827 research outputs found

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Queueing Networks for Vertical Handover

    Get PDF
    PhDIt is widely expected that next-generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is a mix of cellular networks (GSM/GPRS and WCDMA) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. If cellular/ WLAN interworking is to be the basis for a heterogeneous network then the analysis of complex handover traffic rates in the system (especially vertical handover) is one of the most essential issues to be considered. This thesis describes the application of queueing-network theory to the modelling of this heterogeneous wireless overlay system. A network of queues (or queueing network) is a powerful mathematical tool in the performance evaluation of many large-scale engineering systems. It has been used in the modelling of hierarchically structured cellular wireless networks with much success, including queueing network modelling in the study of cellular/ WLAN interworking systems. In the process of queueing network modelling, obtaining the network topology of a system is usually the first step in the construction of a good model, but this topology analysis has never before been used in the handover traffic study in heterogeneous overlay wireless networks. In this thesis, a new topology scheme to facilitate the analysis of handover traffic is proposed. The structural similarity between hierarchical cellular structure and heterogeneous wireless overlay networks is also compared. By replacing the microcells with WLANs in a hierarchical structure, the interworking system is modelled as an open network of Erlang loss systems and with the new topology, the performance measures of blocking probabilities and dropping probabilities can be determined. Both homogeneous and non-homogeneous traffic have been considered, circuit switched and packet-switched. Example scenarios have been used to validate the models, the numerical results showing clear agreement with the known validation scenarios

    Investigation of an intelligent personalised service recommendation system in an IMS based cellular mobile network

    Get PDF
    Success or failure of future information and communication services in general and mobile communications in particular is greatly dependent on the level of personalisations they can offer. While the provision of anytime, anywhere, anyhow services has been the focus of wireless telecommunications in recent years, personalisation however has gained more and more attention as the unique selling point of mobile devices. Smart phones should be intelligent enough to match user’s unique needs and preferences to provide a truly personalised service tailored for the individual user. In the first part of this thesis, the importance and role of personalisation in future mobile networks is studied. This is followed, by an agent based futuristic user scenario that addresses the provision of rich data services independent of location. Scenario analysis identifies the requirements and challenges to be solved for the realisation of a personalised service. An architecture based on IP Multimedia Subsystem is proposed for mobility and to provide service continuity whilst roaming between two different access standards. Another aspect of personalisation, which is user preference modelling, is investigated in the context of service selection in a multi 3rd party service provider environment. A model is proposed for the automatic acquisition of user preferences to assist in service selection decision-making. User preferences are modelled based on a two-level Bayesian Metanetwork. Personal agents incorporating the proposed model provide answers to preference related queries such as cost, QoS and service provider reputation. This allows users to have their preferences considered automatically

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    Review of network integration techniques for mobile broadband services in next generation network

    Get PDF
    Next Generation Network (NGN) is intended at integrating the existing heterogeneous wireless access networks in order to produce a composite network that provides users with ubiquitous broadband experience. Currently, it has been established that Long Term Evolution (LTE) network, as a backbone network, provides broadband capacity with high efficiency, reduced latency and improved resource provisioning. Resource provisioning on this backbone network is not without its limitation as more mobile broadband services (MBBs) are evolving and users demand for mobility is on the increase. This paper, therefore, reviewed the different integration techniques for the heterogeneous networks that use LTE network as backbone that supports mobile broadband services.Keywords: MBB, NGN, LTE, SIP, Qo

    A Seamless Vertical Handoff Protocol for Enhancing the Performance of Data Services in Integrated UMTS/WLAN Network

    Get PDF
    The Next Generation Wireless Network (NGWN) is speculated to be a unified network composed of several existing wireless access networks such as Wireless Local Area Network (WLAN), Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX), and satellite network etc

    Design and analysis of LTE-WLAN wireless router with QOS preservation

    Get PDF
    Future wireless networks are envisioned to embrace a higher level of heterogeneity whereby different wireless technologies such as Long Term Evolution UMTS (LTE), Wireless Local Area Network (WLAN), WCDMA/HSPA, WiMAX, etc, not only will coexist but will also cooperate more closely. This is motivated by the fact that several complementary characteristics exist between these technologies. For example, one technology can be used as access technology while the other can be used for backhaul. To interconnect two or more wireless technologies, the usage of routing device is inevitable. In order to preserve the Quality of Service (QoS) across these technologies which come with different QoS definitions, a more comprehensive approach is required to preserve QoS across two diverse wireless technologies i.e. Enhanced Distributed Coordination Function (EDCA) for WLAN and Uplink/Downlink packet scheduling for LTE. WLAN is reasonably priced, easy to deploy and has been enjoying a wide market acceptance especially in the indoor. The LTE is expected to be the dominant 4G cellular technology. However it will take some time before LTE can attain the same level of adoption as what WLAN has achieved especially in the consumer market. The main objective of this research project is to design an access router that enables the interworking between WLAN and LTE with QoS preservation. First, the performance of both WLAN and LTE radio interfaces are investigated independently in terms of the data rates, user/system throughput, effect of multiple access and spectral efficiency. Next, different approaches and schemes which facilitate QoS preservation between WLAN and LTE over the router are investigated and evaluated in terms of different performance metrics (voice Mean Opinion Score, video delay, video traffic received, video jitter, video packet loss rate). The design and analysis of the performance are carried out through simulation as the only feasible approach to accomplish this work. OPNET Modeler is used to model the LTE-WLAN router as well as to perform the analysis. The results of this research verify the feasibility of the proposed router architecture and the interworking paradigm. The elegance of the proposed router implementation is that it does not require massive change in the existing wireless systems, LTE and WLAN to preserve the QoS. The results of the performance analysis show that it is crucial to have a QoS preservation mechanism in the router IP layer at any potential congestion point in the wireless network, to ensure that delay-sensitive and loss-sensitive applications, such as real-time video and voice, pass through unimpeded, relative to the loss-tolerant and delay-tolerant data applications. The comparison of the designed IP QoS preservation scheme namely, Priority Queuing without Block Acknowledgement (PQ noBA) shows that it can support 50% more multimedia application across the router than the other scheme

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    Cellular Multihop Networks: State of the Art

    Full text link
    This paper presents the summary of some research in the area of cellular multihop networks that contains the improvement in network performance also the difficulties and the complexities of the networks. The combination of two different networks, mobile cellular networks and WLAN ad hoc networks will be presented. The main purpose of the combination is to minimize the weaknesses of both network types when they are deployed separately. By having this combination then it is possible to provide higher mobility for WLAN ad hoc networks user and higher data transfer rate for cellular network users in multimedia applications. The cellular multihop networks will reduce blocking probability, balance the cells load and increase the network capacities. Although there are improvement on the performance of the combine networks, but there are additional aspects that should be considered seriously, especially for WLAN ad hoc users. Authentication, Authorization and Accounting (AAA) functions, the dynamic routing and relay path discovery, maintenance and security issues are aspects to be considered for cellular multihop network
    • …
    corecore