems is to find the plant structure that respects the 

production requirements within the time horizon, while minimizing the economic criterion. 

The resulting MINLP problem proves to be non-convex and NP-hard (Wang et al.
34
). 

2.3 Aims and methodology 

As shown by the extent of literature devoted to optimisation methods, the performances 

have been substantially improved and the range of problems that can be solved is wider. 

However, the drawback is the lack of explanation concerning the use of a particular method. It 

is known that a method that is well-fitted to an example will give better results than a generic 

solution scheme. But most of times, the choice seems quite confused and is only justified by 

the good results obtained for particular cases. So, there still exists a deficiency of studies that 

would justify their use a priori. 

Thus, the aim of this work is to evaluate the behaviour of optimisation techniques in order 

to provide guidelines helping to choose the most appropriate one. Obviously, it will not be 

possible to tackle all the existing MINLP methods, but in order to keep the conclusions as 

general as possible, techniques deriving from both deterministic and stochastic classes will be 

tested. Besides, another restriction is constituted by the considered problem : as it was stated 

by the above-mentioned No Free Lunch theory, the conclusions will neither be extended to 

another problem class, nor to another formulation. 

So, these two remarks lead to develop the methodology basis for this work. To represent 

the deterministic class, solvers of the GAMS environment were chosen, since this optimisation 
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tool is widely used, and even stands as a reference for the solution of problems drawn from 

Process Engineering : the SBB and DICOPT++ modules, that carry out, respectively, a 

Branch & Bound procedure and the Outer Approximation method, were adopted. To illustrate 

the stochastic methods, genetic algorithms will be used since they have already shown their 

efficiency for batch plant design problems treatment, especially in cases of multiobjective 

optimisation. Furthermore, by managing a population of individuals, they are able to provide 

a set of good feasible solutions at the end of the search : a decision-maker could then choose 

among them which is the most profitable option. Concerning the benchmark model for the 

study, the equation-oriented formulation proposed by Modi and Karimi
32
 was adopted since it 

allows the use of Mathematical Programming methods. 

 

2.4 Example set 

Finally, the issue of the problem size has to be investigated too. Indeed, the combinatorial 

effect will make this point a crucial criterion within the objective of method evaluation. Thus, 

a set of increasing complexity examples, all formulated in the same way, will be used here as 

a bench for the three techniques. The comparison of the results obtained by every method 

enables to evaluate their performances and to judge the relevance of their use according to the 

studied problem instance. 

This set was built on the basis of two existing problems drawn from the batch plant design 

literature. The first one, consisting of only three batch stages, was chosen by Kocis and 

Grossmann
31
. The second example was proposed by Modi and Karimi

32
 : the plant, divided 

into two sub-processes, consists of four batch stages and six semi-continuous stages. This 

problem was already solved with various stochastic techniques : simulated annealing (Patel et 

al.
33
), genetic algorithm (Wang et al.

34
), tabu search (Wang et al.

35
) and finally ants foraging 
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method (Wang et al.
36
). The best solution found is equal to 362130, but slightly violates the 

time production constraint (Wang et al.
34
). 

Due to the data similarities between these two problems, one intermediate size and four 

higher size examples were built to have the set complete. Table 1 sums up the studied 

examples and their respective complexity (computed according to the expression 3
StageNumber

). 

All data corresponding to the tackled examples are available in Appendix B. 

Table 1. Examples set and associated complexity 

Example 
Stage 

number 

Intermediate 

Storage 

Product 

number 
Combinatory 

1 (Kocis and 
Grossmann

31
) 

3 0 2 2.70 10
1 

2 7 0 2 2.19 10
3
 

3 (Modi and Karimi32) 10 1 3 5.90 10
4
 

4 21 2 3 1.05 10
10
 

5 42 5 3 1.09 10
20
 

6 84 11 3 1.20 10
40
 

7 105 14 3 1.25 10
50
 

 

3. Investigated optimisation methods 

 

3.1 Mathematical Programming techniques 

This section will not present an exhaustive description of the methods implemented in the 

GAMS solvers, since they have been widely detailed in the devoted literature. An outline of 

the basic features and principles of the used algorithms will only be given. 

 

3.1.1 DICOPT++ 

The DICOPT++ solver relies on the Outer Approximation algorithm, initially developed 

by Duran and Grossmann
17
. This one works by decoupling the problem into one continuous 

NLP sub-problem and one MILP master problem. For the solution of the continuous sub-
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problem, the discrete variables are set to fixed values, corresponding to the result of the 

previous master problem. If feasible, the solution of the NLP (obtained by means of solver 

CONOPT3) provides an upper bound ZU of the initial problem. If the termination criterion is 

not met, then the integer master problem is built by linearizing the constraints at the NLP 

solution and adding them to all the linearizations computed in the previous iterations. 

The resulting MILP problem is solved with the CPLEX solver (having the continuous 

variables set to the last NLP solution values) in order to get a new lower bound ZL of the 

global problem. The accumulation of constraint linearizations enables to describe more and 

more precisely the feasible region. Consequently, the upper and lower bounds respectively 

decreases and increases monotonically, at each major iteration of the algorithm. The 

termination criterion is reached when a deterioration in the objective function is observed. 

The drawback of the algorithm is that non-convexities could disrupt the process, either by 

cutting regions of the feasible space with an invalid constraint linearization or by generating 

invalid lower bounds. Thus, modifications were proposed through local and global convexity 

tests (Kocis and Grossmann
31
) and augmented penalty (Viswanathan and Grossmann

38
). In 

spite of these additional features, computational experience showed that avoiding to cutting 

off the global optimum cannot be ensured. 

 

3.1.2 SBB 

The SBB solver looks like a classical Branch and Bound algorithm, and the whole 

sequence will not be recalled here (see for instance Floudas
39
). This constructive technique is 

based on the principle of separation of the initial problem by successively branching on the 

discrete variables and tightening their respective bounds. The resulting sub-problems are 

represented by nodes and relaxed to get continuous problems. Solving those relaxations 

provides either a lower bound to the global problem or an upper bound when the solution is 
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mixed integer and continuous, i.e. feasible. The bounds intersection is the termination 

criterion. 

The slight difference between a classical Branch & Bound method and SBB lies in the 

MINLP nature of the initial problem, which leads to non-linear relaxation for each node. 

These ones are solved with the NLP solver CONOPT3. It is to notice that, unlike DICOPT++, 

SBB does not need any MILP solver since the discrete variables are handled by the Branch & 

Bound procedure. Some SBB options are available to set the choice of the next variable to be 

branched on and of the next node to be treated. 

 

3.2 Stochastic method : Genetic Algorithms 

As previously, only the the genetic algorithms (GAs) basic principles (Holland
27
) are 

recalled and the following section just focuses on the specific parameters used in this study. 

3.2.1 General principles 

The principles of GAs lie on the analogy between a population of individuals and a set of 

solutions of some optimisation problem. The algorithm makes the solution set evolve towards 

a good quality, or adaptation, and mimics the rules of natural selection stated by Darwin : the 

weakest individuals will disappear while the best ones will survive and be able to reproduce 

themselves. By way of genetic inheritance, the characteristics that make these individuals 

“stronger” will be preserved generation after generation. 

The mechanisms implemented in the GAs reproduce this natural behaviour. Good solutions 

are settled by creating selection rules, that will state whether the individuals are adapted or not 

to the considered problem. Crossover and mutation operators then lead the population to 

evolve in order to obtain, at the end of the run, a set of good quality solutions. The heuristics 

are mixed with a strong stochastic feature, leading to a compromise between exploration and 

intensification in the search space, which contributes to GAs efficiency. 
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The algorithm presented in this study is adapted from a very classical implementation of a 

GA. A major difficulty in GAs use lies in parameter tuning. The quality of this tuning greatly 

depends on the user’s experience and problem knowledge. A sensitivity analysis was 

performed to set parameters such as population size, maximal number of computed 

generations or survival and mutation rates, to appropriate values. 

 

3.2.2 Coding and associated genetic operators 

The way the variables are encoded is clearly essential for GAs efficiency. The array 

representing the complete set of all variables is called a chromosome. It is composed of genes, 

each one encoding a variable by means of one or several locus/loci. A difference will be made 

between genes encoding discrete variables from those encoding continuous ones. The former 

ones are coded directly in a single-locus, integer-valued gene, containing the variable value. 

The associated loci are thus able to take the values 1, 2 and 3 (which are the only acceptable 

values for the item number of the stages). 

Concerning the real variables encoding, binary or similar encoding techniques, based on 

variable discretisation, received much attention from the evolutionary algorithms community. 

But real-coded GAs have proved their efficiency and even superiority on binary coding in 

many cases (see for instance Deb
40
). Thus, real-value genes were adopted to represent the 

continuous variables. Since these ones are bounded, they can be written in a reduced form, as 

a real number α defined within 0 and 1 that is coded directly on a real-value locus. A mixed 

real-discrete chromosome is obtained, that will require specific genetic operators. 

Firstly, unlike binary coding for which crossover procedures are carried out for the whole 

chromosome structure, the crossover methods for real-coded GAs are applied gene after gene. 

The most common methods usually rely on arithmetical or geometrical combinations of 

parent genes, such as it is presented in equations (3) and (4). 
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  yk
(1)
 = α.xk(1) + (1–α).xk(2)             (3) 

  yk
(2)
 = (1–α).xk(1) + α.xk(2) 

  yk
(1)
 = [xk

(1)
]

α
.[xk

(2)
]
(1–α)

             (4) 

  yk
(2)
 = [xk

(1)
]
 (1–α)

.[xk
(2)
]
 α
 

Where xk
(1)
 and xk

(2)
 represent genes k of both parents and yk

(1)
 and yk

(2)
 those of the 

resulting children. α is a fixed parameter within 0 and 1. Then, different methods are 

implemented according to the way of computing α (Michalewicz and Schoenauer41). Another 

kind of crossover techniques works by arithmetical combinations of parent offspring too, but 

also uses informations from the parent quality (see Raghuwanshi and Kakde
42
). This is the 

case of the simplex method (SPX) that builds a new individual by analogy with the simplex 

technique ; or of the direction based crossover (DBX) : if parent x
(1)
 is better than parent x

(2)
, 

i.e. f(x
(1)
)< f(x

(2)
) considering minimization, then one child offspring is created according to 

the following expression : 

y = r.(x
(1)
–x

(2)
) + x

(1)
  (0< r< 1)           (5) 

The technique chosen for this study is a simulated binary crossover (SBX), proposed by 

Deb and Agrawal
43
. The method consists in generating a probability distribution around 

parent solutions to create two offspring. This probability distribution is chosen in order to 

mimic the single-point crossover behaviour in binary coded GAs, and mainly involves the two 

following features : 

• The mean decoded parameter value of two parent strings is invariant among the 

resulting children strings. 

• If the crossover is applied between two child strings at the same cross-site as that 

used to create them, the same parents strings will result. 
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These assumptions generate higher probabilities to create offsprings close to the parents 

than away from them. The resulting probability distribution trend is illustrated in figure 1, and 

can be interpolated through a polynomial distribution. The addition of a random feature then 

enables to compute the weight factors for both parents x
(j)
 in equation (3), to get the two 

children y
(j)
. 

0

P1 P2

0

P1 P2  

Figure 1. Probability distribution for the location of an offspring, SBX crossover 

The procedure for the generation of two children from two parent offspring is fully 

explained in Appendix C. It is to note that this crossover procedure is carried out for each 

locus of the chromosome (with some probability measure) and, as a consequence, the gene 

position along the string does not matter. However, even though the SBX crossover does not 

induce any problem for real variables, it may lead to real values for the discrete genes of the 

resulting offspring. So, in this latter case, these real values were truncated in order to keep 

only their integer part. 

With respect to mutation, specific operators had to be implemented according to variable 

nature. For the discrete ones, an intuitive subtraction of one unit to the bit value was adopted, 

when possible. This technique is not a symmetric operator, thus it cannot prevent the 

algorithm from being trapped in some local optimum ; but it proved to lead efficiently 

towards minimization. 
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On the other hand, for real-coded genes, an inventory of the variety of mutation methods is 

proposed in Michalewicz and Schoenauer
41
or Raghuwanshi and Kakde

42
. They usually rely 

on a noise added to the initial gene value, according to a specific probability distribution 

(uniform, normal, polynomial…). Some strategies allow important disturbances at the 

beginning of a run, and then reduce the possible range of variation around the initial gene 

when the generation number becomes higher (and, thus, when the located individuals are 

supposed to be close to the optimal solution). In this work, a uniform distribution probability 

was chosen (without any change during the run), fitting into the scheme of a diversification 

promoting strategy. 

 

3.2.3 Constraint handling 

Since constraints cannot be easily implemented just by additional equations, as in MP 

techniques, their handling is a key-point of GAs. Indeed, an efficient solution will widely 

depend on the correct choice of the constraint handling technique, in terms of both result 

quality and computational time. In the framework of the studied problem, the constraint on 

variable bounds is intrinsically considered in the variable encoding while the constraint on 

productivities is implemented in the model. So the only constraint to be explicitly handled by 

the GA is the time constraint formulated in equation (2), which imposes the I products to be 

synthesized before a time horizon H. 

A previous work (Ponsich et al.
37
) proved that the choice of the most adequate constraint 

handling technique depends on the treated example size. Concerning small instances, that are 

not really severely constrained, an elimination method is adopted : the infeasible individuals 

should not be able to survive to the next generation. This is carried out by computing the 

fitness Fi of each individual i, according to its objective function fi (for the minimization 

case) : 
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  Fi = fmax – fi  if individual i is feasible          (6) 

  Fi = 0  elsewhere. 

fmax is the worst objective function in the current generation. Then, the implementation of 

the classical roulette wheel (Goldberg
44
) prevents infeasible individuals from passing the 

selection step. 

But for more complex problems, the elimination technique will induce very expensive 

computational costs, essentially because of the need to randomly determine an initial 

population that must be feasible. So, for those cases, a tournament method based on 

domination rules was prefered. This method relies on rules proposed by Deb
40
 and Coello 

Coello and Mezura Montes
45
, by means of an analogy with multiobjective optimisation. 

Basically, they state that : (i) a feasible individual dominates an infeasible one ; (ii) if two 

individuals are feasible, the one with the best objective function wins ; (iii) if two individuals 

are infeasible, the one with the smallest constraint violation wins. 

Then, these rules are implemented in a tournament : a fixed number of competitors is 

randomly taken in the population and, among them, those that will survive are chosen thanks 

to the above-mentioned rules. Here, a single tournament procedure was used, meaning that the 

competitor number is equal to the population size while the winner number is the survivor 

number : then, all the surviving individuals are determined in only one tournament instance 

for each selection step. 

An additional stochastic feature was introduced for the largest size examples, in order to 

emphasize the population diversification. This was carried out through a probability Sr of 

either selecting an individual according to the domination rules, or of choosing it randomly. 

Finally, the elimination technique was implemented from example 1 to example 3, while the 

tournament based on domination rules was applied for example 4 to 7, with Sr=0.95 for 

examples 6 and 7. 
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4. Numerical results and interpretation 

Computational results given by the three above-mentioned optimisation techniques are 

presented in this section. Then, from the perspective of comparing the techniques efficiency, 

they are analysed in terms of quality and computational time. The number of function calls 

could have been studied instead of the time criterion, but the former cannot be got from the 

output files of the GAMS solvers (Brooke et al.
22
). The CPU time was measured for a Compaq 

Workstation W6000. 

 

4.1 Mathematical Programming techniques 

The GAMS solvers were used without any initialisation. This presents a great advantage on 

solvers such as those available in the IMSL library. So, for the first relaxed MINLP problem, 

continuous and binary variables are automatically initialised, respectively, in the middle of 

their definition range and to 1. The results obtained with DICOPT++ and SBB are provided in 

table 2. 

The first obvious comment is that even though DICOPT++ is really performing for the 

three first examples, it failed to give any feasible result during a whole run for the remaining 

ones. The computational time was limited to 24 hours, afterwards it was considered that no 

result would be found. This is a quite deceiving trend, and from the output file it was 

observed that no feasible NLP sub-problem was produced through the previous MILP 

solution. 

Table 2. Results with GAMS solvers 

Example 1 2 3 4 5 6 7 

Found 

optimum 
166079 122470 356610 - - - - 

DICOPT++ 

CPU time < 1 s. < 1 s. < 1 s. - - - - 
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Found 

optimum 
166079 120777 356610 957270 1925887 3865106 4786804 

SBB 

CPU time < 1 s. < 1 s. < 1 s. 4 s. 35 s. 29 min. 6.4 h. 

 

On the other hand, SBB proves a great efficiency since it was able to provide an optimal 

result for each treated instance. Moreover, the result obtained for example 2 highlights 

another failure of DICOPT++ : the solution given by the latter is 1.4 % higher than SBB’s 

one. This remark seems to point out that DICOPT++ stayed trapped in a local optimum, and 

this assumption can be confirmed by comparing the integer variable set of both results : the 

two plants show different structures, particularly for batch stages 1 and 2. Figure 2 gives an 

illustration of both computed plants. The optimum determined by SBB is thus better than that 

found by DICOPT++. 

B1 B2 B3SC1 SC2 SC3 SC4

(a)

B1 B2

B3SC1 SC2 SC3 SC4

(b)

B1 B2 B3SC1 SC2 SC3 SC4

(a)

B1 B2 B3SC1 SC2 SC3 SC4

(a)

B1 B2

B3SC1 SC2 SC3 SC4

(b)

B1 B2

B3SC1 SC2 SC3 SC4

(b)

 

Figure 2. Structures of optima found by DICOPT++ (a) SBB (b) 

With regard to SBB computational times, the first instances are solved very quickly, but 

having the plant size growing, the time increases exponentially and reaches more than 6 hours 

for the last example. This trend is consistent with the NP-hard nature of the problem, and is 

confimed by the curve shown in figure 3. 

Finally, as an intermediate conclusion for the Mathematical Programming methods, the 

Branch & Bound algorithm proved a great efficiency. The computational time increases a lot 

for the last examples, but optimal solutions are provided whatever the treated example is. 
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Besides, the Outer Approximation method fails to give any result as soon as the problem size 

begins to be restrictive. 

y = 0,1027x - 0,8913
R2 = 0,9979
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Figure 3. Computational time for SBB 

 

4.2 Genetic Algorithm 

Just as for Mathematical Programming, the genetic algorithm performances will be 

evaluated according to both result quality and computational time. The quality is estimated, of 

course, through the distance between the best found solution and the optimal value. But, since 

GAs are a stochastic method, their results have to be analysed also in terms of repeatability. 

So, for each test, the GA was run 100 times. The criterion for repeatability evaluation is the 

dispersion of the runs around GA best solution F*GA. The 2%-dispersion and 5%-dispersion 

are then defined as the percentage of runs providing a result lying respectively in the range 

[F*GA, F*GA+2%] and [F*GA, F*GA+5%]. 

The possibility to express the GA’s computation qualities in terms of mean and standard 

deviation of the solution set was considered, but finally rejected : actually, standard deviations 

will only provide information on what confidence degree an average value should be obtained 

with. But it is to keep in mind that the aim is to minimize the objective function, i.e. to have a 
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good concentration of the solutions as close as possible to the best found value. Formulating 

in other words, 2% and 5%-dispersions enable to know if the solution set is well-distributed, 

downward the objective function value axis. Figure 4 gives an illusration of the advantage of 

the chosen repeatability criterion : each case (a) and (b) represents a set of runs, and each 

point is a particular solution. The mean value is (more or less) equal in both cases, and the 

standard deviation is better in case (b). But the 2%-dispersion highlights the fact that the run 

set in case (a) is better than the one in case (b), since more solutions are close to best one. 

Case (a)

Best solution
found by GA

Optimal value

2% -Dispersion

Best solution
found by GA

Obj. Function value

5% -Dispersion
Mean objective 

value

2% -Dispersion

5% -Dispersion

Obj. Function value
Case (b)

Optimal value

Case (a)

Best solution
found by GA

Optimal value

2% -Dispersion

Best solution
found by GA

Obj. Function value

5% -Dispersion
Mean objective 

value

2% -Dispersion

5% -Dispersion

Obj. Function value
Case (b)

Optimal value

 

Figure 4. Repeatibility indices : dispersions and mean value 

The parameters chosen for the GA are the following ones : the survival (respectively 

mutation) rate is equal to 40 % (resp. 30 %). 

The termination criterion used in the following study is the maximum number of 

generations. No convergence test, such as steadiness of the average/standard deviation of the 

objective function in consecutive populations, was performed : indeed, the variation 

magnitude of the associated criteria prevented from reaching a steady state from a generation 

to the following one. Thus, in spite of the stochastic nature of the GA, the computational time 

for a given example is the same for all the corresponding runs. 
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The maximum generation number and the population size then depend on the example 

complexity. Their values were chosen according to preliminary computations that enabled to 

determine a “globally” steady state, i.e. a generation number beyond which there was not any 

appreciable improvement of the (best and average) objective function. The corresponding 

parameters are presented in table 3. 

Table 3. GA parameters for each example 

Example 
Generation 

number 

Population 

size 

Constraint 

handling 

1 200 200 Elim. 

2 200 200 Elim. 

3 200 200 Elim. 

4 1000 200 Single tour. 

5 500 500 Single tour. 

6 2000 2000 Single tour. 

7 3000 6000 Single tour. 

 

In agreement with the above-described operating mode and performance criteria, the 

results obtained with the GA are presented in table 4. The reported computational times 

correspond to only one GA run. For a more meaningful appreciation of the result quality, 

figure 5 also shows the gap between the best solution found by the GA and the optimum 

provided by SBB. Moreover, 2% and 5%-dispersions appear in figure 6. 

 

Table 4. Results with the GA 

Example 1 2 3 4 5 6 7 

Best 

solution 
166089 120799 356635 958778 1958190 3961817 498854 

CPU time < 1 s. < 1 s. 1 s. 8 s. 19 s. 14 min. 1.23 h. 

 

The first example allows validating the good behaviour of the GA, since the best found 

solution is almost equal to the MP methods optimum. Besides, the dispersions show that all 
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the runs reach this value. Furthermore, an important decrease in the objective function mean 

value in the population is observed. The latter falls from 409868 to 170991 between the first 

(randomly generated) generation and the last one, i.e. 58%. The computational time is very 

low. 
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Figure 5. Distance between SBB optima and GA results 

With regard to example 2, similar trends are noticed. However, this good performance is 

now underlined by the fact that for this instance, DICOPT++ had been trapped in a local 

optimum, corresponding to a plant that showed a different structure from the optimal one 

located by SBB and the GA. That means that the stochastic method did enable to get around 

the obstacle constituted by sub-optimal solutions. Both 2% and 5%-dispersions, as well as 

computational time, are excellent too. 
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Figure 6. 2% and 5%-dispersions of GA runs 

For example 3, results seem similar another time, since the optimum determined by the 

deterministic methods is approached with a very good precision by the GA (the distance to the 

optimum is lower than 0.01%). But the dispersions graph belies this assertion. Indeed, the 

2%-dispersion is equal to 6%, meaning that a great proportion of the GA runs could not reach 

the optimum. This behaviour is actually due to a local optimum, and the analysis of the 

variable set at GA solution proves that some part of the runs stayed trapped on it. This local 

optimum shows, just as for example 2, a structure different from that of SBB optimum, as that 

can be observed in figure 7 : case (a) is the best one, which has been identified by the GAMS 

solvers. However, in spite of this failing, it is to recall that the optimum was finally 

determined. Moreover, 82% of the runs provide a result lying up to 5% from the optimal 

solution, which is still an acceptable value from an economic point of view (let us recall that 

we are considering a plant investment cost). 

Then, from example 4 to example 7, the GA efficiency gradually deteriorates. The best 

solution found within the 100 runs is more distant from the deterministic optimum when the 

instance complexity increases. This gap to the optimum is still acceptable but reaches 3.5% 
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for example 7. Actually, above example 4, the integer variable set of the optimal solution 

found by SBB cannot be identified by the GA. 

(a)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(b)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(a)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(a)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(b)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

(b)

B1

B3

SC1 SC2 SC4 SC5

B2

B4 SC6SC3
T

 

Figure 7. Structures of optima found for example 3 

Concerning result repeatability, 2%-dispersion does not show a steady evolution. 

Nevertheless, for all instances, 5%-dispersion is quite close to 100%, meaning that the best 

result found by the GA is quite often approached by all runs. This remark induces that the GA 

proves a quite good robustness in its ability to determine an acceptable result, even if the 

optimum is not located for the most complex plant instances. 

It is quite difficult to give a reliable explanation to the fact that GA performances decrease 

for the last examples. It can be however related with the number of feasible solutions visited 

during a run. Figure 8 shows, for the four last examples, the ratio of feasible individuals in the 

population at last generation : this ratio clearly decreases when the example complexity 

increases. Thus, it is obvious that GA faces more difficulties to find results very close to the 

optimum when the feasible individuals only represents about 40 % of the global population, 

for problem 6 and 7. It is to note that, despite this difficulty to find feasible solutions, the GA 

is able to locate the feasible space for all instances : there is no failed run that would mean 

that no one feasible solution was found during the whole search. 
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Figure 8. Evolution of feasible solution ratio in last generation 

Finally, in respect of computational times, these ones always stand comparison with those 

of the SBB solver. One run takes indeed less time than the MP technique for the latest 

examples, and even five times quicker for example 7. This competitive feature must be 

moderated by the fact that SBB ensure an optimal solution. 

So, to conclude on genetic algorithm performance, it is obvious that it cannot equal SBB 

efficiency, since it hardly identifies the optimal plant structure when the example size is very 

high. Examples 6 and 7 were studied in order to drive the optimisation method performances 

to their limit : indeed, the combinatory effect prevents the GA from approaching the optimum. 

However, the repeatability of GA solutions, measured through 2% and 5%-dispersions, 

highlights the stochastic method ability to locate feasible, good quality solutions, within a 

reasonable computational time. 

 

5. Conclusions 

This work tackled three optimisation techniques commonly used in Process Engineering, in 

order to evaluate and compare their performances on a typical batch plant design problem. 
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This issue is formulated as a complex, NP-hard, MINLP problem. A set of seven increasing 

size examples was created in order to consider complexity as a parameter of the study. 

First, two Mathematical Programming methods from the GAMS modelling environment 

(Brooke et al.
22
) were investigated. The Outer Approximation technique, implemented in the 

DICOPT++ solver, failed to give any result as soon as the problem exceeds a certain size. 

Moreover, it was proved that it might easily stay trapped in a local optimum. On the other 

hand, a Branch & Bound method, extended to MINLP problem treatment and available in the 

SBB module, was tested. This latter could solve all the examples to optimality, in increasing 

but reasonable computational times. 

Besides, a stochastic technique, namely a genetic algorithm, was used to solve the seven 

instances. This one was able to provide a feasible, good quality result, for all instances. 

However, the distance between the optimum and the GA result increases with the problem 

complexity. CPU time is comparable and sometimes even better than SBB’s one. But finally, 

SBB seems to be the best fitted technique for this “equation-oriented” problem formulation, 

since the result optimality is a great advantage with respect to the GA. 

However, two kinds of restriction must be considered, apart from the direct solving 

efficiency of the Branch & Bound method. Actually, the study did not, at any moment, 

account for the necessary effort to implement the studied optimisation methods. On the one 

hand, GAs are simple to implement, show an easy-understanding operating mode, and are a 

priori a generic method, adaptable to a large range of problems. On the other hand, the MP 

methods call for an important formulation effort that is based on a harsh study of the 

mathematical properties of the involved functions, and that requires time and experience. 

These are the prices for optimal results. 

Besides, it is to underline that the considered model relies on assumptions that constitute a 

weakness from the realism point of view. Going into the details of the plant description, 
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taking operating conditions into account through process variables, adding plant scheduling 

features, or only considering the unit volumes as discrete variables : all of these strategies 

might strongly penalize the deterministic methods. On the contrary, GAs should be able to 

tackle efficiently such kinds of formulation, that would not be necessarily built in an 

“equation-oriented” way. But, despite these remarks, mathematical formulations and 

deterministic solution techniques should be used whenever possible. Apart from the guarantee 

to obtain optimal solutions, the methods force to apply a reasonning on the problem, then 

producing an “understanding” of the system and of its variables. No such “understanding” is 

proposed by stochastic techniques results. 
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Appendix A. Nomenclature 

aj : cost factor for batch stage j. 

bk : cost factor for semi-continuous stage k. 

cs : cost factor for intermediate storage tanks. 

H : time horizon [h]. 

Hi : production time of product i [h]. 

i : index for products. 

I : total number of products. 

j : index for batch stages. 

J : total number of batch stages. 

k : index for semi-continuous stages. 

K : total number of semi-continuous stages. 

mj : number of parallel out-of-phase items in batch stage j. 

nk : number of parallel out-of-phase items in semi-continuous stage k. 

prodi : global productivity for product i [kg.h
-1
]. 

Qi : demand in product i [kg.h
-1
]. 

S : total number of sub-processes. 

Vj : size of batch stage j [L]. 

Vs* : size of intermediate storage tank [L]. 

αj : power cost coefficient for batch stage j. 

βk : power cost coefficient for semi-continuous stage k. 

γs : power cost coeficient for intermediate storage. 
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Appendix B. Data for the tackled examples 

Some data are common to all examples, and are gathered together in tables 5 (cost factors) 

and 6 (time horizon, size factors for semi-continuous units and storage tanks). Data specific to 

each example are presented from tables 7 to 10. 

Table 5. Cost factors 

aj 250 
Batch stages 

αj 0.60 

bk 370 Semi-continuous 

stages βk 0.22 

cs 278 Intermediate 

storage tanks γs 0.49 

 

Table 6. General data 

Time horizon H 6000 [h] 

Duty factors for semi-continuous stages Dik 1 [L.kg
–1
.h
–1
] 

Size factors for storage tanks Sis 1 [L.kg
–1
] 

 

Table 7. Data for example 1 

General data 
Recipe for each sub-

process 

I 2 s = 1 {B1,B2,B3} 

J 3   

K 0   

S 1   

Q [kg] {150.10
3
, 200.10

3
}   
 

  B1 B2 B3 

i = 1 2 3 4 
Sij 

i = 2 4 6 3 

i = 1 6 16 3 
pij

0
 

i = 2 7.5 8 2.25 

i = 1 0.4 0.35 0.15 
gij 

i = 2 0.6 0.5 0.2 

i = 1 0.4 0.3 0.2 
dij 

i = 2 0.4 0.3 0.2 
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Table 8. Data for example 2 

General data Recipe for each sub-process 

I 2 

J 3 
s = 1 

{SC1, B1, SC2, B2, 

SC3, B3, SC4} 

K 3   

S 1   

Q {kg] {150.10
3
, 200.10

3
}   
 

  B1 B2 B3 

i = 1 2 3 4 
Sij 

i = 2 4 6 3 

i = 1 6 16 3 
pij

0
 

i = 2 7.5 8 2.25 

i = 1 0.4 0.35 0.15 
gij 

i = 2 0.6 0.5 0.2 

i = 1 0.4 0.3 0.2 
dij 

i = 2 0.4 0.3 0.2 
 

 

Table 9. Data for example 3 

General data Recipe for each sub-process 

I 3 s = 1 {SC1, B1, SC2} 

J 4 

K 6 
s = 2 

{SC3, B2, SC4, B3, 

SC5, B4, SC6} 

S 2   

Q [kg] 
{437.10

3
, 324.10

3
, 

258.10
3
} 

  
 

 B1 B2 B3 B4 

i = 1 8.28 9.70 2.95 6.57 

i = 2 5.58 8.09 3.27 6.17 Sij 

i = 3 2.34 10.30 5.70 5.98 

i = 1 1.15 9.86 5.28 1.20 

i = 2 5.95 7.01 7.00 1.08 pij
0
 

i = 3 3.96 6.01 5.13 0.66 

i = 1 0.20 0.24 0.40 0.50 

i = 2 0.15 0.35 0.70 0.42 gij 

i = 3 0.34 0.50 0.85 0.30 

i = 1 0.40 0.33 0.30 0.20 

i = 2 0.40 0.33 0.30 0.20 dij 

i = 3 0.40 0.33 0.30 0.20 
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Examples 5 to 7 are built just by reproducing several times the structure of example 4. 

Example 5 represents two added up instances of example 4. Example 6 represents four added 

up instances of example 4. Example 7 represents five added up instances of example 4. The 

number of batch stages, semi-continuous stages and intermediate storage tanks can be 

deducted from the structure of example 4, so as corresponding recipes. The size factors and 

coefficients for the processing times computations keep being the same as in example 4. Thus, 

no data is given for those last examples. 

 

 

 

Table 10. Data for example 4 

General data Recipe for each sub-process 

I 3 s = 1 {SC1, B1, SC2, B2, SC3} 

J 9 

K 12 

S 3 

s = 2 
{SC4, B3, SC5, B4, SC6, 

B5, SC7, B6, SC8} 

Q [kg] 
{437.10

3
, 324.10

3
, 

258.10
3
} 

s = 3 
{SC9, B7, SC10, B8, 

SC11, B9, SC12} 
 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 

i = 1 8.28 6.92 9.70 2.95 6.57 10.60 7.59 6.74 8.90 

i = 2 5.58 8.03 8.09 3.27 6.17 6.57 5.23 4.21 5.35 Sij 

i = 3 2.34 9.19 10.30 5.70 5.98 3.14 7.41 3.92 6.63 

i = 1 1.15 3.98 9.86 5.28 1.20 3.57 6.25 2.22 10.00 

i = 2 5.95 7.52 7.01 7.00 1.08 5.78 4.38 4.57 4.02 pij
0
 

i = 3 3.96 5.07 6.01 5.13 0.66 4.37 3.86 1.39 5.89 

i = 1 0.20 0.36 0.24 0.40 0.50 0.40 0.47 0.16 0.68 

i = 2 0.15 0.50 0.35 0.70 0.42 0.38 0.29 0.25 0.51 gij 

i = 3 0.34 0.64 0.50 0.85 0.30 0.22 0.32 0.27 0.45 

i = 1 0.40 0.29 0.33 0.30 0.20 0.35 0.39 0.18 0.26 

i = 2 0.40 0.29 0.33 0.30 0.20 0.35 0.39 0.18 0.26 dij 

i = 3 0.40 0.29 0.33 0.30 0.20 0.35 0.39 0.18 0.26 
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Appendix C. SBX crossover 

Deb and Agrawal
43
 make the assumption that the probability distribution described in 

figure 1 (see section 4.2.2), that reproduces the single-point crossover for binary coding, can 

be approached by the following polynomial distribution, of order n. 

  C(β) = 0,5(n+1)βn
  on the left-hand side of the parent,        (7) 

  C(β) = 
2n

1)1n(5,0 ++ β  on the right hand side. 

According to the previous expression, for higher n values, the crossover procedure will have a 

more “contracting” effect, i.e. a greater probability to create children close to the parents. 

Then, drawing a random number u between 0 and 1 and according to the probability 

distribution C(β), the corresponding abscissa β* is computed by the expression : 

  β* = 1n
1

)u2( +    if u ≤ 0.5,           (8) 

  β* = 
1
1

)1(2
1 +









−

n

u
  elsewhere. 

In case of bounded variables, equation (8) becomes : 

  β* = 1
1

1 )( +nuα   if u ≤ 1/α,           (9) 

  β* = 
1
1

12
1

+








−

n

uα
  elsewhere. 

With : 

α1 = 
)1(

2)(2 +−− nα     (10)   α2 = [ ])2()1(

)1()2(
,min21 xxxx

yy
UL −−

−
+     (11) 

It is to notice that in equation (11), x
(1)
 is implicitly lower than x

(2)
.  

Finally, the children offspring are created : 
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  y
(1)
 = 0,5.[(1+β*).x(1) + (1–β*).x(2)]         (12) 

  y
(2)
 = 0,5.[(1–β*).x(1) + (1+β*).x(2)] 

This procedure is carried out for all loci with a probability px. If the locus codes an integer 

variable, the decimal part is truncated to get a consistent child offspring. The px probability is 

used to control the disturbance of the chromosomes, to ensure that only a part of them is 

modified by the crossover (like in a single-point crossover, for binary coding). Thus, two 

parameters must be set for the SBX crossover implementation. This was realized thanks to 

preliminary sensitivity analyses : 

- the order of the polynomial probability distribution ; here, n was chosen equal to 1 

(which does not characterize a “contracting” but an “expanding” procedure). 

- the px probability is set to 0.2. 
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