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Abstract—Roombots (RB) are self-reconfigurable modular
robots designed to study robotic reconfiguration on a structured
grid and adaptive locomotion off grid. One of the main goals of
this platform is to create adaptive furniture inside living spaces
such as homes or offices. To ease the control of RB modules in
these environments, we propose a novel and more natural way of
interaction with the RB modules on a RB grid, called the Natural
Roombots User Interface. In our method, the user commands the
RB modules using pointing gestures. The user’s body is tracked
using multiple Kinects. The user is also given real-time visual
feedback of their physical actions and the state of the system
via LED illumination electronics installed on both RB modules
and the grid. We demonstrate how our interface can be used
to efficiently control RB modules on simple point-to-point grid
locomotion and conclude by discussing future extensions.

I. INTRODUCTION & MOTIVATION

Roombots (RB) are a self-reconfigurable modular robotic

platform designed to study both robotic reconfiguration and

adaptive locomotion [16]. Each RB module is composed of

two connected “sphere-like” structures. It has 3 rotational

Degrees of Freedom (DOF) as seen in Fig. 1a, capable of

continuous rotation. Up to 10 Active Connection Mechanisms

(ACMs) can be installed on each RB module, letting it

connect to structured grid tiles and to other modules [17]. The

structured grid is designed such that one sphere-like structure

of a module fits exactly on a grid tile. A single module can

move anywhere on this grid (except on convex edges) in a

structured manner by moving one tile at a time, latching onto

the next tile before releasing the previous one using ACMs.

Additionally, free locomotion and motion on a structured grid

using multiple connected modules are also possible.

One of the main goals of the platform is to create adaptive

furniture, where modules move both inside and outside of

the structured grid environment, as depicted in Fig. 1b. We

envision that these pieces of furniture will adapt to the

user’s needs in order to create an assistive living space, e.g.

transforming into different furnitures or changing arrangement

according to different hours in the day, or to the user’s choice.

However, controlling these modular robots can be challenging,

especially for a non-expert user.

Up to now, RB modules were mainly controlled by (1)

sending hardcoded motion command sequences, (2) using a

classical Graphical User Interface (GUI), or (3) through an

augmented display on a mobile device [7]. The first method

is restricted to developers only. The second method requires

the user to focus on a computer, most often using a monitor

and mouse/keyboard pair, to command the RB modules that

(a) (b)

Fig. 1. (a) Degrees of freedom on a Roombots module. (b) Roombots
modules moving inside and outside the grid to form adaptive furniture.
Modules locomote from outside of the grid (gray area on the floor) to inside
to form a table using passive structural elements (in brown).

are spatially located elsewhere. The last method requires

the user to carry an additional device. To construct a user

interface that enables easier control of these robots coexisting

with humans, we chose to consider a more natural interface

paradigm. An instance of such an interface would be where the

user controls the robots using physical gestures and receives

sensory feedback in the very same space that the robots are

located without carrying additional devices.

A study by Hornecker and Buur examines the human in-

teraction with augmented environments [10]. They emphasize

significant concepts such as the use of the user’s body as an

input device exploiting the richness of bodily movement and

physical objects embodying aspects of the system state so that

it is legible for users. We are strongly motivated to investigate

whether these concepts would ease the control of RB modules.

Lichtenstern et al. studied a control interface where a subset

of multiple quadrotors can be selected by pointing gestures

and moved in 3D space via the user’s hand position, detected

by a depth sensor [13]. Pourmehr et al. applied pointing

gestures similarly to select one of multiple wheeled robots

[15]. Couture-Beil et al. implemented an interface where the

user selects and commands one of multiple wheeled robots

by face engagement and hand gestures detected by an RGB

camera [9]. Studies of Jojic et al. [11] and Kortenkamp et

al. [12] feature pointing gestures and discuss methods for

their recognition. These studies contain useful methods for our

application such as agent selection in a multi-agent setting and

tracking the user’s gestures with depth sensors.

The idea of physical embodiment of the system state and

providing sensory feedback to the user is applied by Bellmore



Fig. 2. Overview of our user interface, denoting key components. Pointing
gestures of the user and the grid state are recognized by depth sensors (in
green and in red respectively). Visual feedback using LEDs is given to the
pointing gestures and to indicate the system state (in yellow and in orange).
Finally, the module selected by pointing gestures is moved to its target tile,
also selected by pointing gestures (in purple).

et al. [4] in their interactive display where the user is informed

of the results of their actions by displaying animations on the

target area of the action. A more directly related example is the

study made by McLurkin et al. [14] where individual swarm

robots are equipped with LEDs to inform the user of their

state. These methods are good candidates for giving feedback

to the user and enhancing system usability in our application.

Motivated by the existing natural control interface studies,

we implemented and studied such an interface in order to

enable easier and more natural control of RB modules. We

limited our study to the structured grid to exploit the ability

of a single RB module to move to any position on it. The user

is able to select individual RB modules and move them to

target locations by pointing at the modules and at the targets.

The pointing gestures and the grid state are recognized by a

dual depth sensor setup. The user’s pointing gestures cause

the emission of visual feedback on LED setups on both the

grid tiles and the RB modules, indicating where the user is

pointing and which object is selected. In addition to this, the

system state is also exhibited on the same feedback setup,

further enhancing the user interface experience. This paper

is organized as follows: Hardware and software design of all

components are described in detail in Section II, experiments

and results are examined in Section III and our outlook on the

study along with future extension plans is given in Section IV.

II. SYSTEM DESIGN

Our interface, whose structure is summarized in Fig. 2,

is composed of a depth sensor setup to perceive the grid

state and the user’s body, a visualization setup to provide

the user with feedback of their actions and the grid state,

and finally the motion controller to move the RB modules

simultaneously. They will be explained in sections II-A, II-B

and II-C respectively.

A. Depth Sensor Setup

The goal of our depth sensor setup is to capture the user’s

body and the grid state as noiselessly and as completely as

possible. Microsoft Kinect for Xbox was selected as the depth

sensor for its low price and the abundance of compatible open
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Fig. 4. The final dual Kinect setup. The overhead Kinect (approximate field
of vision in red) is used mainly to detect the grid state while the horizontal
Kinect (approximate field of vision in green) is used to track the user skeleton.

source software. The problems associated with the setup and

their solutions are discussed in the following sections.

1) Number of Sensors & Placement: The number of

sensors, their placements and their orientations were first

determined considering 3 main factors: The user skeleton

tracking (discussed in section II-A3) quality, the depth sensor

interference and the area coverage/overlap.

A number of different setups were considered and tested in

which the sensors were placed with as large angles between

as possible. This tends to reduce the interference, as remarked

by Susanto et al. [18] and analyzed in detail by Berger et al.

[5]. The initial unsatisfactory configurations can be seen in

Fig. 3, where the configurations in Fig. 3a and 3b failed to

provide adequate skeleton tracking quality from certain user

positions and the configuration in Fig. 3c was not preferred

since adding the third sensor did not contribute significantly.

The final configuration, seen in Fig. 4, is formed of two

Kinects. One is mainly used for user tracking while the other

is mainly used for grid state tracking. The amount of sensor

interference and the skeleton tracking quality in this setup

was such that we were able to track the user’s upper body

anywhere within 50 centimeters of the grid periphery, as long

as the user’s crucial body parts (such as hands) are not hidden

behind objects (e.g the rest of their body or the grid wall)

with respect to the user tracking Kinect. Also, the amount of

overlap in 3D surfaces viewed by both sensors enabled the

extrinsic calibration (detailed in the next section) to converge.

2) Extrinsic Calibration: Once the Kinects are placed, their

3D transformations with respect to each other and to the grid



Fig. 5. The extrinsic calibration GUI. Top-left: PCL Visualizer window
displaying point clouds seen by Kinects (red and blue) and the artificial
point cloud representing the grid’s 3D shape (green). Top-right: The transform
adjustment window where the user roughly aligns the clouds by adjusting the
X, Y, Z, Roll, Pitch and Yaw of the transforms and refines them using the
Iterative Closest Point algorithm. Bottom: Filtered depth maps of the Kinects.

must be measured; this allows the untransformed coordinates

measured by the Kinects in the camera frame to be placed

in the same frame as the objects in the grid. This procedure,

called extrinsic calibration, is performed by our auxiliary GUI

application seen in Fig. 5. It is performed only once before

the usage of the actual user interface.

The two Kinects are calibrated with respect to each other

first. 100 depth frames from each Kinect are first recorded.

Depth maps coming from a Kinect tend to be very noisy;

for this reason, we take the median of all 100-frames and

then apply a 5x5 spatial median filter exclusively to unknown

pixels, similar to [18]. Our choice of temporal median filtering

over mean filtering is to avoid creating spurious depth values.

For instance, a pixel directly on the border of two objects with

different depths may be averaged to the midway between these

depths due to noise, where neither object exists.

At this point, the depth maps are converted into a point

cloud format, provided by the Point Cloud Library (PCL) [3].

Next, these point clouds are transformed so that the “upwards”

direction approximately corresponds to the Z axis of their

frame, using the accelerometer data collected from each of

the Kinects. The point clouds are presented to the user in a

PCL Visualizer where they can zoom in/out, rotate and move

the view in 3D. The user must do a rough alignment of the

two point clouds manually by changing one of the clouds’ X,

Y, Z, Roll, Pitch and Yaw transform values with respect to the

other. Since the clouds are approximately “up” towards the Z

axis, Roll and Pitch are not required to be manually modified.

Once the rough alignment is done, the clouds are fully

aligned with a variant of the Iterative Closest Point algorithm

by Besl and McKay [6] implemented in PCL. The number of

maximum iterations is kept low as to allow the user to rapidly

see if the calibration diverges due to bad initial alignment or

lack of sufficient overlapping surfaces seen by both sensors.

The algorithm can be applied iteratively to converge to better

results. Once the two clouds are calibrated, an artificial point

cloud representation of the RB grid is created and calibrated

against the union of the two previous clouds, with manual and

automated calibrations similar as before.

Fig. 6. Head-hand vector extension (in red) being used as pointing direction,
the first object that the vector hits is considered “pointed at”.

3) Pointing Gesture Detection: In order to detect where the

user is pointing at, we use the skeleton tracker of the NiTE

“middleware” in the OpenNI framework [2]; this method was

successfully used by numerous authors (e.g. [15, 4]). NiTE

skeleton tracker requires a depth map as input; therefore, we

filter the depth maps before skeleton tracking in real time

by a temporal running median filter with window size 3 (to

accommodate the real-time constraint) and then a 5x5 spatial

median filter applied to unknown pixels. The window size

is determined empirically and provides adequate smoothing

while not degrading the dynamism of moving entities com-

pared to larger and smaller window sizes.

Next, we patch the missing pixels in the user tracker depth

map with the information coming from the grid tracker’s

readings, if possible. Using this final depth map, the skeleton

tracker returns the 3D locations of the 15 “joints” including

head and left/right hands along with their confidence values.

These locations are observed to be noisy as well, particularly

when the user’s body parts such as hands are at narrow angles

with respect to the Kinect. For this reason, the joint locations

are subjected to a weighted running average filter of 4 frame

window size, a value determined again empirically to not

degrade the inherent body motion. The 4 weights for each

joint are confidence values, allowing us to decrease the value

of more noisy readings compared to clean ones.

In accordance with Jojic et al.’s [11] and Pourmehr et al.’s

[15] methodology, the head-hand vector is used as the pointing

direction. It is observed to be more robust compared to other

vectors such as shoulder-hand and elbow-hand in terms of user

body orientation with respect to the sensor. Once detected,

the head-hand vectors (for both hands) are extended and the

first objects that these rays hit (if any) are considered being

pointed at, as depicted in Fig. 6. For computational efficiency

when checking intersections with these rays, the RB modules

are approximated by two spheres corresponding to the two

“sphere-like” segments, seen in Fig. 1a.

4) Grid State Detection: Using the union of the point

clouds coming from the two depth sensors, the grid state

perception system should detect the state of the grid and all

objects in it. We currently lack this perception system and set

the grid state manually; its design is among our future goals.



Fig. 7. Roombots grid LED illumination topology. The microcontroller (in
blue) sends the state for each LED color on each tile serially, which translate
to LEDs (in green) being turned on/off by the LED drivers (in orange).

B. Visual Feedback Setup

In order to enhance the usability of the interface, we

designed LED-based electronics to be integrated to the RB grid

tiles and the RB modules, discussed in the following sections.

1) Roombots Grid: During the usage of the interface,

the user may point to and select grid tiles. Our goal is to

give visual feedback concerning the physical gesture being

performed and the current system state. For this, we designed

an LED-based modular illumination system that enables us to

illuminate each grid tile independently; it is thus compatible

with all grid shapes and sizes that are composed of these tiles.

The two electronic circuits in our design, namely the LED

circuit and the driver circuit, are connected according to the

topology seen in Fig. 7. Each LED circuit is mounted under

a single grid tile and can be lit in a desired color. Each

driver circuit can drive up to 5 LED circuits, i.e. illuminate

5 grid tiles. The driver circuits are cascaded to form a

communication chain, at the beginning of which is an Arduino

Uno [1]. It was chosen for its low cost and ease of firmware

development instead of integrating a microcontroller into our

circuits directly. The Arduino board is connected to the host

computer through USB, receiving the desired color for each

tile. The mounted system can be seen in Fig. 8a.

2) Roombots Modules: Similar to the grid illumination

system, our goal is to give visual feedback to the user about

the current system state (such as the associated module’s state)

and about the current physical gesture being performed (such

as pointing at or selecting the module). The design mainly

follows the idea of illuminating the two outer diametrical

DOFs instead of central points on the faces or corners of

the module’s cubic structures. This increases illumination

visibility from various angles due to simple geometry and

enables us to indicate the turning motion of the associated

DOF via successively lighting LEDs. Therefore, we designed

a circuit with 6 RGB LEDs on the rim and a dedicated

microcontroller to illuminate a single DOF. Each RB module

has two such circuits illuminating only the outer DOFs through

semi-transparent rings as seen in Fig. 8b and 8c. Designing a

similar circuit for the middle DOF is among our future works.

(a) Grid colors in full intensity. Top: red,
green, blue, yellow, cyan, violet tiles. Bot-
tom: 6 white tiles.

(b) Module in
green

(c) Module in
blue

Fig. 8. LED illumination. (a): Grid tiles. (b), (c): Roombots modules.

The firmware on the microcontroller is designed to produce

various effects on the LEDs; these effects are used to convey

different states of a module to the user:

• Constant: All LEDs are lit in a single color.

• Breathe: All LEDs are lit in a single color, intensity

decreasing and increasing (similar to [14]) with linear

interpolation.

• Turn: LEDs are switched on and off sequentially and in

a circular fashion in a single color, fading from one to

the next with linear interpolation.

The usage of these effects and their intended impressions

on the user are explained in the next section. In addition to

these, cross-fading during the passage from one effect/color

to another is implemented for aesthetic reasons. The host

computer, connected to the module via Bluetooth, commands

the LEDs of a DOF by sending an effect and a color. We limit

the colors to red, green, blue, yellow, cyan, violet and white,

reducing the communication overhead and increasing visual

distinguishability of one color from another.

C. Moving the Modules & User Interaction

The gesture detection and visual feedback systems described

in the previous sections (II-A and II-B respectively) are com-

bined to design a natural user interface in order to control the

RB modules. In this stage, our previously proposed movement

primitives and paradigms [8] are utilized. For simplicity, we

limit ourselves to the structured motion of single RB modules

on a planar grid, moving one tile at a time.

In order to command the individual RB modules from a host

computer, a multithreaded software architecture is designed

to allow concurrent motion. Modules may only perform a

primitive after virtually allocating (if possible) all the physical

space necessary for that primitive in a thread-safe manner: This

allows collision-free motion and is elegantly compatible with

our proposed D* algorithm for path planning [8].

The user interaction begins with all RB modules illuminated

with the breathing effect in white color denoting their idle

state. The grid tiles are not illuminated when idle, differenti-

ating them from the “living and active” RB modules, which is

an impression we expect to create on the user by the breathing

effect. The user interacts with the modules and grid tiles by

pointing at them with either hand; any tile or RB module



Fig. 9. Virtual system visualizer. Roombots modules (black & white spheres),
Kinect point clouds (blue points; yellow points correspond to user’s body)
and the user pointing vectors (red and cyan lines) are seen. Here, the bottom
module is selected (yellow spheres) and the cyan tile is being pointed at.

that is being pointed at is illuminated with a cyan color. Tiles

that are being pointed at are lit in constant brightness while

RB modules that are pointed at still display the breathing

effect, emphasizing the “living” state. Besides creating these

impressions, this also allows the user to know where they are

pointing at, and forms a closed-loop control mechanism to help

the user correct the error in their pointing direction. Since we

are tracking the head-hand vector, the user must try to cover

the object with their hand in their field of vision to point at it.

To select a tile or module, the user points at it for 2 seconds;

with this, we avoid detecting other gestures that could possibly

be used to indicate selection, which may be computationally

costly. When an object is selected, it is illuminated with a

constant yellow color. An already selected object is illuminated

with a constant green color instead when being pointed at.

When a RB module is selected, the previously selected module

is deselected if there is any; tile selection behaves similarly. An

object can also be deselected by pointing at it for 2.5 seconds.

As soon as a module and a grid tile are selected, the

module is commanded to move to that tile provided that

there is a collision-free path. While moving, the module is

illuminated with a violet color. The rotating joints are indicated

via illuminating their LEDs in the turning effect, indicating the

direction towards which the module is moving. With this, we

aim to let the user better perceive the motion of a RB module.

In all of the above phases, our color selection is arbitrary and

is not aimed towards giving an impression to the user.

During the operation of the interface, the user is presented

with a simple representation of the system in a PCL Visualizer

window in the host computer, seen in Fig. 9. Here, the point

clouds (downsampled for better visibility) and pointing vectors

of the user (when available) are presented. This extension is

particularly useful for development purposes.

III. RESULTS & DISCUSSION

In our experiments, we equipped 12 grid tiles and one RB

module with prototype LED illumination boards. We used two

RB modules to test selection and simultaneous path execution

with multiple modules. Instead of replanning a path, we simply

stop the module when it cannot move due to obstruction from

another module. When the obstruction clears, the user can

reselect the module and reissue the command, allowing us to

additionally test our interface.

In order to demonstrate our visual feedback setup better, the

modules are not placed and moved far away from the tiles that

are equipped with LEDs. Since there is one module and some

tiles unequipped with LED boards, the virtual visualizer was

used during testing. An example run of our interface can be

seen in Fig. 10 and in the multimedia attachment.

IV. CONCLUSION & FUTURE WORK

In this study, we have presented a natural user interface

to control the RB modules on the RB grid. We introduced

our design for a dual depth sensor setup to track the user’s

skeleton in order to use the pointing direction to select target

RB modules and grid tiles. We described our designs for LED

based visual feedback hardware installed on RB modules and

grid tiles. Finally, we combined the two aspects with a mul-

tithreaded motion controller to execute the user’s commands

and presented the use of our interface through an experiment.

The next step in our study is to design and implement the

grid tracker. Selecting and commanding multiple RB modules

is also an idea that we plan to study, as well as enabling

locomotion on multiple connected surfaces, such as multiple

floors, walls, ceilings or other modules already on the grid.

Additionally, we plan to enable controlling off-grid locomotion

of RB modules by using a laser projector to give the user

feedback, analogous to our LED illumination design for grid

tiles. All of these will allow us to realize our initial objective,

enabling us to build structures out of RB modules, e.g pieces

of furniture. Finally, a user study will be conducted in order

to justify our interface paradigms against the state-of-the-art

interfaces. As a final thought, our long term plans include

applying our interface to other multi-robot platforms thanks

to its compatibility. A future research perspective is to use

our interface to control multiple wheeled agents.
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R. Möckel, A. Billard, P. Dillenbourg, and A.J. Ijspeert.

Roombots: Reconfigurable Robots for Adaptive Furni-

ture. Computational Intelligence Magazine, IEEE, 5(3):

20–32, 2010.
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