9 research outputs found

    A simple upper limb rehabilitation trainer

    Get PDF
    Stroke is a leading cause of disability which can affect shoulder and elbow movements which are necessary for reaching activities in numerous daily routines. To maximize functional recovery of these movements, stroke survivors undergo rehabilitation sessions under the supervision of physiotherapists in healthcare settings. Unfortunately, these sessions may be limited due to staff constraints and are often labor-intensive. There are numerous robotic devices which have been developed to overcome this problem. However, the high cost of these robots is a major concern as it limits their cost-benefit profiles, thus impeding large scale implementation. This paper presents a simple and low cost interactive training module for the purpose of upper limb rehabilitation. The module, which uses a conventional mouse integrated with a small DC motor to generate vibration instead of any robotic actuator, is integrated with a game-like virtual reality system intended for training shoulder and elbow movements. Three games for the module were developed as training platforms, namely: Triangle, Square and Circle games. Results from five healthy study subjects showed that their performances improved with practice and time taken to complete the Triangle game was the fastest of the three

    Faster R-CNN-based Decision Making in a Novel Adaptive Dual-Mode Robotic Anchoring System

    Get PDF
    This paper proposes a novel adaptive anchoring module that can be integrated into robots to enhance their mobility and manipulation abilities. The module can deploy a suitable mode of attachment, via spines or vacuum suction, to different contact surfaces in response to the textural properties of the surfaces. In order to make a decision on the suitable mode of attachment, an original dataset of 100 images of outdoor and indoor surfaces was enhanced using a WGAN-GP generating an additional 200 synthetic images. The enhanced dataset was then used to train a visual surface examination model using Faster R-CNN. The addition of synthetic images increased the mean average precision of the Faster R-CNN model from 81.6% to 93.9%. We have also conducted a series of load tests to characterize the module’s strength of attachments. The results of the experiments indicate that the anchoring module can withstand an applied detachment force of around 22N and 20N when attached using spines and vacuum suction on the ideal surfaces, respectively

    Autonomous decision making in a bioinspired adaptive robotic anchoring module

    Get PDF
    This paper proposes a bioinspired adaptive anchoring module that can be integrated into robots to enhance their mobility and manipulation abilities. The design of the module is inspired by the structure of the mouth in Chilean lamprey (Mordacia lapicida) where a combination of suction and several arrays of teeth with different sizes around the mouth opening is used for catching preys and anchoring onto them. The module can deploy a suitable mode of attachment, via teeth or vacuum suction, to different contact surfaces in response to the textural properties of those surfaces. In order to make a decision on the suitable mode of attachment, an original dataset of 500 images of outdoor and indoor surfaces was used to train a visual surface examination model using YOLOv3; a virtually real-time object detection algorithm. The mean average precision of the trained model was calculated to be 91%. We have conducted a series of pull-out tests to characterize the module’s strength of attachments. The results of the experiments indicate that the anchoring module can withstand an applied detachment force of up to 70N and 30N when attached using teeth and vacuum suction, respectively

    Inspection robots in oil and gas industry : a review of current solutions and future trends

    Get PDF
    With the increasing demands for energy, oil and gas companies have a demand to improve their efficiency, productivity and safety. Any potential corrosions and cracks on their production, storage or transportation facilities could cause disasters to both human society and the natural environment. Since many oil and gas assets are located in the extreme environment, there is an ongoing demand for robots to perform inspection tasks, which will be more cost-effective and safer. This paper provides a state of art review of inspection robots used in the oil and gas industry which including remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). Different kinds of inspection robots are designed for inspecting different asset structures. The outcome of the review suggests that the reliable autonomous inspection UAVs and AUVs will gain interest among these robots and reliable autonomous localisation, environment mapping, intelligent control strategies, path planning and Non-Destructive Testing (NDT) technology will be the primary areas of research

    An overview of waste materials for sustainable road construction

    Get PDF
    Untreated soil typically has low shear strength, swelling behavior, high compressibility and its characteristics were highly dependent on the environment. In general, such problematic soil will lead to severe damages in road construction industry such as bearing capacity failure, slope instability, and excessive settlement. Agricultural waste, construction waste, and municipal waste have recently gained considerable attention as a sustainable material in road construction application due to its availability, environmental friendly and low-cost materials. Therefore in this review, randomly distributed fiber reinforced soil and oriented distributed fiber reinforced soil will be extensively discussed based on the emerging trend. It further reviewed the feasibility of using waste materials as a reinforcement material for the road construction industry. The review also attempts to evaluate and compare the engineering properties of soil and sustainable materials in order to enhance soil performance as well as help to improve the environment affected by growing waste materials

    Conceção, produção e validação experimental de um dispositivo trepador para inspeção não destrutiva de cabos

    Get PDF
    Os robôs trepadores têm sido alvo de desenvolvimento nos últimos anos devido às várias vantagens que apresentam. Estes permitem aumentar a eficiência de várias operações, reduzir os custos das mesmas e ainda salvaguardar os operadores de locais potencialmente perigosos. Estes podem ser caracterizados pelo seu método de movimentação e pela técnica de fixação. O objetivo deste trabalho consistiu em conceber, produzir e testar um robô trepador para ser utilizado como uma ferramenta de inspeção para cabos e tubos, com recurso a correntes induzidas (CI), em locais altos e de difícil acesso. O dispositivo foi concebido com recurso à manufatura aditiva. Este encontra-se dividido em 3 partes e engloba todo o perímetro da superfície. Para a inspeção de defeitos, acoplou-se ao dispositivo uma sonda de correntes induzidas, produzido em PCB flexível. Para validar o desempenho do dispositivo, foi utilizado um varão de latão com 25 mm de diâmetro, onde foram realizados 3 defeitos artificiais para serem detetados pela sonda. O dispositivo, com uma massa aproximada de 1,5 kg, conseguiu trepar o varão de forma fiável com velocidades até 4100 mm/min. Com diferentes velocidades, a sonda foi também capaz de detetar os diferentes defeitos impostos sobre o varão.Climbing robots have been a development subject in recent years due to the several advantages they present. These allow the efficiency increase of various works, lower operations costs and even safeguard workers from potentially dangerous scenarios. These can be characterized by their locomotion method and by their attachment technique. The goal of this work was to develop a climbing robot to be used as an inspection tool for cables and pipes, using eddy currents (EC), at great heights and difficult to access spots. The device was designed using additive manufacturing. The device is divided in 3 parts and involves the entire surface perimeter. For the defect inspection, an eddy currents probe, produced with flexible PCB, was coupled to the device. To validate the device performance, a 25 mm diameter brass rod was used, where 3 artificial defects were made to be detected by the probe. The device, with an approximate mass of 1,5 kg, was able to reliably climb the rod up to speeds of 4100 mm/min. With different frequencies, the probe was also able to detect the different defects imposed on the rod

    Design and Development of a Mobile Climbing Robot for Wind Turbine Inspection

    Get PDF
    Wind turbines (WT) have become an essential renewable energy source as the contribution of WT farms has reached megawatts scale. However, wind turbine blades (WTB) are subjected to failure due to many loading effects such as aerodynamic, gravity and centrifugal loads and operation in harsh environments such as ultraviolet (UV) radiation, ice, hail, temperature variation, dirt, and salt. As a result, the blades suffer different types of damage. Consequently, a periodic inspection process is required to detect and repair defects before a catastrophic failure happens. This thesis presents a literature review of wall climbing robots to identify the most appropriate locomotion and adhesion method to use for a WT climbing machine that can take a large payload of non-destructive testing (NDT) sensors up to a blade and deploy them with scanning arms. A review of wind turbine blade construction, various loading effects on blades and types of damage in blades is followed by a review of the NDT techniques used for inspecting WTB. The above review determines the design requirements to achieve the aim of the current research which is to design a low-cost and reliable mobile robot which will be able to climb the WT tower and subsequently scan the blade surface to perform the inspection using various sensors to identify and classify damages. This robot system should be able to access all the critical areas of the blade structure in a stable and secure way. It should be stable enough to allow the various test sensors to scan the blade structure in the shortest possible time. The thesis describes the development of a tower climbing robot that uses magnetic adhesion to adhere to the WT. As a preliminary study, a simulation model is developed using COMSOL Multiphysics to simulate the magnetic adhesion force while climbing the tower. A test rig is designed and fabricated to measure the magnetic adhesion force experimentally to validate the simulation model. The response surface methodology (RSM) using Box-Behnken design (BBD) is used to design and perform experiments to optimise different independent variables i.e. air gap, the distance between magnets in an array and backplate (yoke) thickness that affect the magnetic adhesion force. A scaled-down prototype magnetic adhesion climbing robot has been designed and constructed for wind turbine blade inspection. The robot is 0.29 m long with two 1.0 m long arms, weighs 10.0 kg and can carry a maximum 2.0 kg payload of NDT sensors. Optimum design of a magnetic adhesion mechanism has been developed for the climbing robot prototype that maximises the magnetic adhesion force. The robot is equipped with two arms that can be extended by one meter to come close to the blade for inspection. Each arm is equipped with a gripper that can hold an inspection tool of weight up to one kilogram. A scaled-down wind turbine has been modelled using SolidWorks and a portion of it constructed to experimentally test the scaled-down climbing robot. To scale up the robot prototype for operation on a normal sized wind turbine, a 100 m tall wind turbine with three 76 m long blades has been modelled and the prototype robot scaled up based on these dimensions. The scaled-up robot is 3.0 m long, weighs 1135 kg and has two 10 m long arms. Static stress analysis and flow simulation have been carried out to check the durability of the scaled-up robot while climbing the wind turbine tower. The procedure for scaling up the adhesion mechanism to achieve equilibrium of the robot has been introduced based on the reaction force concluded from the static stress and flow simulation study. As a result, the maximum payload that each arm can carry has been calculated for both the scaled-down prototype (1 kg) and the scaled-up design (50 kg). This concludes the utility and robustness of the wall climbing robot as a robotic solution for wind turbine blade inspection

    Development of a Chain Climbing Robot and an Automated Ultrasound Inspection System for Mooring Chain Integrity Assessment

    Get PDF
    Mooring chains used to stabilise offshore floating platforms are often subjected to harsh environmental conditions on a daily basis, i.e. high tidal waves, storms etc. Chain breakage can lead to vessel drift and serious damage such as riser rupture, production shutdown and hydrocarbon release. Therefore, integrity assessment of chain links is vital, and regular inspection is mandatory for offshore structures. Currently, structural health monitoring of chain links is conducted using either remotely operated vehicles (ROVs), which are associated with high costs, or by manual means, which increases the risk to human operators. The development of climbing robots for mooring chain applications is still in its infancy due to the operational complexity and geometrical features of the chain. This thesis presents a Cartesian legged magnetic adhesion tracked-wheel crawler robot developed for mooring chain inspection. The crawler robot presented in this study is suitable for mooring chain climbing in air and the technique can be adapted for underwater use. The proposed robot addresses straight mooring chain climbing and a misaligned scenario that is commonly evident in in-situ conditions. The robot can be used as a platform to convey equipment, i.e. tools for non-destructive testing/evaluation applications. The application of ultrasound for in-service mooring chain inspection is still in the early stages due to lack of accessibility, in-field operational complexity and the geometrical features of mooring systems. With the advancement of robotic/automated systems (i.e. chain-climbing robotic mechanisms), interest in in-situ ultrasound inspection has increased. Currently, ultrasound inspection is confined to the weld area of the chain links. However, according to recent studies on fatigue and residual stresses, ultrasound inspection of the chain crown should be further investigated. A new automated application for ultrasonic phased-array full-matrix capture is discussed in this thesis for investigation of the chain crown. The concept of the chain-climbing robot and the inspection technique are validated with laboratory-based climbing experiments and presented in this thesis

    Development of a Wall Climbing Robot and Ground Penetrating Radar System for NonDestructive Testing of Vertical Safety Critical Concrete Structures

    Get PDF
    This research aims to develop a unique adhesion mechanism for wall climbing robot to automate the technology of non-destructive testing (NDT) of large safety critical reinforced concrete structures such as nuclear power plants, bridge columns, dams etc. This research work investigates the effect of key design parameters involved in optimizing the adhesion force achieved from rare earth neodymium magnets. In order to penetrate a nominal concrete cover to achieve magnetic coupling with buried rebar and generate high enough adhesion force by using minimum number of permanent magnets, criteria such as distance between multiple magnets, thickness of flux concentrator are evaluated by implementing finite element analysis (FEA). The proposed adhesion module consists of three N42 grade neodymium magnets arranged in a unique arrangement on a flux concentrator called yoke. The preliminary FEA results suggest that, using two yoke modules with minimum distance between them generate 82 N higher adhesion force compared to a single module system with higher forceto-weight ratio of 4.36. Presence of multiple rebars in a dense mesh setting can assist the adhesion module to concentrate the magnetic flux along separate rebars. This extended concentration area has led to higher adhesion force of 135.73 N as well as enabling the robot to take turns. Results suggest that, having a 50×50 mm rebar meshing can sustain steep robot rotational movement along it’s centre of gravity where the adhesion force can fall as low as 150 N. A small, mobile prototype robot with on-board force sensor is built that exhibited 3600 of manoeuvrability on a 50×50 mm meshed rebars test rig with maximum adhesion force of 108 N at 35 mm air gap. Both experiment and simulationresults prove that the magnetic adhesion mechanism can generate efficient adhesion force for the climbing robot to operate on vertical reinforced concrete structures. In terms of the NDT sensor, an in-depth analysis of the ground penetrating radar (GPR) is carried out to develop a low cost operational laboratory prototype. A one-dimensional numerical framework based on finite difference time domain (FDTD) method is developed to model response behaviour of a GPR. The effects of electrical properties such as dielectric constant, conductivity of the media are evaluated. A Gaussian shaped pulse is used as source which propagates through the 1D array grid, and the pulse interactions at different media interfaces are investigated. A real life application of GPR to detect a buried steel bar in 1 m thick concrete block is modelled, and the results present 100% accurate detection of the steel bar along with measured depth of the concrete cover. The developed framework could be implemented to model multi-layer dielectric blocks with detection capability of various buried objects. Experimental models are built by utilizing a proposed antenna miniaturization technique of dipole antenna with additional radiating arms. The resultant reflection coefficient values indicate a reduction of 55% and 44% in length reduction compared to a conventional 100 MHz and 200 MHz dipole antenna respectively. The GPR transmitting pulse generator features an enhanced tuneable feature to make the GPR system more adaptable to various environmental conditions. The prototype pulse generator circuit can produce pulses with variable width from 750 ps to 10 ns. The final assembled robotic GPR system’s performance is validated by its capability of detecting and localizing an aluminium sheet and a rebar of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The final calculations reveal a depth error of +0.1 m. However, the key focus of this work is to prove the design concept and the error in measurement can be addressed by utilizing narrower bandwidth pulse that the proposed pulse generator is capable of generating. In general, the proposed robotic GPR system developed in this research proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspector
    corecore