17 research outputs found

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future

    Get PDF
    The upcoming 5th Generation (5G) of wireless networks is expected to lay a foundation of intelligent networks with the provision of some isolated Artificial Intelligence (AI) operations. However, fully-intelligent network orchestration and management for providing innovative services will only be realized in Beyond 5G (B5G) networks. To this end, we envisage that the 6th Generation (6G) of wireless networks will be driven by on-demand self-reconfiguration to ensure a many-fold increase in the network performanceandservicetypes.Theincreasinglystringentperformancerequirementsofemergingnetworks may finally trigger the deployment of some interesting new technologies such as large intelligent surfaces, electromagnetic-orbital angular momentum, visible light communications and cell-free communications – tonameafew.Ourvisionfor6Gis–amassivelyconnectedcomplexnetworkcapableofrapidlyresponding to the users’ service calls through real-time learning of the network state as described by the network-edge (e.g., base-station locations, cache contents, etc.), air interface (e.g., radio spectrum, propagation channel, etc.), and the user-side (e.g., battery-life, locations, etc.). The multi-state, multi-dimensional nature of the network state, requiring real-time knowledge, can be viewed as a quantum uncertainty problem. In this regard, the emerging paradigms of Machine Learning (ML), Quantum Computing (QC), and Quantum ML (QML) and their synergies with communication networks can be considered as core 6G enablers. Considering these potentials, starting with the 5G target services and enabling technologies, we provide a comprehensivereviewoftherelatedstate-of-the-artinthedomainsofML(includingdeeplearning),QCand QML, and identify their potential benefits, issues and use cases for their applications in the B5G networks. Subsequently,weproposeanovelQC-assistedandQML-basedframeworkfor6Gcommunicationnetworks whilearticulatingitschallengesandpotentialenablingtechnologiesatthenetwork-infrastructure,networkedge, air interface and user-end. Finally, some promising future research directions for the quantum- and QML-assisted B5G networks are identified and discussed

    OFDM passive radar employing compressive processing in MIMO configurations

    Get PDF
    A key advantage of passive radar is that it provides a means of performing position detection and tracking without the need for transmission of energy pulses. In this respect, passive radar systems utilising (receiving) orthogonal frequency division multiplexing (OFDM) communications signals from transmitters using OFDM standards such as long term evolution (LTE), WiMax or WiFi, are considered. Receiving a stronger reference signal for the matched filtering, detecting a lower target signature is one of the challenges in the passive radar. Impinging at the receiver, the OFDM waveforms supply two-dimensional virtual uniform rectangul ararray with the first and second dimensions refer to time delays and Doppler frequencies respectively. A subspace method, multiple signals classification (MUSIC) algorithm, demonstrated the signal extraction using multiple time samples. Apply normal measurements, this problem requires high computational resources regarding the number of OFDM subcarriers. For sub-Nyquist sampling, compressive sensing (CS) becomes attractive. A single snap shot measurement can be applied with Basis Pursuit (BP), whereas l1-singular value decomposition (l1-SVD) is applied for the multiple snapshots. Employing multiple transmitters, the diversity in the detection process can be achieved. While a passive means of attaining three-dimensional large-set measurements is provided by co-located receivers, there is a significant computational burden in terms of the on-line analysis of such data sets. In this thesis, the passive radar problem is presented as a mathematically sparse problem and interesting solutions, BP and l1-SVD as well as Bayesian compressive sensing, fast-Besselk, are considered. To increase the possibility of target signal detection, beamforming in the compressive domain is also introduced with the application of conve xoptimization and subspace orthogonality. An interference study is also another problem when reconstructing the target signal. The networks of passive radars are employed using stochastic geometry in order to understand the characteristics of interference, and the effect of signal to interference plus noise ratio (SINR). The results demonstrate the outstanding performance of l1-SVD over MUSIC when employing multiple snapshots. The single snapshot problem along with fast-BesselK multiple-input multiple-output configuration can be solved using fast-BesselK and this allows the compressive beamforming for detection capability

    Analysis of radiofrequency-based methods for position and velocity determination of autonomous robots in lunar surface exploration missions

    Get PDF
    The use of distributed systems has been disruptive in almost any industrial sector, from manufacturing to processing plants from environmental monitoring to vehicle control, and many more. It is therefore natural to assess the benefits that such an advantageous engineering paradigm could bring to space exploration. In recent years, we have been witness to the emergence of concepts such as fractionated satellite systems, formation flying, megaconstellations, and femtoswarms. Most of these space missions have evolved from the idea of a decentralization of processes that were formerly performed in platforms conceived as monolithic systems. The application of this concept to robotic systems is not new, and a great deal of scientific contributions on multi-robot systems exists, focusing on different aspects such as cooperative robotics, behavioural or reactive control, distributed artificial intelligence, swarm multi-agent systems etc. The intrinsic advantages of distribution (improved reliability and efficiency, higher robustness, etc.) has been boosted by the exponential growing of computational power density and a simultaneous miniaturization of technology, leading to smaller and more powerful robotic platforms, which could make a distributed robotic system, made of small robotic agents, a powerful substitute to classical large robotic platforms. This thesis proposes, in the framework of multi-robot systems, a localization method for robotic agents in planetary surface exploration scenarios based on RF range and Doppler frequency shift analysis. The relevance of spatial localization awareness in agents belonging to a distributed robotic system is defined in the context of the advantages of robotic exploration. Different range determination techniques and, specifically, the advantages of including Doppler Effect in the determination of the relative position within the robotic system deployed are considered and the strengths and weaknesses analysed accordingly. Special attention is devoted to the noise sources present in the lunar environment, related to a practical (i.e. non-ideal) implementation architecture and its influence on the system performance. From this point of view, we develop a theoretical model for localization accuracy estimation, generated from power spectrum characteristics, in accordance with the system architecture proposed, and consolidated with numerical simulations and a parametrical assessment on a set of real references of components playing a key role in the overall performance. The selected system architecture is then implemented in a representative set-up and tested under laboratory conditions. Algorithms used for carrier frequency generation and frequency measurement are developed, applied and tested in the hardware-on-the-loop breadboard. The results show that Doppler frequency component can be measured with the proposed architecture, yielding a high sensitivity in the determination of relative speed even at standard communication frequencies (UHF), and improving significantly at higher bands (S, C, etc.). This enables the possibility of adding relative speed to relative position determination via sensor fusion techniques, improving the response time and accuracy during navigation through the exploration scenario

    Inaudible acoustics: Techniques and applications

    Get PDF
    This dissertation is focused on developing a sub-area of acoustics that we call inaudible acoustics. We have developed two core capabilities, (1) BackDoor and (2) Ripple, and demonstrated their use in various mobile and IoT applications. In BackDoor, we synthesize ultrasound signals that are inaudible to humans yet naturally recordable by all microphones. Importantly, the microphone does not require any modification, enabling billions of microphone-enabled devices, including phones, laptops, voice assistants, and IoT devices, to leverage the capability. Example applications include acoustic data beacons, acoustic watermarking, and spy-microphone jamming. In Ripple, we develop modulation and sensing techniques for vibratory signals that traverse through solid surfaces, enabling a new form of secure proximal communication. Applications of the vibratory communication system include on-body communication through imperceptible physical vibrations and device-device secure data transfer through physical contacts. Our prototypes include an inaudible jammer that secures private conversations from electronic eavesdropping, acoustic beacons for location-based information sharing, and vibratory communication in a smart-ring sending password through a finger touch. Our research also uncovers new security threats to acoustic devices. While simple abuse of inaudible jammer can disable hearing aids and cell phones, our work shows that voice interfaces, such as Amazon Echo, Google Home, Siri, etc., can be compromised through carefully designed inaudible voice commands. The contributions of this dissertation can be summarized in three primitives: (1) exploiting inherent hardware nonlinearity for sensing out-of-band signals, (2) developing the vibratory communication system for secure touch-based data exchange, and (3) structured information reconstruction from noisy acoustic signals. In developing these primitives, we draw from principles in wireless networking, digital communications, signal processing, and embedded design and translate them to completely functional systems

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore