500 research outputs found

    Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation

    Get PDF
    Recent advances in technology and refinement of available computational resources paved the way for the extensive use of computers to model and simulate complex real-world problems difficult to solve analytically. The appeal of simulations lies in the ability to predict the significance of a change to the system under study. The simulated results can be of great benefit in predicting various behaviors, such as the wind pattern in a particular region, the ability of a material to withstand a dynamic load, or even the behavior of a workpiece under a particular type of machining. This paper deals with the mathematical modeling and simulation techniques used in abrasive-based machining processes such as abrasive flow machining (AFM), magnetic-based finishing processes, i.e., magnetic abrasive finishing (MAF) process, magnetorheological finishing (MRF) process, and ball-end type magnetorheological finishing process (BEMRF). The paper also aims to highlight the advances and obstacles associated with these techniques and their applications in flow machining. This study contributes the better understanding by examining the available modeling and simulation techniques such as Molecular Dynamic Simulation (MDS), Computational Fluid Dynamics (CFD), Finite Element Method (FEM), Discrete Element Method (DEM), Multivariable Regression Analysis (MVRA), Artificial Neural Network (ANN), Response Surface Analysis (RSA), Stochastic Modeling and Simulation by Data Dependent System (DDS). Among these methods, CFD and FEM can be performed with the available commercial software, while DEM and MDS performed using the computer programming-based platform, i.e., "LAMMPS Molecular Dynamics Simulator," or C, C++, or Python programming, and these methods seem more promising techniques for modeling and simulation of loose abrasive-based machining processes. The other four methods (MVRA, ANN, RSA, and DDS) are experimental and based on statistical approaches that can be used for mathematical modeling of loose abrasive-based machining processes. Additionally, it suggests areas for further investigation and offers a priceless bibliography of earlier studies on the modeling and simulation techniques for abrasive-based machining processes. Researchers studying mathematical modeling of various micro- and nanofinishing techniques for different applications may find this review article to be of great help

    Development of innovative cross-disciplinary engineering showcase

    Get PDF
    The development of engineering education relies substantially on interactive showcases and practical knowledge. The cross-disciplinary engineering showcase is designed to be fully interactive by having user input, producing a tangible output, and to understand distinct elements from each of the engineering disciplines such as, civil, mechanical and electrical (CME). The showcase operates from the input of mechanical rotational energy by the user pedalling the exercycle. Mechanical energy is then transferred to the pump via a gear train, which converts the user input of 30 rpm to the optimal pump operating speed of 2900 rpm. Further, it is used to pump water from the lower eservoir to the upper reservoir via one of the three flow paths, which the user can select by opening or closing flow valves. Once the water reaches a given height, it then flows back to the lower reservoir via a micro-hydro generator. As a result, it generates electrical energy stored in a power bank that can be used by the user to charge a digital device. Also, the showcase has a QR code to digital media, which will provide an additional explanation/exposition of the presented engineering principles to the user/students. The aim of this project is to develop a cross- disciplinary engineering showcase to enhance student learnings by interpreting the CME engineering principles in schools, institutes, and universities

    Surface engineering by titanium particulate injection mounding

    Get PDF
    In a recent study a structural hold down component was designed and produced using the particulate injection moulding (PIM) process. The material of choice was titanium due not only to the material properties but also due to the desire to create custom made components for a state-of-the-art marine vessel. On removal from the mould the green parts were seen to have an irregular surface on the top face. The irregular surface presented no through part defects and although the surface irregularities were caused by separation of the two-phases the effect was restricted to the outer surface of the parts. In a more historic study by the author the surface properties of titanium dental implants were modified by the use of adaptive mould inserts during the moulding phase of PIM. These two contrasting studies are considered and have become the basis of a current investigation looking to engineer surface irregularities in an ordered fashion. The application of meso-machining, and additive manufacture are considered and the functionality which may arise are presented

    Development of innovative cross-disciplinary engineering showcase

    Get PDF
    The development of engineering education relies substantially on interactive showcases and practical knowledge. The cross-disciplinary engineering showcase is designed to be fully interactive by having user input, producing a tangible output, and to understand distinct elements from each of the engineering disciplines such as, civil, mechanical and electrical (CME). The showcase operates from the input of mechanical rotational energy by the user pedalling the exercycle. Mechanical energy is then transferred to the pump via a gear train, which converts the user input of 30 rpm to the optimal pump operating speed of 2900 rpm. Further, it is used to pump water from the lower eservoir to the upper reservoir via one of the three flow paths, which the user can select by opening or closing flow valves. Once the water reaches a given height, it then flows back to the lower reservoir via a micro-hydro generator. As a result, it generates electrical energy stored in a power bank that can be used by the user to charge a digital device. Also, the showcase has a QR code to digital media, which will provide an additional explanation/exposition of the presented engineering principles to the user/students. The aim of this project is to develop a cross- disciplinary engineering showcase to enhance student learnings by interpreting the CME engineering principles in schools, institutes, and universities

    New Trends in 3D Printing

    Get PDF
    A quarter century period of the 3D printing technology development affords ground for speaking about new realities or the formation of a new technological system of digital manufacture and partnership. The up-to-date 3D printing is at the top of its own overrated expectations. So the development of scalable, high-speed methods of the material 3D printing aimed to increase the productivity and operating volume of the 3D printing machines requires new original decisions. It is necessary to study the 3D printing applicability for manufacturing of the materials with multilevel hierarchical functionality on nano-, micro- and meso-scales that can find applications for medical, aerospace and/or automotive industries. Some of the above-mentioned problems and new trends are considered in this book

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    UKACM Proceedings 2024

    Get PDF

    Characterization and Modelling of Composites, Volume II

    Get PDF
    Composites have been increasingly used in various structural components in the aerospace, marine, automotive, and wind energy sectors. Composites’ material characterization is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue is aimed at soliciting promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review and will only be considered for publication if they meet journal standards
    • …
    corecore