4 research outputs found

    A FRAMEWORK FOR A CLOUD-BASED ELECTRONIC HEALTH RECORDS SYSTEM FOR NIGERIA

    Get PDF
      In most countries of the developed world, one of the integral components of Health Information System (HIS) is Electronic Health Records (EHR). With advances in Information and Communications Technology (ICT) and the rise in the adoption of cloud computing approaches in the health sector of these countries by a substantial number of health institutions, cloud servers are now remote repository of EHRs. However, in Nigeria and many other developing countries, health information of patients is still predominantly paper-based medical records. This manual method is not scalable in terms of storage, prone to error, insecure, susceptible to damage and degradation over time, highly unavailable, time consuming in accessing and with no visible audit trail and version history to mention but a few. In this paper, a framework for a cloud-based electronic health records system that is capable of storage, retrieval and updating of patients’ medical records for Nigeria is proposed. The framework provides for various medical stakeholders in a health institution and patients to access the EHR system via a web portal by using a variety of devices in the contextual scenario whereby the health institution is migrating from paper-based patient record documentation to an EHR system

    Success and failure in eHealth

    Get PDF
    Introduction In the field of eHealth, there seems to be a gap between promising research and clinical reality. This master thesis aims to give insight in patterns that can be found regarding the possible outcome in terms of success and/or failure. An in-depth review of workflow will be done, to get an understanding of the implications of eHealth on workflow. Methods Using a systematic article search, papers have been collected regarding the subject of this thesis. Through multiple search strategies, one final search string has been formulated. This final search string led to 903 papers. These papers have been assessed on relevance using qualitative methods. This resulted in 258 papers, which have been categorised by topic, entity and success or failure. After categorisation, the topic of workflow has been selected for an additional in-depth full-text review. Results The categorisation led to 27 categories. The categories are separated among the following entities: patient, health professional, health system and all. The first three have been separated in terms of success and failure as well. This led to a quantitative overview of different categories, for different actors in terms of success and failure. Workflow appeared to be essential for the possible success or failure of eHealth implementations. It is important to include workflow in the design of the tool as well. Conclusion Different categories show a unique combination in success and failure, and to what entity they belong. The category costs appeared to be mostly based on the health system and is attributed to failure. Therefore it is a pre-requisite for the implementation of eHealth. Other categories like quality healthcare and user expectations seem to target on success. The category legal was smaller than anticipated, which could have been caused by categories that are closely linked to each other

    Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record

    Get PDF
    [EN] Delivering patient-specific decision-support based on computer-interpretable guidelines (CIGs) requires mapping CIG clinical statements (data items, clinical recommendations) into patients data. This is most effectively done via intermediate data schemas, which enable querying the data according to the semantics of a shared standard intermediate schema. This study aims to evaluate the use of HL7 virtual medical record (vMR) and openEHR archetypes as intermediate schemas for capturing clinical statements from CIGs that are mappable to electronic health records (EHRs) containing patient data and patient-specific recommendations. Using qualitative research methods, we analyzed the encoding of ten representative clinical statements taken from two CIGs used in real decision-support systems into two health information models (openEHR archetypes and HL7 vMR instances) by four experienced informaticians. Discussion among the modelers about each case study example greatly increased our understanding of the capabilities of these standards, which we share in this educational paper. Differing in content and structure, the openEHR archetypes were found to contain a greater level of representational detail and structure while the vMR representations took fewer steps to complete. The use of openEHR in the encoding of CIG clinical statements could potentially facilitate applications other than decision-support, including intelligent data analysis and integration of additional properties of data items from existing EHRs. On the other hand, due to their smaller size and fewer details, the use of vMR potentially supports quicker mapping of EHR data into clinical statements.This study was partially funded by the European Commission 7th Framework Program, grant #287811. It has also been supported by the Spanish Ministry of Economy and Competitiveness and the EU FEDER programme through project TIN2014-53749-C2-1-R and grant PTQ-12-05620González-Ferrer, A.; Peleg, M.; Marcos, M.; Maldonado Segura, JA. (2016). Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record. Journal of Medical Systems. 40(7):1-10. https://doi.org/10.1007/s10916-016-0524-3S110407Peleg, M., Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46:744–763, 2013.Peleg, M., Shahar, Y., and Quaglini, S., Making healthcare more accessible, better, faster, and cheaper: the MobiGuide Project. Eur. J. e-Pract. 20:5–20, 2014.ISO (2011) ISO 18308:2011. Health Informatics—Requirements for an Electronic Health Record Architecture. http://www.iso.org/iso/catalogue_detail?csnumber=52823 . Accessed 29 Dec 2015Lenzerini M., Data integration: a theoretical perspective. In: Popa L (Ed). Proc. 21st ACM SIGMOD-SIGACT-SIGART Symp. Princ. database Syst. pp 233–246, 2002.Peleg, M., Keren, S., and Denekamp, Y., Mapping computerized clinical guidelines to electronic medical records: knowledge-data ontological mapper (KDOM). J. Biomed. Inform. 41:180–201, 2008.Marcos, M., Maldonado, J. A., Martínez-Salvador, B., Boscá, D., and Robles, M., Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J. Biomed. Inform. 46:676–689, 2013.Friedman M, Levy AY, Millstein TD, et al. Navigational plans for data integration. In: Hendler J, Subramanian D (Eds). Proc. 16th Natl. Conf. Artif. Intell. AAAI Press, Orlando, Florida, pp 67–73, 1999.Parker, C. G., Ms, S. W. T., Huff, S. M,. Detailed clinical models for sharable, executable guidelines. In: Fieschi M, Coiera E, Li Y-CJ (Eds). Proc. 11th World Congr. Med. Informatics. IOS Press, San Francisco (USA), pp 145–148, 2004Tao, C., Jiang, G., Oniki, T. A., Freimuth, R. R., Zhu, Q., Sharma, D., Pathak, J., Huff, S. M., and Chute, C. G., A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. J. Am. Med. Informa. Assoc. 20:554–562, 2013.German, E., Leibowitz, A., and Shahar, Y., An architecture for linking medical decision-support applications to clinical databases and its evaluation. J. Biomed. Inf. 42:203–218, 2009.Cho, I., Kim, J., Kim, J. H., Kim, H. Y., and Kim, Y., Design and implementation of a standards-based interoperable clinical decision support architecture in the context of the Korean EHR. Int. J. Med. Inform. 79:611–622, 2010.Tu, S. W., Campbell, J. R., Glasgow, J., et al., The SAGE guideline model: achievements and overview. J. Am. Med. Informa. Assoc. 14:589–598, 2007.Health Level Seven (2014) HL7 Version 3 Standard: clinical decision support; Virtual Medical Record (vMR) Logical Model, Release 2. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=338 . Accessed 14 Jan 2016.Marcos, M., Maldonado, J., Martínez-Salvador, B., Moner, D., Boscá, D., and Robles, M., An archetype-based solution for the interoperability of computerised guidelines and electronic health records. In: Peleg, M., Lavrač, N., and Combi, C. (Eds.), Artif. Intell. Med. Springer, Bled, Slovenia, pp. 276–285, 2011.González-Ferrer, A., and Peleg, M., Understanding requirements of clinical data standards for developing interoperable knowledge-based DSS: a case study. Comput Stand Interfaces 42:125–136, 2015.González-Ferrer, A., Peleg, M., Verhees, B., Verlinden, J. M., Marcos, C., Data integration for clinical decision support based on openEHR archetypes and HL7 virtual medical record. In: Lenz R, Miksch S, Peleg M, Reichert M, Riaño D, ten Teije A (eds) Proc. BPM Jt. Work. ProHealth12/KR4HC12 (LNAI 7738). Springer, Tallinn, Estonia, pp 71–84, 2013January, C. T., Wann, L. S., Alpert, J. S., et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64:e1–e76, 2014.Health NCC for W and C, Guidelines: management of diabetes from preconception to the postnatal period: summary of NICE guidance. BMJ Br. Med. J. 336:714, 2008.Lindberg, C., The Unified Medical Language System (UMLS) of the National Library of Medicine. J. Am. Med. Rec. Assoc. 61:40–42, 1990.NLM (2009) SNOMED Clinical Terms (SNOMED CT). http://www.ihtsdo.org/snomed-ct . Accessed 14 Jan 2016.Maldonado, J. A., Moner, D., Boscá, D., Fernández-Breis, J. T., Angulo, C., and Robles, M., LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics. Int. J. Med. Inform. 78:559–570, 2009.von Alan, R. H., March, S. T., Park, J., and Ram, S., Design science in information systems research. MIS Q 28:75–105, 2004.Fink, A., Kosecoff, J., Chassin, M., and Brook, R. H., Consensus methods: characteristics and guidelines for use. Am. J. Public Health 74:979–983, 1984.Markwell, D., Sato, L., Cheetham, E., Representing clinical information using SNOMED clinical terms with different structural information models. In: Cornet R, Spackman K (Eds). Proc. Third Int. Conf. Knowl. Represent. Med. CEUR, Phoenix, pp 72–79, 2008.Rector, A. L., Qamar, R., and Marley, T., Binding ontologies and coding systems to electronic health records and messages. Appl. Ontol. 4:51–69, 2009.González-Ferrer, A., Peleg, M., Parimbelli, E., Shalom, E., Lagunar, C. M., Klebanov, G., Martínez-Sarriegui, I., Fung, N. L. S., Broens, T., Use of the virtual medical record data model for communication among components of a distributed decision-support system. In: Proc. 2nd IEEE Biomed. Heal. Informatics Int. Conf. IEEE Computer Society, Valencia, Spain, pp 526–530, 2014Patel, V. L., Branch, T., Wang, E., Peleg, M., Boxwala, A., et al., Analysis of the process of encoding guidelines: a comparison of GLIF2 and GLIF3. Methods Inf. Med. 41:105–113, 2002.Marcos, C., González-Ferrer, A., Peleg, M., and Cavero, C., Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7’s Virtual Medical Record standard. J. Am. Med. Assoc. 22:587–599, 2015.Beale, T., ISO 18308 Conformance Statement release 1.0.1, 2006Health Level Seven (2015) HL7 Version 3 Standard: Clinical Decision Support; Virtual Medical Record (vMR) Templates, Release 1. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=339 . Accessed 14 Jan 2016
    corecore