316 research outputs found

    Augmented Reality Based 3D Furniture Shopping

    Get PDF
    The main aim of the paper is to present an Augmented Reality application for 3D furniture, with a particular emphasis on the development of an android application that provides a realistic view of an augmented reality 3D furniture target object in the real-world. This app for Android would overlay a virtual environment on top of the user's real world.  AR makes real-world data and presents it in an immersive manner, making the virtual section feel like it belongs in the real world. AR is commonly used in online shopping, and the 3D visualization allows any furniture piece to be configured. Results shows that, users can customize and combine their favorite furniture products, enhancing their shopping experience. This elevates the shopping experience to a new level. This application allows users to see and experience the object in their current environment before buying from a shop, and customers can visualize the furniture model in a real-world setting

    Natural User Interface for Roombots

    Get PDF
    Roombots (RB) are self-reconfigurable modular robots designed to study robotic reconfiguration on a structured grid and adaptive locomotion off grid. One of the main goals of this platform is to create adaptive furniture inside living spaces such as homes or offices. To ease the control of RB modules in these environments, we propose a novel and more natural way of interaction with the RB modules on a RB grid, called the Natural Roombots User Interface. In our method, the user commands the RB modules using pointing gestures. The user's body is tracked using multiple Kinects. The user is also given real-time visual feedback of their physical actions and the state of the system via LED illumination electronics installed on both RB modules and the grid. We demonstrate how our interface can be used to efficiently control RB modules on simple point-to-point grid locomotion and conclude by discussing future extensions

    Aspects of User Experience in Augmented Reality

    Get PDF

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Olivet Nazarene University Annual Catalog 2023-24

    Get PDF
    https://digitalcommons.olivet.edu/acaff_catalog/1095/thumbnail.jp

    Functional Animation:Interactive Animation in Digital Artifacts

    Get PDF

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life
    corecore