1,466 research outputs found

    An intuitive tangible game controller

    Get PDF
    This paper outlines the development of a sensory feedback device providing a low cost, versatile and intuitive interface for controlling digital environments, in this example a flight simulator. Gesture based input allows for a more immersive experience, so rather than making the user feel like they are controlling an aircraft the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand. The movements are designed to feel intuitive and allow for a sense of immersion that would be difficult to achieve with an alternative interface. In this example the user's hand can become the aircraft much the same way that a child would imagine it

    Vibrotactile pedals : provision of haptic feedback to support economical driving

    Get PDF
    The use of haptic feedback is currently an underused modality in the driving environment, especially with respect to vehicle manufacturers. This exploratory study evaluates the effects of a vibrotactile (or haptic) accelerator pedal on car driving performance and perceived workload using a driving simulator. A stimulus was triggered when the driver exceeded a 50% throttle threshold, past which is deemed excessive for economical driving. Results showed significant decreases in mean acceleration values, and maximum and excess throttle use when the haptic pedal was active as compared to a baseline condition. As well as the positive changes to driver behaviour, subjective workload decreased when driving with the haptic pedal as compared to when drivers were simply asked to drive economically. The literature suggests that the haptic processing channel offers a largely untapped resource in the driving environment, and could provide information without overloading the other attentional resource pools used in driving

    Development of a wearable haptic game interface

    Get PDF
    This paper outlines the development and evaluation of a wearable haptic game interface. The device differs from many traditional haptic feedback implementation in that it combines vibrotactile feedback with gesture based input, thus becoming a two way conduit between the user and the virtual environment. The device is intended to challenge what is considered an "interface" and sets out to purposefully blur the boundary between man and machine. This allows for a more immersive experience, and a user evaluation shows that the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand.Comment: arXiv admin note: substantial text overlap with arXiv:1604.0547

    Visuohaptic Simulation of a Borescope for Aircraft Engine Inspection

    Get PDF
    Consisting of a long, fiber optic probe containing a small CCD camera controlled by hand-held articulation interface, a video borescope is used for remote visual inspection of hard to reach components in an aircraft. The knowledge and psychomotor skills, specifically the hand-eye coordination, required for effective inspection are hard to acquire through limited exposure to the borescope in aviation maintenance schools. Inexperienced aircraft maintenance technicians gain proficiency through repeated hands-on learning in the workplace along a steep learning curve while transitioning from the classroom to the workforce. Using an iterative process combined with focused user evaluations, this dissertation details the design, implementation and evaluation of a novel visuohaptic simulator for training novice aircraft maintenance technicians in the task of engine inspection using a borescope. First, we describe the development of the visual components of the simulator, along with the acquisition and modeling of a representative model of a {PT-6} aircraft engine. Subjective assessments with both expert and novice aircraft maintenance engineers evaluated the visual realism and the control interfaces of the simulator. In addition to visual feedback, probe contact feedback is provided through a specially designed custom haptic interface that simulates tip contact forces as the virtual probe intersects with the {3D} model surfaces of the engine. Compared to other haptic interfaces, the custom design is unique in that it is inexpensive and uses a real borescope probe to simulate camera insertion and withdrawal. User evaluation of this simulator with probe tip feedback suggested a trend of improved performance with haptic feedback. Next, we describe the development of a physically-based camera model for improved behavioral realism of the simulator. Unlike a point-based camera, the enhanced camera model simulates the interaction of the borescope probe, including multiple points of contact along the length of the probe. We present visual comparisons of a real probe\u27s motion with the simulated probe model and develop a simple algorithm for computing the resultant contact forces. User evaluation comparing our custom haptic device with two commonly available haptic devices, the Phantom Omni and the Novint Falcon, suggests that the improved camera model as well as probe contact feedback with the 3D engine model plays a significant role in the overall engine inspection process. Finally, we present results from a skill transfer study comparing classroom-only instruction with both simulator and hands-on training. Students trained using the simulator and the video borescope completed engine inspection using the real video borescope significantly faster than students who received classroom-only training. The speed improvements can be attributed to reduced borescope probe maneuvering time within the engine and improved psychomotor skills due to training. Given the usual constraints of limited time and resources, simulator training may provide beneficial skills needed by novice aircraft maintenance technicians to augment classroom instruction, resulting in a faster transition into the aviation maintenance workforce

    Position referenced force augmentation in teleoperated hydraulic manipulators operating under delayed and lossy networks: a pilot study.

    Get PDF
    Position error between motions of the master and slave end-effectors is inevitable as it originates from hard-to-avoid imperfections in controller design and model uncertainty. Moreover, when a slave manipulator is controlled through a delayed and lossy communication channel, the error between the desired motion originating from the master device and the actual movement of the slave manipulator end-effector is further exacerbated. This paper introduces a force feedback scheme to alleviate this problem by simply guiding the operator to slow down the haptic device motion and, in turn, allows the slave manipulator to follow the desired trajectory closely. Using this scheme, the master haptic device generates a force, which is proportional to the position error at the slave end-effector, and opposite to the operator's intended motion at the master site. Indeed, this force is a signal or cue to the operator for reducing the hand speed when position error, due to delayed and lossy network, appears at the slave site. Effectiveness of the proposed scheme is validated by performing experiments on a hydraulic telemanipulator setup developed for performing live-line maintenance. Experiments are conducted when the system operates under both dedicated and wireless networks. Results show that the scheme performs well in reducing the position error between the haptic device and the slave end-effector. Specifically, by utilizing the proposed force, the mean position error, for the case presented here, reduces by at least 92% as compared to the condition without the proposed force augmentation scheme. The scheme is easy to implement, as the only required on-line measurement is the angular displacement of the slave manipulator joints

    State-of-the-Art of Hand Exoskeleton Systems

    Get PDF
    This paper deals with the analysis of the state-of-the-art of robotic hand exoskeletons (updated at May 2011), which is intended as the first step of a designing activity. A large number of hand exoskeletons (both products and prototypes) that feature some common characteristics and many special peculiarities are reported in the literature. Indeed, in spite of very similar functionalities, different hand exoskeletons can be extremely different for the characteristics of their mechanism architectures, control systems and working principles. The aim of this paper is to provide the reader with a complete and schematic picture of the state-of-the-art of hand exoskeletons. The focus is placed on the description of the main aspects that are involved in the exoskeleton design such as the system kinematics, the actuator systems, the transmission parts and the control schemes. Additionally, the critical issues provided by the literature analysis are discussed in order to enlighten the differences and the common features of different practical solutions. This paper may help to understand both the reasons why certain solutions are proposed for the different applications and the advantages and drawbacks of the different designs proposed in the literature. The motivation of this study is the need to design a new hand exoskeleton for rehabilitation purposes

    The Next-Generation Surgical Robots

    Get PDF
    The chronicle of surgical robots is short but remarkable. Within 20 years since the regulatory approval of the first surgical robot, more than 3,000 units were installed worldwide, and more than half a million robotic surgical procedures were carried out in the past year alone. The exceptionally high speeds of market penetration and expansion to new surgical areas had raised technical, clinical, and ethical concerns. However, from a technological perspective, surgical robots today are far from perfect, with a list of improvements expected for the next-generation systems. On the other hand, robotic technologies are flourishing at ever-faster paces. Without the inherent conservation and safety requirements in medicine, general robotic research could be substantially more agile and explorative. As a result, various technical innovations in robotics developed in recent years could potentially be grafted into surgical applications and ignite the next major advancement in robotic surgery. In this article, the current generation of surgical robots is reviewed from a technological point of view, including three of possibly the most debated technical topics in surgical robotics: vision, haptics, and accessibility. Further to that, several emerging robotic technologies are highlighted for their potential applications in next-generation robotic surgery

    An Augmented Interaction Strategy For Designing Human-Machine Interfaces For Hydraulic Excavators

    Get PDF
    Lack of adequate information feedback and work visibility, and fatigue due to repetition have been identified as the major usability gaps in the human-machine interface (HMI) design of modern hydraulic excavators that subject operators to undue mental and physical workload, resulting in poor performance. To address these gaps, this work proposed an innovative interaction strategy, termed “augmented interaction”, for enhancing the usability of the hydraulic excavator. Augmented interaction involves the embodiment of heads-up display and coordinated control schemes into an efficient, effective and safe HMI. Augmented interaction was demonstrated using a framework consisting of three phases: Design, Implementation/Visualization, and Evaluation (D.IV.E). Guided by this framework, two alternative HMI design concepts (Design A: featuring heads-up display and coordinated control; and Design B: featuring heads-up display and joystick controls) in addition to the existing HMI design (Design C: featuring monitor display and joystick controls) were prototyped. A mixed reality seating buck simulator, named the Hydraulic Excavator Augmented Reality Simulator (H.E.A.R.S), was used to implement the designs and simulate a work environment along with a rock excavation task scenario. A usability evaluation was conducted with twenty participants to characterize the impact of the new HMI types using quantitative (task completion time, TCT; and operating error, OER) and qualitative (subjective workload and user preference) metrics. The results indicated that participants had a shorter TCT with Design A. For OER, there was a lower error probability due to collisions (PER1) with Design A, and lower error probability due to misses (PER2)with Design B. The subjective measures showed a lower overall workload and a high preference for Design B. It was concluded that augmented interaction provides a viable solution for enhancing the usability of the HMI of a hydraulic excavator
    • 

    corecore