1,701 research outputs found

    Smart RFID Tags

    Get PDF

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Integration of wirelessHART and STK600 development kit for data collection in wireless sensor networks

    Get PDF
    Offshore industry operates in world’s most challenging environment. Oil and gas facilities aim for continuous production to achieve the desired goals and a robust communication network is required to avoid production loses. The IEEE 802.15.4 specification has enabled low cost, low power Wireless Sensor Networks (WSNs) capable of providing robust communication and therefore utilises as a promising technology in oil and gas industry. The two most prominent industrial standards using the IEEE 802.15.4 radio technology are WirelessHART and ISA100.11a.These are currently the competitors in the automation and offshore industry. In this project, we have worked on Nivis WirelessHART development kit that has some on-board sensors. Our main goal is to integrate WirelessHART with external sensor board so that we can get the readings from external sensors and publish the data over web interface provided by Nivis. Since, Nivis WirelessHART field router is not an open source and un-programmable, therefore it is considered as a black box. Due to lack of such capabilities, we cannot connect external sensor directly to Nivis radio. We have chosen Atmel STK600-Atmega2560 development kit as an external sensor board. In order to establish communication between STK600 and Nivis WirelessHART, we have written an application in AVR studio and flash it to STK600 over the USB connection. We have implemented a serial communication protocol called Nivis simple API and made Nivis board able to get data from sensors interfacing STK600. Nivis radio will then forward this data to WirelessHART through HART gateway. Moreover, we have configured Monitoring Host to visualize the data from external sensors along with built-in sensors over the Monitoring Control System (MCS). Finally, we evaluate our implementation by various experiments and prove that the overall flow is working properly

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay

    Study and application of direct RF power injection methodology and mitigation of electromagnetic interference in ADCs

    Get PDF
    There are many publications available in literature regarding the DPI (Direct Power Injection) technique for electronic systems, but few works specifically addressed for mixed-signal converters, which are components existent in almost all electronic devices. IEC 62132-4(International Electrotechnical Commission, 2006) and 62132-1(International Electrotechnical Commission, 2006) standards describe a method for measuring immunity of integrated circuits (IC) in the presence of conducted RF disturbances. This method ensures a high degree of repeatability and correlation of immunity measurements. Knowledge of the electromagnetic immunity of an IC allows the designer to decide if the system will need external protection, and how much effort should be directed to this solution. In this context, the purpose of this work is the study and application of the DPI methodology for injection of EMI in a mixed-signal programmable device, evaluating mitigation possibilities, with special focus on the analog-to-digital converters (ADCs). The main objective is to evaluate the impact of electromagnetic interference (EMI) on different converters (two Successive Approximation Register ADCs, operating with distinct sampling rate and a Sigma-Delta ADC) of the Cypress Semiconductor Programmable SoC (System-on-Chip), PSoC 5LP. Additionally a previously proposed fault tolerance methodology, based on triplication with hardware and time diversity is tested. Results show distinct behaviors of each converter to conducted EMI. Finally, the tested tolerance technique showed to be suitable to reduce error rate of such data acquisition system operating under EMI disturbance.Existem muitas publicaçÔes disponĂ­veis na literatura sobre a tĂ©cnica de DPI (Direct Power Injection ou injeção direta de energia) para sistemas eletrĂŽnicos, mas poucos trabalhos direcionados para conversores de sinais mistos, que sĂŁo componentes existentes em quase todos os dispositivos eletrĂŽnicos. As normas IEC 62132-4 (IEC, 2006) e 62132-1 (IEC, 2006) descrevem um mĂ©todo para medir a imunidade de circuitos integrados (CI) na presença de distĂșrbios de RF conduzidos. Este mĂ©todo garante um alto grau de repetibilidade e correlação das mediçÔes da imunidade. O conhecimento da imunidade eletromagnĂ©tica de um CI permite que o projetista decida se o sistema precisarĂĄ de proteção externa e quanto esforço deve ser direcionado para esta solução. Nesse contexto, o objetivo deste trabalho Ă© o estudo e aplicação da metodologia DPI para injeção de interferĂȘncia eletromagnĂ©tica em um dispositivo programĂĄvel de sinal misto, avaliando as possibilidades de mitigação, com foco especial em conversores analĂłgico-digitais (ADCs). O principal objetivo Ă© avaliar o impacto da interferĂȘncia eletromagnĂ©tica em diferentes conversores (dois ADCs baseados em aproximação sucessiva, operando com taxa de amostragem distintas e um ADC do tipo Sigma-Delta) do SoC(System-on-Chip) programĂĄvel da Cypress Semiconductor, PSoC 5LP. AlĂ©m disso, Ă© testada uma metodologia de tolerĂąncia a falhas proposta anteriormente, baseada em triplicação com diversidade de hardware e temporal. Os resultados mostram comportamentos distintos de cada conversor para a interferĂȘncia eletromagnĂ©tica conduzida. Finalmente, a tĂ©cnica de tolerĂąncia testada mostrou-se adequada para reduzir a taxa de erros desse sistema de aquisição de dados operando sob perturbação eletromagnĂ©tica

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Get PDF
    The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO) imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS) and phase locked loop (PLL). A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA) and digital signal processor (DSP) pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation
    • 

    corecore